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Abstract—Recent breakthroughs in wireless energy transfer-
based rechargeable batteries enable a promising application of
Wireless Charging Vehicles (WCVs) in Wireless Rechargeable
Sensor Networks (WRSNs). This paper studies cooperative WCV
schedules in WRSNs to optimize sensor recharging. The objective
is to minimize the number of WCVs under the constraint that
all sensors must be periodically recharged before running out
of energy (i.e., before lifetime). Our problem is NP-hard and is
very challenging due to the complexity of WCV route schedules.
WCVs can be used to recharge sensors in turn. Our problem is
thoroughly explored in line, cycle, and metric spaces (such as a
three-dimensional Euclidean space). In terms of line and cycle
spaces, greedy algorithms with ratios of 2 and 4, respectively, are
proposed. By exploring two WCV schedule patterns, the optimal
algorithm is found for the cycle space when sensor lifetimes are
identical. For the metric space with an identical sensor lifetime,
an algorithm with a ratio of 2.5 is proposed through constructing
the minimum distance forest among sensors. It is also extended to
the metric space with non-identical sensor lifetimes by grouping
sensors according to their lifetimes. Finally, real data-driven
experiments demonstrate the efficiency and effectiveness of the
proposed approximation algorithms.

Keywords-Wireless charging vehicles, cooperative schedule,
wireless rechargeable sensor networks, approximation.

I. INTRODUCTION

The limited battery capacities of sensors became the biggest

problem in the applicability of Wireless Rechargeable Sensor

Networks (WRSNs) over the past decade. Although research

efforts have been made to prolong the sensors’ lifetimes

[1, 2], battery capacity remains a performance bottleneck that

hinders the deployment of WRSNs. Recent breakthroughs in

wireless power transfers enable a promising application of

Wireless Charging Vehicles (WCVs) in WRSNs. WCVs can

serve as mobile chargers that recharge the sensors through the

wireless power transfer technology, which has been adopted

in WiFi and RFID sensing devices [3]. The literature [4, 5]

demonstrates that significant energy and cost savings, as well

as extended life spans of WRSNs, can be achieved by using

WCVs to periodically recharge the sensors.

In the existing literatures [4, 6], WCVs are independently

scheduled to recharge sensors in WRSNs. In contrast, this

paper studies cooperative WCV schedules to improve the

efficiency. In our scenario, sensors are placed in a metric space

(e.g., a three-dimensional Euclidean space), and the distances

between them are known a priori. The lifetime of each

sensor is known. Each sensor needs to be recharged before

running out of energy. WCVs with identical speeds are used

to periodically charge sensors. The range of the wireless power

transfer is negligible with respect to the distance between
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Fig. 1. Toy example to illustrate the problem complexity.

the sensors. According to [7], the wireless power transfer is

most efficient within a range of half a meter. Meanwhile, the

distance between sensors can be hundreds of meters in large-

scale WRSNs [8]. Hence, WCVs should reach the sensors

before recharging them. Since WCVs have limited speeds, we

need multiple WCVs to accomplish the sensor recharging task.

The cost of a sensor recharging schedule depends on its

WCVs. To save the operation cost, the objective of this paper

is to minimize the number of WCVs under the constraint that

sensors must be periodically recharged before running out of

energy (i.e., sensors are running forever). Our problem is chal-

lenging due to the complexity of WCV route schedules. A toy

example is shown in Fig. 1(a). It includes a 1.125km×0.75km

rectangle, whose length is compressed to save space. The

rectangle is densely covered by sensors that have lifetimes of

1h without recharging. Three additional special sensors (s1 at

0.25m, s2 at 0.5m, and s3 at 0.75m) are deployed on an edge of

the rectangle. Lifetimes of s1, s2, and s3 are 0.5h, 0.25h, and

0.5h, respectively. The speed of the WCVs is 1km/h. Fig. 1(b)

illustrates a naive schedule, which uses 7 WCVs to guarantee

that sensors are periodically recharged before running out of

energy. It uses 4 WCVs to evenly traverse the rectangle. Since

the rectangle circumference is 3.75km, all sensors except s1,

s2, and s3 can be periodically recharged before running out

of energy. The naive schedule also uses 3 WCVs to recharge

s1, s2, and s3. Fig. 1(c) shows a better schedule, which uses

6 WCVs in total and uses only 2 WCVs to recharge s1, s2,

and s3. The 1st WCV goes back and forth between s1 and

s2, and the 2nd WCV goes back and forth between s2 and



s3. Meanwhile, the 1st WCV arrives at s2 0.25h earlier than

the 2nd WCV (they do not arrive at s2 at the same time).

However, the optimal schedule is more interesting, as shown in

Fig. 1(d). It uses only 5 WCVs to evenly traverse the rectangle,

however, a magic schedule happens when a WCV arrives at

s1. Supposing that each operation takes 0.25h, each WCV

performs the following 7 operations in sequence after arriving

s1: (1) go to s2, (2) go back to s1, (3) go to s2, (4) stop at s2,

(5) go to s3, (6) go back to s2, and (7) go to s3. Each WCV

in the optimal schedule takes a 5h recharging round, and thus,

5 WCVs are sufficient for recharging all sensors.

This paper provides a clean-state solution to cooperatively

schedule WCVs. Our main contributions are fourfold:

• This paper addresses one of the most fundamental prob-

lems in WRSNs. A clean problem formulation is provided

to minimize the number of WCVs to recharge the sensors.

