
2542 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Scheduling Congestion- and Loop-Free
Network Update in Timed SDNs

Jiaqi Zheng, Member, IEEE, Guihai Chen, Member, IEEE, Stefan Schmid, Member, IEEE,
Haipeng Dai, Member, IEEE, Jie Wu, Fellow, IEEE, and Qiang Ni, Senior Member, IEEE

Abstract— Software-defined networks (SDNs) introduce inter-
esting new opportunities in how network routes can be defined,
verified, and changed over time. Despite the logically-centralized
perspective offered, however, an SDN still needs to be considered
a distributed system: rule updates communicated from the
controller to the individual switches traverse an asynchronous
network and may arrive out-of-order. This can lead to (temporary
or permanent) inconsistencies and triggered much research over
the last years. We, in this paper, initiate the study of algorithms
for consistent network updates in “timed SDNs”—SDNs in which
individual node updates can be scheduled at specific times. While
technology enabling tightly synchronized SDNs is emerging, the
resulting algorithmic problems have not been studied yet. This
paper presents, implements and evaluates Chronus, a system
which provides provably congestion- and loop-free network
updates, while avoiding the flow table space headroom required
by existing two-phase update approaches. We formulate the
minimum update time problem as an optimization program and
propose two polynomial-time algorithms which lie at the heart of
Chronus: a decision algorithm to check feasibility and a greedy
algorithm to find a good update sequence. Extensive experiments
on Mininet and numerical simulations show that Chronus can
substantially reduce transient congestion and save over 60% of
the rules compared with the state of the art.

Index Terms— SDN, network updates, clock synchronization,
congestion-free, loop-free.

I. INTRODUCTION

SOFTWARE-DEFINED Networks (SDNs) outsource and
consolidate the control over switches to a logically cen-

tralized software. This introduces interesting opportunities to
optimize and innovate communication networks: SDNs allow

Manuscript received April 1, 2017; revised September 12, 2017; accepted
September 25, 2017. Date of publication October 5, 2017; date of current
version December 1, 2017. This work was supported in part by China
973 projects under Grant 2014CB340303, in part by China NSF under
Grant 61672353, Grant 61472252, Grant 61321491, Grant 61502229, Grant
61373130, Grant 61502229, Grant 61373130, and Grant 61672276, in part
by China NSF of Jiangsu Province under Grant BK20141319, in part by the
EU FP7 CROWN Project under Grant PIRSESGA-2013-610524, in part U.S.
NSF under Grant 1629746, Grant 1564128, Grant 1449860, Grant 1461932,
Grant 1460971, and Grant 1439672, in part by the Danish Villum Project
ReNet, and in part by the program B for outstanding Ph.D. candidates of
Nanjing University. (Corresponding author: Guihai Chen.)

J. Zheng, G. Chen, and H. Dai are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
jiaqi369@gmail.com; gchen@nju.edu.cn; haipengdai@nju.edu.cn).

S. Schmid is with the Department of Computer Science, Aalborg University,
9220 Aalborg, Denmark (e-mail: schmiste@cs.aau.dk).

J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122 USA (e-mail: jiewu@temple.edu).

Q. Ni is with the School of Computing and Communications, Lancaster
University, Lancashire LA1 4WA, U.K. (e-mail: q.ni@lancaster.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2017.2760146

to evolve the control plane independently from the data plane,
and introduce many flexibilities in terms of traffic engineer-
ing, efficient failover, and network virtualization. Moreover,
network policies can in principle be specified and verified in
an automated manner [9].

However, despite the centralization of the control plane,
an SDN needs to be regarded as a distributed system. The
communication between the controller(s) and the switches
occurs over a network: the times and orders in which update
commands sent by the controller arrive and take effect at the
different switches may be hard to predict. The resulting out-
of-order arrival can cause various inconsistencies, not only
in terms of forwarding correctness, but also in terms of
performance and security (policy compliance). For example,
the fact that network updates do not take effect atomically [18]
in the data plane may lead to congestion during the update,
which in turn leads to packet loss and poor performance [6].

This is problematic, as network updates are expected to
happen frequently in software-defined networks, for several
reasons, including an increasingly more fine-grained traffic
engineering [7] (to minimize the maximal link load, an
operator may decide to reroute parts of the traffic along
different links), adaptive changes in security policies and
function virtualization [13] (e.g., traffic from one subnetwork
may have to be rerouted via a flexibly allocated and virtual-
ized middlebox before entering another subnetwork), network
maintenance [11], [12] (e.g., in order to replace a faulty router,
it can be necessary to temporarily reroute traffic), fast reaction
to link failures [20] (e.g., fast network update mechanisms
are required to react quickly to link failures and determine a
failover path).

The problem of consistent network updates has received
much attention over the last years and existing network update
algorithms can roughly be classified into two categories:
(1) two-phase update protocols and (2) node ordering pro-
tocols. Oversimplifying things slightly, the former approaches
have the advantage that they are simple and relatively fast;
however, they come with the drawback that they require
packet tagging, which implies overheads in terms of additional
forwarding rules to match these tags (additional flow table
space headroom) and which causes problems in the presence
of middleboxes [19]. The latter approaches have the advantage
that they do not require packet tagging, but it has been shown
that the corresponding scheduling algorithms come with strict
tradeoffs in terms of the levels of transient consistency they
provide and update time.