• For line and cycle spaces, algorithms with approximation

ratios of 2 and 4, respectively, are proposed. Optimal

solutions are obtained if sensor lifetimes are homogenous.

• In the metric space, an algorithm with an approximation

ratio of 2.5 is proposed if sensor lifetimes are homoge-

nous. Through a grouping mechanism, this algorithm is

extended to scenarios with heterogenous sensor lifetimes.

• Extensive real data-driven experiments are conducted to

evaluate the proposed solutions. The results are shown

from different perspectives to provide conclusions.

The remainder of this paper is organized as follows. Section

II surveys related works. Section III describes the model, and

then, formulates the problem. Section IV studies the problem

in line and cycle spaces, respectively. Section V investigates

the problem in the metric space. Section VI includes the real

data-driven experiments. Section VII concludes the paper.

II. RELATED WORK

WRSNs have been extensively studied in terms of wireless

sensor networks, over the past decades. Wang et al. [9, 10]

surveyed data collection methodologies, in which data were

collected at some sensors and forwarded to base stations for

further processing. Research efforts have been made to prolong

the sensors’ lifetimes. Yao et al. [1] designed an energy-

efficient delay-aware lifetime-balancing protocol for WRSNs,

by leveraging recent results on open vehicle routing problems.

Luo et al. [2] prolonged the sensors’ lifetimes by using the

shortest path aggregation tree to save energy. However, the

sensor battery capacity remains a performance bottleneck for

large-scale WRSNs. Peng et al. [11] demonstrated the feasibil-

ity of WCVs for WRSNs through building a proof-of-concept

prototype. Since wireless power transfer technology has been

adopted in WiFi and RFID sensing devices [3, 12], WCVs are

acknowledged as solutions to sensor battery problems [13].

The schedules of WCVs are important for recharging the

sensors in WRSNs. Xie et al. [4] focused on a WRSN opti-

mization framework by jointly optimizing the traveling path,

flow routing, and charging time. However, only one WCV is

considered in Xie’s work, which may not be feasible for large-

scale WRSNs that require cooperative WCV schedules. He et

al. [5] proposed an on-demand mobile charging schedule using

a simple but efficient nearest-job-next rule with preemptions

for the WCV. However, this approach cannot guarantee that

each sensor will be recharged before running out of energy. Fu

et al. [14] designed an energy synchronized charging protocol

for rechargeable WRSNs, using multiple WCVs. Fu’s work

mainly focused on experimental implementations, and thus,

algorithm approximations and properties were not explored.

Guo et al. [15] proposed a framework of joint wireless energy

replenishment and anchor-point based mobile data gathering

in WRSNs, by considering various sources of energy con-

sumption and the time-varying nature of energy replenishment.

Their work does not require WCVs to periodically recharge

all sensors. Madhajia et al. [16] investigated hierarchical and

collaborative WCV schedules in WRSNs. Their algorithms are

heuristic, and thus, do not guarantee any bounds. Dai et al. [17]

tried to minimize the number of WCVs in WRSNs. However,

the approximation ratio of their algorithm is not a constant.

This is because their WCVs are not cooperatively scheduled.

In contrast, our results are better-bounded.

III. MODEL, FORMULATION, AND ANALYSIS

A. Model and Formulation

This paper mainly focuses on cooperative WCV schedulings

for WRSNs, in line, cycle, and metric spaces (e.g., Euclidean

space). Let S = {s1, s2, ..., sn} denote the set of sensors,

where si denotes the i-th sensor. The distance between si and

sj is denoted as dij . Each sensor needs to be recharged before

running out of energy, and the lifetime of si is denoted as ti.
ti represents si’s battery capacity without recharging. To keep

si running forever, si must be periodically recharged within

the lifetime, ti, of its last recharge (or initial time). WCVs are

identical, and their maximum speed is denoted as v. WCVs

can run at a speed that is less than v and can stop at any

place. The range of the wireless power transfer is considered

to be ignorable with respect to the distance between sensors.

Therefore, WCVs must reach the sensors before recharging

them [7]. A sensor can be fully and immediately recharged

once it is reached by a WCV. The recharging time is ignored,

since it can be converted to an extra WCV travel distance. For

example, if si has a recharging time of σi, dij is updated as

dij +
1
2vσi (similar for dji) to convert the recharging time.

The coefficient 1
2 is used due to round trips. In addition, the

recharging of WCVs is not explored in this paper. We assume

that there is a special WCV to recharge our WCVs, which can

infinitely recharge the sensors.

The objective of this paper is to minimize the number of

WCVs, i.e., a minimum WCV problem. The constraint is that

all sensors must be periodically recharged before running out

of energy. As a result, sensors that are periodically recharged

within their lifetimes are running forever. We aim to find a

minimum number of WCVs and their recharging routes, such

that sensors are running forever. The key challenge comes

from the complexity of WCV route schedules, as previously

illustrated in Fig. 1. A sensor can be cooperatively recharged

by different WCVs in turn, as long as it can run forever.
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Fig. 2. Example to illustrate the line space.