In this paper we initiate the algorithmic study of a promising
new approach to update networks consistently, which has the

0733-8716 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHENG et al.: SCHEDULING CONGESTION- AND LOOP-FREE NETWORK UPDATE IN TIMED SDNs 2543

Fig. 1. Illustration of the network update problem considered in this paper. In this example topology, v1 is the source and v6 is the destination of both the
old (initial) route and the new route. The initial routing is illustrated as a solid line, while the final routing is represented as a dashed line. The red links (both
solid and dashed) represent that the load on the link is greater than zero, which indicates that the dynamic flow is passing through this link. The black links
(solid and dashed) represent the load on the link is zero. In our example, the link capacity and the link propagation delay is assumed to be one unit. The
order replacement update sequence is: Fig. 1(b) → (c) → (d), while a congestion- and loop-free timed update sequence is: Fig. 1(e) → (f) → (g) → (h).

potential to overcome the drawbacks of the two approaches
above. Our work is motivated by the advent of systems such
as Time4 [15], [17] which promise a more predictable and
synchronous data plane, allowing the coordination of network
updates using accurate time, in the order of microseconds [16].
We introduce a natural and new optimization problem for
timed SDNs as we aim to find a network update sched-
ule which minimizes the overall network update time, while
ensuring loop-freedom and congestion-freedom at any moment
in time. More specifically, this paper makes the following
contributions:

We introduce a novel problem motivated by the advent
of more synchronous networks: we ask for accurate time
schedules—specifying update time points for each switch—
such that the total update time is minimized and congestion-
and loop-freedom are ensured at any moment in time.
We formulate this problem as an optimization program and
prove its hardness.

Our second contribution is Chronus, a system and set of
algorithms to solve MUTP. Our Chronus scheme does not
require additional forwarding rules during the update and
hence can be effectively applied to scenarios where the flow
table space is limited. We first propose a decision algorithm
to check the existence of a feasible congestion- and loop-free
update sequence in polynomial time. Furthermore, based on
the time-extended network model, we propose a fast greedy
algorithm to tackle MUTP.

Our third contribution is a concrete implementation and
evaluation of Chronus. In particular, we develop a prototype
of Chronus on Mininet using OFSoftSwitch and Dpctl [1] as
Openflow switches and the controller. Extensive experiments
and numerical simulations show that Chronus can substan-
tially reduce transient congestion and save over 60% of the
forwarding rules compared to state of the art.

II. AN OPTIMIZATION FRAMEWORK

A. A Motivating Example

We consider a Software-Defined Network (SDN) where a
controller updates the forwarding rules at the switches when-
ever a route changes. Fig. 1(a) illustrates a simple example:
there are six switches v1, . . . , v6 and the link capacity is
one unit. The transmission delay of each link is assumed
to be one time unit in this example. That is, if one unit of

flow leaves switch u at time t on the link 〈u, v〉, one unit
of flow arrives at switch v at time t + 1. The demand of the
“dynamic flow” is one unit, which is routed from the source v1
to the destination v6. The initial routing is depicted as a solid
line and the final routing is depicted as a dashed line. The
notion of dynamic flow used in this paper is inspired by [4].
In a dynamic flow, the utilization of a link varies over time.
Going back to our example in Fig. 1(b), assume we first only
update v2: hence, the subsequent flow is routed directly to
v6 through the link 〈v2, v6〉. Note that at this point, due to
the link propagation delay, the old flow is still on the path
〈v2, v3, v4, v5, v6〉 and will arrive at v6 after four time units.
Before that, the congestion will happen if we route new flow
on this path.

Prior work on the network update problem usually relies
on one of two fundamental update techniques: two-phase
updates [18] and order replacement updates [8], [14].
A possible order replacement update sequence is shown in
Fig. 1(b) → (c) → (d). In the first round, v2 is updated. And
then v3, v4 and v5 are updated and finally v1 is updated in the
last round. In the second round, due to the asynchronous nature
of the data plane, the new routing configuration for v4 may
become functional earlier than that for v3. Thus a transient
forwarding loop occurs since the flow passing through v4 will
be routed back to v3 and then again arrive at v4. Similarly, if
the new routing configuration for v5 is functional earlier than
that for v3 and v4, the old flow on the path 〈v2, v3, v4, v5〉
will pass through the link 〈v2, v6〉 from 〈v5, v2〉. Note that
v1 is already updated in the first round and the new flow
from v1 will pass through 〈v2, v6〉. Here the new flow and
old flow together will result in a transient congestion on the
link 〈v2, v6〉 as the sum of flow demand is two units, which are
beyond the one unit link capacity. As for two-phase updates,
it doubles the number of forwarding rules during the update
and hence cannot be applied to scenarios where the flow table
space is limited.

The timed updates can effectively solve this problem.
Fig. 1(e) → Fig. 1(f) → Fig. 1(g) → Fig. 1(h) shows a
congestion- and loop-free timed update sequence. Switch v2
is updated at t0. And then v3 is updated at t1. Next v1 and v4
are updated simultaneously at t2. Finally, v5 is updated at t3.
The congestion- and loop-free condition are ensured at any
moment in time. Fig. 2(d) shows the timed updates process
in the time-extended network, which will be discussed soon.

2544 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Fig. 2. Illustration of the different timed update sequences in the time-extended network.

This timed update plan can be acceptable in practice because
the updates can be scheduled accurately on the order of one
microsecond [16]. In addition, we only modify the action in
the flow table during the update process, which neither requires
packet tagging nor increases additional flow table space, and
thus overcome the drawback of two-phase updates.