B. Problem Analysis

This subsection includes the problem hardness analysis:

Theorem 1: The minimum WCV problem is NP-hard.

Proof: The proof is done by the reduction from the travelling

salesman problem (TSP), which is a classic NP-hard problem

[18]. Given a set of nodes and the distances between nodes,

TSP aims at finding out the shortest route that visits each node

exactly once and returns to the origin node. Let λ denote the

optimal route in the TSP. We reduce each node to a sensor.

In the reduction, sensor lifetimes are identical, and are set

to be |λ|/v. |λ| is the total length of λ, and v is the speed

of the WCVs. If a WCV is assigned to traverse along λ,

then all sensors can be periodically recharged before running

out of energy. Therefore, the minimum number of WCVs is

one. All the other solutions for our problem use more WCVs.

As a result, the optimal solution for the TSP reduces to the

optimal solution for our problem. Since the TSP reduces to

the minimum WCV problem, our problem is NP-hard. �

The insight of the reduction is that the TSP is a special case

of our minimum WCV problem, when one WCV is sufficient

for recharging all sensors before their lifetimes expire.

This subsection shows some important observations:

Lemma 1: If a feasible schedule assigns a WCV to run at

a speed that is less than v, then it can be converted to a new

feasible schedule that assigns all WCVs to run at the speed v
and uses no more WCVs than the original schedule.

If a feasible schedule assigns a WCV to run at less than full

speed from si to sj , a new feasible schedule can assign this

WCV to run full speed to sj , and then use the extra time to

run around sj . Therefore, Lemma 1 is intuitive. The following

paper sets all WCVs to run at the full speed of v. We refer to

the optimal schedule as the one that assigns WCVs to run at

the speed v, although other optimal schedules may exist.

Lemma 2: In a feasible schedule, each WCV periodically

runs along a closed walk among the sensors.

A closed walk consists of a sequence of sensors starting and

ending at the same sensor. Note that a closed walk can include

a sensor multiple times. Lemma 2 results from the constraint

that each sensor is periodically recharged within its lifetime.

If a WCV does not run along a closed walk, then it cannot

periodically recharge the sensors.

Lemma 3: One feasible schedule, which assigns WCVs to

meet each other, can be converted into a new feasible schedule

that does not assign WCVs to meet and uses no more WCVs.

If a feasible schedule assigns two WCVs to meet each other,

then a new feasible schedule can improve it by a simple swap.

These two WCVs can swap their incoming routes just before

they meet, leading to a new schedule that uses no more WCVs

than the original schedule. Therefore, Lemma 3 validates.

Algorithm 1 Back and Forth (BF)

Input: sensors {s1, s2, ..., sn}, their locations and lifetimes.

Output: number of WCVs and their route schedules.

1: Initialize i = 1 (start with the leftmost sensor s1).

2: while i ≤ n do

3: Assign one WCV to go back and forth as far as possible

at a full speed to recharge sensors {si, si+1, ..., sj−1},
such that sensors {si, si+1, ..., sj−1} can be periodically

recharged by this WCV before their lifetimes:

v × tk ≥ 2 di,j−1 for ∀k, i ≤ k ≤ j−1
v × tk < 2 di,j for ∃k, i ≤ k ≤ j

4: Update the WCV route schedule, and update i = j.

5: return number of WCVs and their route schedules.

IV. LINE SPACE AND CYCLE SPACE

This section investigates the WCV schedules in two special

scenarios, line and cycle spaces, to reveal insights for the WCV

schedules. In the line space, sensors are deployed along a line,

and WCVs can only move along that line. WRSNs deployed

in the line space have various monitoring applications for oil

pipelines, AC powerlines, and national borderlines [19]. The

line space is extended to the cycle space, in which the two

ends of the line space are connected. Section V extends line

and cycle spaces to the metric space.

A. Line Space

In the line space, sensors are deployed along a line and are

denoted by s1 to sn from left to right. WCVs are only allowed

to move along the line. An example of the line space is shown

in Fig. 2. Algorithm 1 is proposed as a clean-state greedy

approach to solve the minimum WCV problem in the line

space. Algorithm 1 starts with the leftmost sensor, as shown

in line 1. Lines 2 to 4 include iterations. In each iteration, one

WCV is scheduled to route back and forth between si and

sj−1 to periodically recharge sensors {si, si+1, ..., sj−1}. The

constraint, v×tk ≥ 2 di,j−1 for ∀k, i ≤ k ≤ j−1, is satisfied,

such that these sensors can run forever. Meanwhile, the greed-

iness means that only one WCV cannot keep {si, si+1, ..., sj}
running forever, i.e., v × tk < 2 di,j for ∃k, i ≤ k ≤ j. Since

the current WCV keeps {si, si+1, ..., sj−1} running forever,

line 4 updates i = j to schedule new WCVs for the remaining

sensors on the right. The iteration terminates when all sensors

can run forever by recharging. Line 5 returns the number of

WCVs and their route schedules. The key idea of Algorithm 1

is to greedily schedule each WCV to recharge as many sensors

as possible, such that these sensors can run forever. The time

complexity of Algorithm 1 is O(n) by checking the constraint.

We claim that Algorithm 1 is bounded:

Theorem 2: In the line space, Algorithm 1 has an approx-

imation ratio of 2 to the optimal algorithm.

Proof: Let OPT denote the number of WCVs in the optimal

algorithm. We can divide the line space into subspaces based

on the WCV route composition. Each subspace is defined by a

unique set of visited WCVs. An example is shown in Fig. 3, in
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Fig. 3. Example to illustrate the proof of Theorem 2.

which the line space is divided into 5 subspaces by 3 WCVs.

Since the route of each WCV has two end points, the number

of subspaces is at most 2OPT−1. Subspaces may have different

sizes, and more than one sensors may exist in a subspace.

We claim that all sensors in each subspace of the optimal

algorithm will not run out of energy if one WCV is assigned

to move back and forth at a full speed in the subspace. Let us

consider a sensor, si, in an arbitrary subspace. Let d′i and d′′i
denote the distances from si to the left and right boundaries

of its subspace. Let us consider the rightmost (in terms of the

geography) WCV that goes through si. When the rightmost

WCV visits si, all the other WCVs in this subspace should be

at the left side of the rightmost WCV, since WCVs do not meet

each other (Lemma 3). Therefore, when the rightmost WCV

leaves si and runs to the left, it should be the first WCV that

comes back to si among all the WCVs in the subspace. si is

not recharged during the above process, which takes at least

2d′i/v. As a result, we have 2d′i/v ≤ ti. Similarly, we can get

2d′′i /v ≤ ti by considering the leftmost WCV. Hence, si can

run forever, if one WCV is assigned to run back and forth in

its subspace (2d′i/v ≤ ti and 2d′′i /v ≤ ti).
Note that Algorithm 1 is optimal under the constraint that

all WCVs go back and forth in disjoint routes. Therefore,

Algorithm 1 solves the minimum WCV problem with at most

2OPT−1 WCVs, and the proof completes. �

The insight of Theorem 2 is that WCV route overlaps are not

efficient in the line space. Therefore, WCVs can be scheduled

in disjoint routes. Moreover, Algorithm 1 can be optimal when

sensors have identical lifetimes. This is because WCV route

overlaps become suboptimal in that scenario.

B. Cycle Space

This subsection extends the line space to the cycle space, in

which the two ends of the line space are connected. Sensors are

denoted as s1 to sn in the clockwise direction (s1 and sn are

neighbors). WCVs can only move along the cycle. An example

is shown in Fig. 4(a). We divide WCVs into the following two

types, which are illustrated in Fig. 4(b):

Definition 1: WCVs, which visit the entire cycle space, are

global WCVs. All the other WCVs are local WCVs.

A WCV, which visits all sensors, is not necessarily a global

WCV. This is because this WCV may not go through the entire

cycle space. The route of a global WCV may not be simply

traversing the cycle clockwisely or counter-clockwisely. It can

be complex, and an example has been illustrated in Fig. 1(d).

All five WCVs in Fig. 1(d) are global WCVs.
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Fig. 4. Example to illustrate the cycle space and two types of WCVs.

Definition 2: A local algorithm is defined by assigning only

local WCVs to recharge sensors. A global algorithm is defined

by assigning only global WCVs to recharge sensors.

Theorem 3: The optimal algorithm is the better one of the

optimal local algorithm and the optimal global algorithm.

Theorem 3 appears amazing, but is intuitive if we go back

to Lemma 3. This is because a global WCV must meet local

WCVs. If an algorithm assigns both local and global WCVs,

then it can be improved by Lemma 3. Moreover, we have:

Theorem 4: The optimal global algorithm uses at least half

the number of WCVs of the optimal local algorithm.

Proof: We prove this by converting the optimal global algo-

rithm into a non-optimal local algorithm. Let us start with an

arbitrary i and the space between sensors si and s(i+1)%n. The

symbol % denotes the modulo operation, i.e., s(n+1)%n = s1.

Based on Definition 1, WCVs in the optimal global algorithm

must periodically pass through the space between sensors si
and s(i+1)%n. Without loss of generality, we assume that a

WCV moves clockwisely from si to s(i+1)%n, as shown in

Fig. 5(a). The converted local algorithm will replace this WCV

with an additional set of WCVs to traverse the cycle space

counter-clockwisely from si to s(i+1)%n. This additional set

of WCVs is denoted as white WCVs in Fig. 5(a) and its routes

are dotted. WCVs in the converted local algorithm have the

same route as those in the optimal global algorithm before

reaching si and after reaching s(i+1)%n. The above conversion

process at most doubles the number of WCVs, since the route

length of each WCV is at most doubled.

Note that, in the optimal global algorithm, a WCV may go

from si to s(i+1)%n, and then, go back from s(i+1)%n to si
(this pattern can be even repeated). However, the conversion

process remains correct if we assign WCVs (in the additional

set) to stop at si and s(i+1)%n to replace the above scenario.

By the definition of optimality, the converted local algorithm

uses no less WCVs than the optimal local algorithm. There-

fore, the optimal global algorithm uses at least half the number

of WCVs of the optimal local algorithm. �

Theorem 4 shows that global WCVs can be approximated or

replaced by local WCVs in the cycle space. When combining

Theorem 3, it means that a local algorithm can approximate

the optimal algorithm. As a result, Algorithm 2 is proposed.