B. Dynamic Flow Model and Problem Formulation

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V , E), where
V is the set of switches and E the set of links with capacities
Cu,v and transmission time σu,v for each link 〈u, v〉 ∈ E. The
graph contains two paths: pinit and p f in . The former is the old
routing path which is depicted as a solid line in our example
and the latter is the new routing path depicted as a dashed line.
Both of pinit and p f in have the common source V + and des-
tination V −. For convenience, we summarize important nota-
tions in Table I. Let us introduce four related notations first.

Definition 1 (Dynamic Flow [4]): A dynamic flow on G is
a function f : E ×T → Z+ (Z+ represents the set of positive
integers) that satisfies the following conditions:

∑

(u,v)∈E+(v),t−σu,v≥0

xu,v(t − σu,v) −
∑

(u,v)∈E−(v)

xu,v (t)

=

⎧
⎪⎨

⎪⎩

−dv = V −,∀t ∈ T
0∀v ∈ V − {V −, V +},∀t ∈ T
dv = V +,∀t ∈ T

(1)

TABLE I

KEY NOTATIONS IN THIS PAPER

The dynamic flow conservation condition (1) indicates that
if one unit of flow leaves switch u at t − σu,v on link 〈u, v〉,
one unit of flow arrives v at t . Here d is the flow demand,
which is a positive integer. The time T is measured in discrete
steps, where T = {1, 2, . . . , t}. xu,v (t) characterizes the load
at t , which cannot go beyond the link capacity at each moment
in time.

0 ≤ xu,v (t) ≤ Cu,v , ∀〈u, v〉 ∈ E, ∀t ∈ T (2)

ZHENG et al.: SCHEDULING CONGESTION- AND LOOP-FREE NETWORK UPDATE IN TIMED SDNs 2545

Condition (2) ensures that the link capacity Cu,v cannot be
violated for ∀t ∈ T .

Definition 2 (Loop-Free Condition): If one unit of flow is
routed through switch v at t , then it should not be routed
through the switch v at t ′, where t ′ > t .

Definition 3 (Congestion-Free Condition): The congestion-
free condition holds if and only if Condition (2) always holds
for ∀t ∈ T throughout the update process.

Our model and approach can be visualized nicely with a
time-extended network concept: a network in which there is a
copy of each switch for every time step ti ∈ T and the links
are redrawn between these copies to express their transmission
delay. Succinctly:

Definition 4 (The Time-Extended Network:) The time-
extended network GT is a directed graph G with switches v(t)
for all v ∈ V and t ∈ T . For each link 〈u, v〉 ∈ E with
transmission delay σu,v and capacity Cu,v , the network GT

has link 〈u(t), v(t + σu,v)〉 with capacity Cu,v .
The time-extended network captures the dynamic process

of flow transmission in the network. Fig. 2(a) gives a time-
extended network example of Fig. 1(a), where t−1, . . .,
t−4 and t−5 represent the history time steps, t0 represents
the current time step, t1, t2, · · · represent the future time
steps. We can only update the switches in the current and
future time step and cannot update them in the history steps.
The reason why we illustrate history steps there is that we
require to check the existence of the forwarding loops defined
in (2). In Fig. 2(a), the flow on the link 〈v1(t0), v2(t1)〉
starts at current time step t0, while the flow on the link
〈v2(t0), v3(t1)〉, . . ., 〈v5(t0), v6(t1)〉 starts at history time step
t−1, · · · , t−4, respectively. For simplicity, we do not draw the
links in the time-extended network once the update is done.

Based on the above model and definition, we formulate
minimum update time problem (MUTP) as an integer linear
program (3) in the time-extended network, where the initial
(solid line) and final (dashed line) routing paths are given.
We seek to find an optimal timed update sequence so as to
minimize the total update steps such that the congestion- and
loop-free condition always hold at any moment in time. The
path set P(f) is pre-computed such that all paths are loop-free
defined in (2). Calculating all possible paths can be done in
polynomial time as the in-degree and out-degree in the time-
extended network are at most two. The resulting path set P(f)
are the input in our formulation.

minimize |T | (3)

subject to
∑

f ∈F T

d
∑

p∈P(f):〈u(ti),v(t j)〉∈p

x f,p ≤ Cu(ti),v(t j),

∀〈u(ti), v(t j)〉 ∈ ET , ti , t j ∈ T (3a)∑

p∈P(f)

x f,p = 1, ∀ f ∈ F T , (3b)

x f,p ∈ {0, 1}, ∀ f ∈ F T , ∀p ∈ P(f). (3c)

The formulation of the minimum update time problem is
shown in (3). The objective aims to minimize the number
of elements in set T , i,e., the successive time steps dur-
ing the update. The LHS of constraint (3a) characterizes

Fig. 3. An example for the formula (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨
x5 ∨ x6)∧ (¬x1 ∨ x5)∧ (¬x2 ∨ x5)∧ (¬x1 ∨¬x2)∧ (¬x3 ∨ x6). The formula
satisfiable problem corresponds to a feasible congestion- and loop-free update
sequence within two time steps.

the load of total flows at link 〈u(ti), v(t j)〉, which must
be less than or equal to its capacity in order to meet the
congestion-free condition defined in (3). The optimization
variable x f,p indicates whether flow f is routed through
path p in the time-extended network. This also determines
that which switch should be updated at which time point.
For example, as illustrated in Fig. 2(d), two flows starting at
t−1 and t2 are routed through the path 〈v1(t−1), v2(t0), v6(t1)〉
and 〈v1(t2), v4(t3), v3(t4), v5(t5), v2(t6), v6(t7)〉. Accordingly,
we update v2 and v1 at t0 and t2, respectively. Constraint (3b)
represents the flow can only be routed through one path in the
time-extended network. The variable x f,p in Constraint (3c)
equals one if and only if the flow is routed through path p,
and equals zero otherwise.