It simply tries all the possibilities to break the cycle space to

the line space. Algorithm 1 is called to determine the WCV



Algorithm 2 Cycle Break (CB)

Input: sensors {s1, s2, ..., sn}, their locations and lifetimes.

Output: number of WCVs and their route schedules.

1: for i = 1 to n do

2: Convert the cycle space to the line space by breaking

the space between sensors si and s(i+1)%n.

3: Call Algorithm 1 to schedule WCVs on the line.

4: return the best cycle break schedule as the result.

s( i+1)%n

si

(a) Proof of Theorem 4.

si

s( i+1)%n

(b) Proof of Theorem 6.

Fig. 5. Local and global WCV schedules in the cycle space.

schedule after the cycle break. The best cycle break among

n possible cycle breaks is returned. Consequently, the time

complexity of Algorithm 2 is o(n2). We have:

Theorem 5: In the cycle space, Algorithm 2 has an approx-

imation ratio of 4 to the optimal algorithm.

Proof: We first claim that Algorithm 2 has an approximation

ratio of 2 to the optimal local algorithm. The cycle break may

involve one more WCV, when the optimal local algorithm in

the cycle space is converted to the optimal algorithm in the

line space. Note that Algorithm 1 uses less than double the

number of WCVs of the optimal algorithm in the line space

(2OPT−1). Hence, our claim is correct (2OPT−1+1=2OPT).

According to Theorems 3 and 4, the optimal local algorithm

also has an approximation ratio of 2 to the optimal algorithm.

Since 2 × 2 = 4, Algorithm 2 has an approximation ratio of

4 to the optimal algorithm. �

The insight of Theorem 5 is that the optimal global algorith-

m is relatively negligible in the cycle space, while the optimal

local algorithm in the cycle space could be approximated by

breaking the cycle space to the line space.

C. Optimality under Lifetime Homogeneity

This subsection studies the optimal algorithm in the cycle

space, when sensor lifetimes are identical. Let t denote the

homogenous sensor lifetime, i.e., ti = t for all sensors. The

idea is to compare the optimal local and global algorithms and

choose the better one. As a result, Algorithm 3 is proposed.

Line 1 calculates the 1st candidate by calling Algorithm 2

to schedule local WCVs. Line 2 represents the 2nd candidate

by scheduling ⌈ 1
vt

∑n

i=1 di,(i+1)%n⌉ global WCVs to evenly

traverse the cycle space. ⌈·⌉ is the round up operator. Line 3

compares the 1st and 2nd candidates, and returns the better

one. The time complexity of Algorithm 3 is O(n2).

Algorithm 3 Compare Two Candidates (CTC)

Input: sensors {s1, s2, ..., sn}, their locations and lifetimes.

Output: number of WCVs and their route schedules.

1: Call Algorithm 2 and record its result as the 1st candidate.

2: Assign ⌈ 1
vt

∑n

i=1 di,(i+1)%n⌉WCVs to evenly traverse the

cycle space (either clockwisely or counter-clockwisely).

Record this WCV schedule as the 2nd candidate.

3: return the better one of the 1st and 2nd candidates.

Theorem 6: In the cycle space with identical sensor life-

times, Algorithm 3 is optimal.

Proof: The proof involves two parts. The first part proves

that line 1 in Algorithm 3 is an optimal local algorithm. The

second part proves that line 2 in Algorithm 3 is an optimal

global algorithm. After proving these two parts, the optimality

validates according to Theorem 3.

The first part of the proof is intuitive. In the line space, when

sensors have identical lifetimes, it is suboptimal to schedule

WCVs in overlapped intervals (otherwise a swap can lead

to a better schedule). When sensors have identical lifetimes,

Algorithm 1 is optimal in the line space, and thus, Algorithm 2

is an optimal local algorithm in the cycle space.

The second part of the proof is shown in Fig. 5(b). Based

on Lemma 2, the route of each global WCV is a closed walk

that visits the entire cycle space. Let mi denote the number

of times that si appears in the route of each global WCV. In

Fig. 5(b), we have mi = 2 and m(i+1)%n = 2. Each global

WCV only changes its direction at a sensor, and does not stop

at a sensor, due to the lifetime homogeneity. Let m = mini mi.

Since each sensor appears in the route of a WCV at least m
times, the route length is at least m ×

∑n

i=1 di,(i+1)%n (m
times the cycle circumference). During one closed walk, a

sensor is charged for at least m
vt

∑n

i=1 di,(i+1)%n times. Let us

consider the sensor sj that appears the least in the closed walk.

During one closed walk of a WCV, sj is charged at most m
times. Therefore, at least ⌈ 1

m
m
vt

∑n

i=1 di,(i+1)%n⌉ WCVs are

needed (lower bound of the optimal global algorithm). Line

2 in Algorithm 3 is a feasible schedule that can keep sensors

running forever. Since it uses the same number of WCVs as

the lower bound, it is an optimal global algorithm. �

The key insight of Theorem 6 is that, when sensor lifetimes

are homogenous, the optimal local algorithm schedules WCVs

in disjoint routes, and the optimal global algorithm schedules

WCVs to evenly traverse the cycle space. Based on Theo-

rem 3, the optimal algorithm is the better of the optimal local

algorithm and the optimal global algorithm.

V. METRIC SPACE

The previous section investigates the WCV schedules in

line and cycle spaces, which may not be feasible for general

WRSNs. Consequently, this section extends previous results to

the metric space [20]. Note that the metric space includes the

three-dimensional Euclidean space, and thus, our study can be

applied to practical WRSNs with WCVs.



Algorithm 4 Cycles in Minimum Forest (CMF)

Input: sensors {s1, s2, ..., sn}, their locations and lifetimes.

Output: number of WCVs and their route schedules.

1: for k = 0 to n− 1 do

2: Find minimum distance forest for {s1, s2, ..., sn} with

k undirected edges. n−k connected sensor components

are generated, and are denoted as C1, C2, ..., Cn−k.

3: for each connected sensor component Ci do

4: Use the Christofides algorithm to resolve the TSP in

Ci. Convert the TSP route to a cycle space.

5: Call Algorithm 3 to recharge sensors in Ci.

6: Record the current WCV schedule as a candidate.

7: return the best one among n candidate WCV schedules.

A. WCV Scheduling under Lifetime Homogeneity

This subsection studies the WCV schedules in the metric

space, under the sensor lifetime homogeneity (i.e., ti = t).
The key idea is to control the total lengths of WCV routes by

using minimum distance forests among sensors. As a result,

Algorithm 3 is extended to Algorithm 4 for the metric space.

In lines 1 to 6, Algorithm 4 includes an iteration to go through

all possible minimum distance forests. In each iteration, it

builds a minimum distance forest for {s1, s2, ..., sn} with k
undirected edges. n − k connected sensor components are

generated, and are denoted as C1, C2, ..., Cn−k. The minimum

distance forest can be obtained by the Kruskal’s algorithm

with an early termination (i.e., terminate the greedy minimum

spanning tree algorithm when it has chosen the first k edges).

In lines 3 to 5, each connected sensor component is processed

as a cycle space. The Christofides algorithm is used to find an

approximated route for the travelling salesman problem (TSP)

in Ci, with an approximation ratio of 1.5 in terms of the route

length. It converts a connected sensor component into a cycle

space, which is in turn solved by Algorithm 3. The WCV

schedule is recorded in line 6. Finally, line 7 returns the best

schedule among all possible minimum distance forests.

An example is shown in Fig. 6 to illustrate Algorithm 4. The

scenario sets n = 7 with k = 5. Line 2 finds the minimum

distance forest for the sensors by adding k = 5 edges (s1-s2,

s1-s3, s4-s5, s5-s6, and s6-s7). This forest is denoted by black

lines, and can be obtained by terminating the greedy minimum

spanning tree algorithm when it has chosen the first k = 5
edges. The forest includes n − k = 2 connected sensor com-

ponents (C1 and C2). For each component, the Christofides

algorithm is used to compute a TSP route, which is denoted by

the dotted line. The TSP route in each component is regarded

as a cycle space (repeated sensors are removed). Algorithm 3

is called to schedule WCVs in the cycle space. The best result

among different k (different forests) is returned. Since the

Christofides algorithm takes O(n3), Algorithm 4 takes O(n4)
by traversing k from 0 to n− 1. We have:

Theorem 7: In the metric space with homogeneous sensor

lifetimes, Algorithm 4 has an approximation ratio of 2.5 to the

optimal algorithm.

s1

s2

s3

C1

s5

s4

C2

s7

s6

Fig. 6. An example to illustrate Algorithm 4.

Proof: Let CMF and OPT be the numbers of WCVs used

by Algorithm 4 and the optimal algorithm, respectively. Let us

consider the connected components in the optimal algorithm.

We say that two sensors share an undirected edge if a WCV

goes from one sensor to the other within t. Suppose that the

optimal algorithm has n− k∗ components, which are denoted

as C∗1 , C∗2 , ..., C∗n−k∗ . Let |C| denote the total length of

edges in C. We claim that the number of WCVs used by the

optimal algorithm is at least
∑n−k∗

i=1 ⌈ 1
vt
|C∗i |⌉. This is because

the WCV route is a closed walk, and WCVs periodically go

among sensors to recharge them (Lemma 2).

Since Algorithm 4 checks all possible minimum distance

forests, it will go through the case k = k∗. Since the forest is

minimal, we have
∑n−k∗

i=1 |Ci| ≤
∑n−k∗

i=1 |C∗i |. Let C ′i denote

the cycle space corresponding to Ci, and let |C ′i| denote its

cycle circumference. Since the Christofides algorithm has an

approximation ratio of 1.5 with respect to the route length,

we have
∑n−k∗

i=1 |C ′i| ≤ 1.5
∑n−k∗

i=1 |Ci|. Since sensors have

identical lifetimes, Algorithm 3 can optimally schedule WCVs

for each cycle space. For C ′i, at most ⌈ 1
vt
|C ′i|⌉ WCVs are used

by scheduling only global WCVs in the cycle space. If we

combine the above results, we have:

CMF ≤
n−k∗

∑

i=1

⌈ 1

vt
|C ′i|

⌉

≤
n−k∗

∑

i=1

( 1

vt
|C ′i|+ 1

)

≤

n−k∗

∑

i=1

(1.5

vt
|Ci|+ 1

)

≤

n−k∗

∑

i=1

(1.5

vt
|C∗i |+ 1

)

(1)