C. Hardness Analysis

We establish the hardness of MUTP below.
Theorem 1: Computing a shortest congestion- and loop-

free update sequence is NP-complete, already for a constant
number of update rounds.

We refer the reader to our prior work [14] for a rigorous
NP-hardness proof. Here we only give an intuition. We con-
struct a polynomial reduction from the SAT problem [5] to
our problem. Given a SAT boolean formula consisting of six
boolean variables x1, x2, · · · , x5 and x6 and seven clauses:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) ∧ (¬x1 ∨
x5) ∧ (¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x6). The objective
is to find a variable assignment that satisfies each clause. This
problem can be reduced to the instance of MUTP, which is
constructed as shown in Fig. 3. For each variable xi in the
formula we introduce one node named xi in our instance.
A true assignment for variable xi corresponds to the update in
the first time step. A false assignment corresponds to that in
the second time step. There are three colors of nodes: white,
gray and black. For gray nodes, we do not require to update
them. For black nodes yi , we can only update them in the
second time step as the forwarding loop happens if any of
them is updated firstly. As for white nodes xi , we require to
determine which nodes are updated in the first time step and
which in the second time step.

Now we explain the meaning of each SAT clause. The
clause (x1∨x2∨x3) indicates that at least one of the node x1, x2
and x3 requires to be updated in the first time step. Otherwise,
a forwarding loop 〈u, v, x1, x2, x3, y1, u〉 happens once y1 is
updated in the second time step. Similarly, we have clauses
(x3∨x4∨x5) and (x4∨x5∨x6) to guarantee the loop-freedom.
The clause (¬x2 ∨ x5) represents that if x2 is updated in the
first time step, x5 also should be updated together with x2.
Otherwise, a forwarding loop 〈x2, x5, y3, x2〉 happens which

2546 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

is depicted in the red line in Fig. 3. Similarly, we have clause
(¬x1 ∨x5) and (¬x3 ∨x6). The congestion-freedom is guaran-
teed by the clause (¬x1 ∨¬x2). It characterizes that x1 and x2
cannot be updated simultaneously, as the load of incoming
flows from x1, x2 and x4 is three units, which is beyond
the link capacity. Therefore, a feasible variable assignment
corresponds to a congestion- and loop-free update sequence
within two time steps. The assignment results indicate that
which white nodes should be updated in the first time step
and which nodes in the second.

III. A DECISION ALGORITHM

In this section, we design a decision algorithm to check the
existence of a feasible update sequence. The detailed process is
shown in Algorithm 1. We first explain the high level working
of this algorithm. We construct a binary tree (all solid links) to
perform node updates step by step, where the root in the top
is the destination and the source node is located at the bottom
of left or right branch. If the source node belongs to the left
branch, we update one of the nodes whose outgoing dashed
line points from the left to the right branch. Then the source
node belongs to the right branch and accordingly the flow is
routed through a new path when the update is complete. Next
we update one node whose dashed line points from the right
to the left branch. We iteratively update the node from one
branch to the other until all the nodes are updated. Note that
the update operation from one branch to the other can always
guarantee the loop-free condition, and thus we only need to
check the congestion-free condition in our algorithm.

In Algorithm 1, the default root node is the destination V −,
which has no capacity constraint (line 1). We use V # to denote
a set of nodes which have already been updated. The search
process starts from the top to the bottom and adds the nodes
one by one into V # (lines 5-10). If V # is not empty, we merge
them into one node V ′ and record the minimum link capacity
between them as V ′.cons (lines 12-13). Next we find node k
through the incoming dashed line of V ′. By comparing the sum
of link delays between new path 〈k, V ′〉 and the old path p′,
we determine if the update of k is feasible or not (lines 14-19).
After that we construct path candidate sets Pvi (new path) and
Qvi (old path) in order to update a node vi whose outgoing
dashed line points from one branch to the other. We select
the path p ∈ Pvi with the minimum path delay given its
delay is larger than in the old path q (lines 20-22). If the
path p does not exist and V ′.cons cannot accommodate the old
and the new flow simultaneously, a false variable is returned
(lines 23-24). Otherwise, we update the node on the path p.
The process is repeated until all the switches are updated.
A detailed example is illustrated in Fig. 4.

Based on the explanation above, we have the following
theorem.

Theorem 2: Algorithm 1 can check the feasibility of prob-
lem (3) in polynomial time if each link’s transmission delay
is identical.

Proof: Without loss of generality, we use the example in
Fig. 5 to prove our theorem.

Case 1 (the update operation in line 18): As shown in
Fig. 5(a), if the update of v violates the congestion-free

Algorithm 1 Checking the Existence of a Congestion- and
Loop-Free Timed Update Sequence

Input: The directed network G; the initial path Pinit and the
final path P f in ; φ(p): the sum of link delay in path p.

Output: A boolean variance that indicates whether there
exists a congestion- and loop-free update sequence or not.