Since the optimal algorithm assigns at least one WCV for

each component, we have ⌈ 1
vt
|C∗i |⌉ ≥ 1:

CMF ≤
n−k∗

∑

i=1

(1.5

vt
|C∗i |+ 1

)

≤

n−k∗

∑

i=1

(

1.5
⌈ 1

vt
|C∗i |

⌉

+ 1
)

≤

n−k∗

∑

i=1

(

2.5
⌈ 1

vt
|C∗i |

⌉

)

≤ 2.5

n−k∗

∑

i=1

⌈ 1

vt
|C∗i |

⌉

(2)

Since OPT ≥
∑n−k∗

i=1 ⌈ 1
vt
|C∗i |⌉, Eq. 2 can be simplified as

CMF ≤ 2.5× OPT. Therefore, the proof completes. �

The insight of Theorem 7 is that the number of WCVs in

the optimal algorithm can be lower-bounded through the total

lengths of its WCV routes. Therefore, Algorithm 4 guarantees

an approximation ratio by controlling the total lengths of WCV

routes using the minimum distance forest.



Algorithm 5 Group Sensors by Lifetimes (GSL)

Input: sensors {s1, s2..., sn}, their locations and lifetimes.

Output: number of WCVs and their route schedules.

1: for i = 1 to ⌊log2
maxi ti
mini ti

⌋+ 1 do

2: Find the i-th group of sensors that satisfy:

{ sj | 2
i−1

×mini ti ≤ tj < 2i×mini ti and sj ∈ S}.
3: For sensors in the i-th group, approximate all of their

lifetimes to be 2i−1
×mini ti (convert to homogeneity).

4: Call Algorithm 4 to recharge sensors in the i-th group.

5: return the WCV schedules in all sensor groups.

B. WCV Scheduling under Lifetime Heterogeneity

This subsection explores the WCV schedules in the metric

space under the sensor lifetime heterogeneity. Consequently,

Algorithm 5 is proposed to extend Algorithm 4. The key idea

is to group sensors according to their lifetimes, i.e., sensors

with similar lifetimes are grouped together. In each sensor

group, sensor lifetimes are approximated to be the same,

and then, Algorithm 4 is called to recharge sensors in this

group. The subtle design is the group criterion in line 1 of

Algorithm 5. ⌊·⌋ is the round down operator. Let mini ti and

maxi ti be the minimum and maximum sensor lifetimes in

S, respectively. The i-th sensor group is consists of sensors

with lifetimes from 2i−1
×mini ti to 2i×mini ti, i.e., sensors

are grouped exponentially with respect to their lifetimes. Note

that each sensor belongs to exactly one sensor group. In

line 2 of Algorithm 5, lifetimes of sensors in the i-th group

are approximated to their lower bounds, 2i−1
×mini ti. Such

approximations guarantee that sensors can be recharged within

their real lifetimes. Sensors in the i-th group are approximated

to have identical lifetimes. Consequently, Algorithm 4 is called

to recharge them in line 4. Finally, the WCV schedules in all

sensor groups are returned together in line 5.

The time complexity of Algorithm 5 is O(n4), which is the

same as Algorithm 4. This is because the group mechanism

in line 2 can reduce the complexity of Algorithm 4 in line 4.

Let ni denote the number of sensors in the i-th group, and

we have
∑

i n
4
i ≤ (

∑

i ni)
4 = n4. The group mechanism in

line 2 takes only O(n log n) by sorting sensors lifetimes. If a

group does not include a sensor, it is ignored. We have:

Theorem 8: In the metric space with heterogenous sensor

lifetimes, Algorithm 5 guarantees an approximation ratio of

5
⌊

log2
maxi ti
mini ti

⌋

+ 5 to the optimal algorithm.

Proof: Let GSL and OPT denote the number of WCVs used

by Algorithm 5 and the optimal algorithm, respectively. Let

GSLi denote the number of WCVs in the i-th sensor group

of GSL. By definition, we have GSL =
∑

i GSLi. Let OPTi

denote the number of WCVs used by the optimal algorithm for

only sensors in the i-th group. Since OPTi does not recharge

all sensors, OPTi ≤ OPT. We claim that GSLi ≤ 2.5 × 2 ×
OPTi. This is because Algorithm 4 has an approximation ratio

of 2.5, and the sensor lifetime approximation in line 3 at most

doubles the number of WCVs (the lifetime of each sensor

is at most halved by line 3). Since Algorithm 5 has at most
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(b) LCUE dataset.

Fig. 7. Top view of sensor locations in the GSBD and LUCE datasets.

⌊log2
maxi ti
mini ti

⌋+ 1 groups, we have:

GSL =
∑

i

GSLi ≤ 5
∑

i

OPTi ≤ 5
∑

i

OPT

≤ 5× (
⌊

log2
maxi ti
mini ti

⌋

+ 1)× OPT (3)

The proof completes. �

The key insight of Theorem 8 is that sensors are divided into

a limited number of groups. Sensors in the same group have

similar lifetimes, and thus, can be resolved by Algorithm 4.

Theorem 8 can be further improved by incorporating the

sensor lifetime distribution. For example, if ti is exponentially

distributed, then ⌊log2
maxi ti
mini ti

⌋+ 1 becomes a constant.