1: v = V −, v.cons = +∞
2: t = 0
3: repeat
4: V # = ∅
5: while v.in.dashedline.source = ∅ do
6: if v.in.solidline.source is not unique then
7: break //the loop terminates if more than one node

point to v through solid line
8: u = v.in.solidline.source //the outgoing solid line

of u points to v
9: V # = V # ∪ {u}

10: v = u
11: if V # �= ∅ then
12: Merge all the nodes in V # into one node, denoted as

V ′
13: V ′.cons = arg min〈u,v〉∈V # Cu,v //indicate the bottle-

neck capacity
14: k = V ′.in.dashedline.source
15: p′ = 〈k, k.out .solidline.destination, . . . , V ′〉
16: if k is active and σk,V ′ ≤ φ(p′) and V ′.cons < 2d

then
17: return false //indicate that the update operation of

node k will violate the congestion-free condition
18: Update k at t
19: t = t + σk,V ′
20: Pvi = {〈vi , v j , . . . , V ′〉|〈vi , v j 〉 ∈ P f in}
21: Qvi = {〈vi , vi .out .solidline.destination, . . . , V ′〉}
22: p = arg minp∈Pvi ,q∈Qvi |φ(p)≥φ(q) φ(p)

23: if p = ∅ and V ′.cons < 2d then
24: return false
25: for each node z ∈ p do
26: Update z at t
27: t = t + φ(p)
28: until all the switches are updated
29: return true

Fig. 4. An example for finding a feasible congestion- and loop-free update
sequence.

condition, both (4) and (5) hold at the same time:

V ′.cons < 2 · d (4)

φ(〈v, V ′〉) < φ(〈v, v j , vk , . . . , vi , V ′〉) (5)

ZHENG et al.: SCHEDULING CONGESTION- AND LOOP-FREE NETWORK UPDATE IN TIMED SDNs 2547

Fig. 5. Illustration of three network update scenarios shown in Algorithm 1.

Suppose there exists a path p∗ such that the condition
φ(〈v, V ′〉) > φ(p∗) holds, p∗ must contain at least a upward
dashed link as any updates for downward links between v
and V ′ will result in a forwarding loop at current routing
configuration. We assume this upward dashed link is 〈v j , vi 〉
and accordingly p∗ is 〈v, v j , vi , V ′〉. This indicates that the
update time for v j should be earlier than that of v. If the
update is feasible, either (6) or (7) holds:

Cv j ,V ′ ≥ 2 · d (6)

φ(〈v j , vk , . . . , vi 〉) ≤ φ(〈v j , vi 〉) (7)

However, the condition (6) cannot be established as (4) holds.
Thus condition (7) must be established. Combining (5) and (7),
we obtain,

φ(〈v, V ′〉) < φ(〈v, v j , vi , V ′〉)
This demonstrates that if the update of v is infeasible at current
time step, it is infeasible at any time step.

Case 2 (the update operation in line 26): As shown in
Fig. 5(b), suppose the update time of vx is earlier than that of
vm , we have (8) holds from line 22 of Algorithm 1.

φ(〈vx , vk , vq , V ′〉) < φ(〈vm , vy, vn , · · · , vk, vq , V ′〉) (8)

If the update of v violates the congestion-free condition,
both (4) and (9) hold.

φ(〈v, vx , vk , vq , V ′〉) > φ(〈v, v p , V ′〉) (9)

Combining (8) and (9), we derive that,

φ(〈v, v p , V ′〉) < φ(〈v, vx , vm , vy, vn, · · · , vk , vq , V ′〉)
The inequation above indicates that the update of v is

still infeasible even though the update time of vm is earlier
than that of vx . Similarly, the same as the case shown
in Fig. 5(c).

IV. A GREEDY ALGORITHM

We now design a greedy algorithm on the time-extended
network to tackle MUTP. We explain how the algorithm works
using the example in Fig. 2. At each time step, we plan
to update as many switches as possible so as to minimize
the total update time. In Fig. 2(a), assume all the switches
(the destination switch v6 does not require to be updated)
are updated at t0, three forwarding loops will happen as
shown in Fig. 2(b), which violates the loop-freedom condition.
Assume we update v1 and v2 at t0 as shown in Fig. 2(c), it is
also impossible as the capacity of link 〈v4(t1), v3(t2)〉 cannot

Fig. 6. Illustration of the resulting dependency relation set in the example of
the time-extended network shown in Fig. 2(a). The red dotted circle represents
that the switch is updated at current time step.

accommodate the flows from v1 and v3 simultaneously, which
violates the congestion-free condition. To guarantee this, we
use the dependency set to capture the update order among
switches. According to the different link capacity constraints
in the time-extended network, we construct the dependency
relation set at each time step as shown in Fig. 6. The detailed
calculation process will be explained in Algorithm 3. We can
observe the dependency relation set at t0 is {(v2 → v4 →
v3 → v1 → v5)}, where we can only update v2. After that
at t1, the dependency relation set is {(v3 → v1 → v5), (v4)}.
We can update v3 and v4 at the same time step and this cannot
violate link capacity constraint. However, a forwarding loop
would happen if v4 is updated. The procedure of checking
forwarding loops is described in Algorithm 4. Therefore, only
v3 is updated at t1. At next time step t2, we re-calculate the
dependency relation set and it is {(v1 → v5), (v4)}. We update
v1 and v4 simultaneously at t2 and finally we update the last
one v5 at t3. The whole update procedure is shown in Fig. 2(d).

At the beginning of Algorithm 2, we construct V ∗, which
represents the set of switches that require to be updated
(line 1). The initial time set T contains current time step t0,
history time steps {t−σ , · · · , t−1} and future time step t1. We
will add one future time step ti at each loop until all the
switches are updated or the update is infeasible (lines 5-19).
Based on the time step set T , we construct the time-extended
network (line 3). Furthermore, we calculate the dependency
relation set Ot , which is obtained from Algorithm 3 and
will be discussed soon. If Ot contains a cycle, the algorithm
terminates that indicates there does not exist a congestion-
free update order (lines 7-8). Otherwise, we can update the
switches according to the order in each dependency relation
(lines 9-14). At the same time, we apply Algorithm 4 to check
the possibility of forwarding loops (line 11). If the occurrence
of the forwarding loop is impossible, we update v̂ at t and
remove v̂ from V ∗ (lines 12-14). Finally we add one further
time step ti to re-construct the time-extended network and
enter into the next loop (lines 16-18).

The procedure of determining the dependency relation
set is shown in Algorithm 3. Let V ∗ be the set of switches
that requires to be updated. We start from a arbitrary switch
vi ∈ V ∗. If vi is updated at t , the flow will be routed through
the link 〈vi (t), v(t ′)〉 in the time-extended network, where
t ′ − t = σvi ,v (lines 4-5). And then we find v ′ and ṽ, which
are the last hop and next hop switch of v(t ′) respectively
(lines 6-7). If the capacity of link 〈v, ṽ〉 cannot accommodate

2548 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Algorithm 2 Assigning a Update Time Point for Each Switch

Input: The directed network G; the initial path Pinit and the
final path P f in ; the number of switches n.

Output: A solution {vi , t j } which indicates that vi is updated
at t j .

1: Construct set V ∗, which contains the switches required to
be updated

2: T = {t−σ , . . . , t−1, t0, t1}, where σ = ∑n−1
k=1 σvk ,vk+1

3: Construct the time-extended network GT

4: t = t0, i = 1
5: repeat
6: Apply Algorithm 3 to obtain dependency relation set Ot

at t among the switches in set V ∗
7: if Ot contains a dependency cycle then
8: return ∅ //indicate congestion-free update is infeasi-

ble
9: for each o ∈ Ot do

10: Pick the first element v̂ from o
11: Apply Algorithm 4 to check whether there exists a

forwarding loop if switch v̂ is updated at t
12: if there is no forwarding loop then
13: Update switch v̂ at t
14: V ∗ = V ∗ − v̂
15: t = ti
16: i + +
17: T = T ∪ {ti } //add time step ti to T
18: Re-construct GT based on T
19: until Ot = ∅

the flows from vi and v ′, we establish the dependency relation
between them (lines 8-9) and will not take them into account
in the next loop (lines 10-11). When the loop terminates
(lines 1-11), we merge the dependency relation set with
the common element (line 12). For example, we can merge
{v1 → v2} and {v2 → v3} into {v1 → v2 → v3} since both
of them have the common element v2.

Taking Fig. 2(a) as an example, if we plan to update v1
at t0, we firstly need to find v4 at t1 in the time-extended
network. Once v4(t1) is found, we go back to its last hop v3(t0)
through the incoming solid edge of v4(t1). If the link capacity
〈v4(t1), v5(t2)〉 cannot accommodate the two flows simultane-
ously, we establish a dependency relation v3 → v1, which
means that the update time of v3 should be earlier than that
of v1, otherwise the congestion-free condition will be violated.

Algorithm 4 describes how to check the existence of a
forwarding loop. We search the possible forwarding loops in
the time-extended network. v(t) represents the switch v at time
step t , whose outgoing dashed line points to v∗ (line 1). We
look back through the incoming solid line of v(t) and find the
switch v̂ (line 3). This searching procedure is repeated until
the source switch V + is found. If v∗ is equal to v̂ during
the searching procedure, it returns a true boolean variable that
indicates a forwarding loop exists and the update operation
of v at t is impossible (lines 4-5). If the condition (line 4)
never holds during this procedure, a false boolean variable is
returned that indicates the update is feasible (line 7).

Algorithm 3 Finding a Dependency Relation Set

Input: The time-extended network GT ; time point t
Output: A dependency relation set Ot

1: for each vi ∈ V ∗ do
2: if vi .include = true then
3: continue
4: v = vi (t).out .dashedline.destination //the outgoing

dashed line of vi (t) points to v
5: t ′ = t + σvi ,v

6: v ′ = v(t ′).in.solidline.source //the outgoing solid line
of v ′ points to v(t ′)

7: ṽ = v(t ′).out .solidline.destination
8: if Cv,ṽ < 2 · d then
9: Ot = Ot ∪ {(v ′ → vi)}

10: v ′.include = true
11: vi .include = true
12: Merge the dependency relation set with the common ele-

ment.

Algorithm 4 Checking the Forwarding Loops
Input: The switch v; update time t
Output: A boolean variance which indicates if there exists a

forwarding loop when v is updated at t .
1: v∗ = v(t).out .dashedline.destination
2: repeat
3: v̂ = v(t).in.solidline.source
4: if v∗ = v̂ then
5: return true //indicate a forwarding loop forms
6: until v̂ = V +
7: return false

Based on the analysis above, we have the following:
Theorem 3: The timed update sequence {vi , t j } obtained

from Algorithm 2 is congestion- and loop-freedom if it exists.