VI. REAL DATA-DRIVEN EXPERIMENTS

A. Settings and Comparison Algorithms

Our experiments are based on two environmental sensing

datasets that are listed in [21]. The first dataset is the Grand-

St-Bernard Deployment (GSBD). It is a SensorScope network

deployed between Switzerland and Italy. GSBD includes 23

sensors, and their locations are shown in Fig. 7(a). The second

dataset is the Lausanne Urban Canopy Experiment (LUCE).

It is a measurement campaign on the EPFL campus that is

used for micrometeorology and atmospheric transport. LUCE

includes 94 sensors, and their locations are shown in Fig. 7(b).

We mainly focus on the number of WCVs with respect to

the WCV speed, under three different distributions of sensor

lifetimes. The WCV speed is tuned from 10 km/h to 100 km/h.

Results are averaged over 1,000 times for smoothness.

Algorithms 1 to 4 are not compared due to their prerequi-

sites. Algorithm 5 is denoted by CSL, and is compared with:

• XIE [4] uses linear programming to near-optimally sched-

ule only one WCV to recharge sensors. This approach is

iteratively applied until all sensors can run forever.

• DAI [17] schedules WCVs according to vehicle routing

problems. It can construct a forest among sensors, and

assigns WCVs to each tree in the forest. Sensors are not

cooperatively recharged by multiple WCVs.

• HE [5] is a on-demand approach, in which each WCV

prioritizes the nearest sensor that is close to its lifetime.

This approach is also iteratively applied until all sensors

can be periodically recharged within their lifetimes.

• PENG [11] is a greedy approach that schedules WCVs

according to sensor lifetimes. Sensors with shorter life-

times are prioritized by WCVs.
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(a) Uniform distribution, t ∼ U(15, 25).
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(b) Uniform distribution, t ∼ U(25, 35).
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(c) Uniform distribution, t ∼ U(5, 35).
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(d) Normal distribution, t ∼ N(20, 5).
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(e) Normal distribution, t ∼ N(30, 5).
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(f) Normal distribution, t ∼ N(20, 10).
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(g) Exponential distribution, t ∼ 15 + EXP( 1
5
).
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(h) Exponential distribution, t ∼ 25 + EXP( 1
5
).
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Fig. 8. Experimental results in the GSBD dataset.

B. Evaluation Results

Our experiments focus on the number of WCVs with respect

to the WCV speed, under three sensor lifetime distributions

[22, 23]: uniform distribution (with lower and upper bounds),

normal distribution (with mean and variance), and exponential

distribution (with its exponent parameter). A smaller number

of WCVs represents a better result.

The experimental results for the GSBD dataset are shown

in Fig. 8. For three rows of subfigures, sensor lifetimes follow

three different distributions, respectively (uniform, normal, and

exponential distributions in sequence). The sensor lifetime dis-

tributions for the first and second columns of subfigures have

the same variance, but different mean values. In contrast, the

sensor lifetime distributions for the first and third columns of

subfigures have the same mean value, but different variances. It

can be seen that CSL outperforms the other algorithms, since

it schedules WCVs cooperatively. HE and PENG have the

worst performances due to their greediness (trapped in local

optima). XIE and DAI do not schedule WCVs cooperatively,

and thus, cannot efficiently minimize the number of WCVs. A

greater WCV speed leads to a smaller number of WCVs for all

algorithms, since each WCV can recharge more sensors with

a greater speed. By comparing the first and second columns

of subfigures in Fig. 8, we can conclude that a shorter average

sensor lifetime leads to a larger number of necessary WCVs.

This is because sensors need to be recharged more frequently

if their lifetimes are shorter. By comparing the first and third

columns of subfigures in Fig. 8, we can further conclude that

a greater variation in sensor lifetimes also leads to a larger

number of needed WCVs. This means that sensors with shorter

lifetimes have more impacts on WCV schedules than those

with longer lifetimes. The experimental results for the LUCE

dataset are shown in Fig. 9, which is similar to the GSBD

dataset. However, the performance improvement of CSL is

more significant in LUCE than GSBD, since LUCE includes

more sensors. By comparing Figs. 8 and 9, CSL has the best

asymptotical performance when WRSNs scale up.

VII. CONCLUSION

This paper studies cooperative WCV schedules in WRSNs,

in order to save the cost of sensor recharging. The objective

is to minimize the number of WCVs, under the constraint

that sensors can run forever by being periodically recharged.

Our problem is NP-hard. Based on different insights, approx-

imation algorithms are proposed for line, cycle, and metric

spaces, respectively. Real data-driven experiments demonstrate

the efficiency and effectiveness of the proposed algorithms.
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(a) Uniform distribution, t ∼ U(15, 25).
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(b) Uniform distribution, t ∼ U(25, 35).
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(c) Uniform distribution, t ∼ U(5, 35).
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(d) Normal distribution, t ∼ N(20, 5).
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(e) Normal distribution, t ∼ N(30, 5).
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(f) Normal distribution, t ∼ N(20, 10).
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5
).

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

WCV speed (km/h)

n
u
m

b
e
r 

o
f 

W
C

V
s

XIE

DAI

HE

PENG

CSL

(h) Exponential distribution, t ∼ 25 + EXP( 1
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Fig. 9. Experimental results in the LUCE dataset.
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