V. LARGE-SCALE SIMULATIONS

We conduct extensive simulations and experiments to eval-
uate our algorithms. In this section we report our performance
evaluation using large-scale simulations. In the next section
we present our Mininet implementation results.

A. Setup

We use a large-scale linear network topology in our simu-
lations. The initial routing path is fixed and the final routing
path is chosen randomly (i.e., the final path is based on
random routing). The initial and the final routing paths have
the common source and destination. We run the algorithms
on Intel i5-2400 quad-core processor. Each data point is an
average of at least 30 runs.

B. Benchmark Schemes

• OR: The order replacement updates [14] that mini-
mize the number of rounds (i.e., the interactive between
switches and the controller) and avoid the forwarding
loops.

ZHENG et al.: SCHEDULING CONGESTION- AND LOOP-FREE NETWORK UPDATE IN TIMED SDNs 2549

• TP: The two-phase updates [18] that we use VLAN ID
as version number in our experiments.

• Chronus: Our greedy algorithm as shown in Algorithm 2.
• OPT: The optimal solution of the integer program (3)

obtained using the branch and bound method.

As discussed in Sec. I, the order replacement updates and
two-phase updates both do not take network capacity and link
transmission delay into account. Thus they cannot be used to
solve our problem defined in (3).

C. Basic Performance

We first investigate the percentage of congestion cases
by comparing 500 different update instances in each run.
In Fig. 12, the number of switches varies from 100 to 600
at the increment of 100 for each run. We find that Chronus
performs very close to OPT with just slightly more con-
gestion cases during updates. Specifically, when the number
of switches is 600, more than 65% update instances using
Chronus and OPT are congestion-free, while it is only 15%
for OR. This demonstrates that Chronus in general leads to a
small degree of congestion and significantly outperforms OR
by around 60%. Fig. 13 shows the number of congested links
comparison in the time-extended network. We can see that,
as the number of switches increases, OR yields significantly
more congested links compared to Chronus. Specifically, the
number of congested links for OR and Chronus is 57 and 18,
respectively, when the number of switches is 350, where
Chronus can decrease the number of congested links by more
than 65%.

Fig. 14 shows the CDFs of link utilization across all the
links in the time-extended network for different schemes.
For this simulation we fix the number of switches at 500.
Intuitively, congestion happens when the utilization is larger
than one. We can see that Chronus outperforms OR by
around 20%. We now look at the rule space overhead of
Chronus compared with TP. Fig. 11 shows the maximum
link utilization within 20 time steps in the time-extended
network. We define the congestion time step as the case that
the maximum link utilization is larger than one. Essentially the
number of congestion time steps measures the the duration of
congestion. We can observe that there are in total 12 conges-
tion time steps for OR, and only 5 for Chronus. Specifically,
OR has 4 consecutive congestion time steps from 4 to 8, and
Chronus only has 2 from 15 to 17. The box plot in Fig. 15
shows the number of rules for Chronus and the blue solid
point shows that for TP. We do not show the results using
TP when the number of switches is larger than 400 since its
result is beyond the maximum value of y-axis. We can see that
the number of rules for TP increases more significantly than
Chronus, as the number of switches increases. Specifically, the
average number of rules using TP and Chronus is 596 and 190
respectively, when the number of switches is 300. We observe
that Chronus can save over 60% rules than TP on average as
shown in Fig. 15. Note that these results become inaccurate
for switches that apply longest prefix matching or wild-card
rules. However, such rules are increasingly being substituted
with exact match rules in SDN [8].

Fig. 7. Running time.

Fig. 8. Update time.

Finally we evaluate the running time and update time. The
running time of Chronus, OR and OPT is illustrated in Fig. 7.
We do not include TP as it does not require to calculate the
update sequence. We can observe that the running time of OR
and OPT are both less than 60 seconds for up to 2K switches.
When the number of switches is larger than 4K, OR and OPT
do not complete within 60 seconds and the amount of their
required time is orders of magnitude longer than Chronus.
Chronus’s running time is less than 60 seconds even when the
number of switches is 6K. Fig. 8 shows the CDFs of update
time when the number of switches is fixed at 40. We can
see that most updates using Chronus finish within 15 seconds
and OPT takes 13 seconds. The update time of Chronus can
achieve near optimal compared to OPT.

VI. IMPLEMENTATION

In order to conduct experiments, complementing our sim-
ulations, we developed a prototype in Mininet 2.2.1 [10], a
high fidelity network emulator for SDN. We use an Intel PC
i5-2400 with quad-core processor. Mininet is configured to
use OFSoftSwitch and Dpctl [1] as Openflow switches and
the controller. The clock of all switches are synchronized
by default in Mininet, and thus we do not require to run
the Network Time Protocol (NTP). We use the scheduled
bundles message [2] to guarantee accurate timing. Due to
the single machine limitation of Mininet, we adopt a linear
network topology with 10 switches. The forwarding rules are
installed and updated via Dpctl API. We use InPort and
vlan_id as a matching field to perform routing forwarding.

We now describe how to perform accurate timing for
our algorithms. The procedure is shown in Algorithm 5.
We first obtain a solution to MUTP using the greedy algo-
rithm (line 1). Next we record the current clock as t0
(lines 2). Then we sequentially examine every switch and
update the corresponding forwarding rules. We first send a
OFPBCT_OPEN_REQUESTmessage to open a bundle (line 4),

2550 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Fig. 9. Flow volume is 512 KB.

Fig. 10. Flow volume is 5 MB.

Fig. 11. The maximum link utilization at each time step in the time-extended
network.

Fig. 12. % of congestion cases.

Fig. 13. # of congested links.

and then send a sequence of OFPT_BUNDLE_ADD_MESSAGE
messages to modify the rules (line 5). Modifications are stored
into a temporary staging area without taking effect. Next
we close the bundle (line 6). Finally when the bundle is
committed, the modifications will be applied to the switch
at a specific time point t0 + t j + θ (line 7). The threshold θ
used here is to prevent that the pre-defined update time t0 + t j

Fig. 14. Link utilization.

Fig. 15. # of forwarding rules.

Algorithm 5 Performing the Timed Network Updates

Input: The directed network G; the initial path pinit and the
final path p f in ; threshold θ ;

Output: Update sequence of switch rules.
1: Apply Algorithm 2 and obtain solutions {vi , t j }.
2: Get the current clock t0
3: for each vi ∈ V do
4: The controller starts to open a bundle by sending

OFPBCT_OPEN_REQUEST message, and receives a
reply from the switch

5: The controller sends a sequence of
OFPT_BUNDLE_ADD_MESSAGE messages to update
the rules at switch vi

6: The controller sends OFPBCT_CLOSE_REQUEST mes-
sage to close the bundle

7: The controller sends OFPBCT_COMMIT_REQUEST
message with OFPBF_TIME flag and
ofp_bundle_prop_time is set to be t0 + t j + θ ,
and then receives OFPBCT_COMMIT_REPLY message

becomes a past time point as a result of the bundle message
installation delay. We set θ to be 2 seconds in our experiments.
The openflow messages used in our algorithm are shown
in Table II.

For completeness we explain the implementation of
two-phase updates and order replacement updates in our
implementation. The two-phase update relies on packet tag-
ging. We use vlan_id in packet headers to index stages.
In the first phase, new rules—whose matching fields use the
new vlan_id that corresponds to the second stage—are
added. During this phase, flows are still forwarded according to
existing rules as packets are still stamped with the vlan_id
of the first stage. Once the update is done for all switches,
the protocol enters the second phase where we stamp every
incoming packet with the new vlan_id. At this point the

ZHENG et al.: SCHEDULING CONGESTION- AND LOOP-FREE NETWORK UPDATE IN TIMED SDNs 2551

TABLE II

OPENFLOW MESSAGES USED IN CHRONUS

new rules become functional, and the old rules are removed
by the controller. We use the branch and bound method to
obtain the optimal solution of the order replacement updates.
When performing updates in each round, our algorithm sleeps
for a while (using a random number from the data of [8]),
so as to simulate the asynchronous nature of data plane.

Experiment Results

We measure the difference of flow completion time (DFCT)
with and without the updates for TCP flows to assess the
impact of different update schemes. The definition of DFCT
is described as follows:

DFCT = FCT update − FCT normal

where FCT update and FCT normal represent the flow comple-
tion time with and without network updates. In our experi-
ments, the TCP window size is 85.3KB by default for both
server and client side. We set the link capacity to 10 Mbps.
The link delay is set to be an integer between 100ms to
2000ms. The maximum queue length for each switch is
100. We perform the same experiment at least 30 runs for
both TP, Chronus and OR, and report the minimum, maximum
and average of DFCT measured by iperf for the flow.
Fig. 9 and Fig. 10 show DFCT of two typical flows: short
flow and long-lived flow, where the flow volume is 512KB and
5MB respectively. We can observe that DFCT of the short flow
is larger than DFCT of the long-lived flow, which indicates that
the network updates have a more significant impact on short
flows. Specifically, the average DFCT of OR, TP and Chrouns
is 1.44s, 1.51s and 3.21s in Fig. 9. OR has more DFCT than
TP and Chrouns. This is because the number of congested
links using OR is greater than that using TP and Chronus,
due to the asynchronous network updates, which results in
more FCT update. Chronus takes advantage of accurate timing
to reduce congestion during network updates and thus has a
better FCT update than OR. Compared with TP, Chronus is
able to offer almost equivalent performance without additional
flow table space overhead in the switches. Finally we note that
FCT normal for TP is slightly longer than OR and Chronus due
to packet tagging.

VII. RELATED WORK

We review prior art on network updates in SDNs.
Reitblatt et al. [18] introduced a notion of per-flow consistent
and per-packet consistent network updates. The authors also
describe a two-phase commit protocol to preserve consistency
when transitioning between two different routing configura-
tions. Ludwig et al. [14] aim to minimize the number of

sequential controller interactions when transitioning from the
initial to the final update stage. The authors prove that finding
a shortest update sequence that avoids forwarding loops is
NP-hard. The authors also introduce a notion of relaxed loop-
freedom, which provides an interesting consistency-runtime
tradeoff. Another work by Ludwig et al. [13] considers
consistent network updates in the presence of middleboxes.
However, these works do not consider transient congestion.
SWAN [6] and zUpdate [12] try to find congestion-free update
plans in WAN and DCN, respectively. SWAN shows that if
each link has a certain slack capacity, a congestion-free update
sequence always exists. This condition is too strong to always
hold in practice. Brandt et al. [3] show that a congestion-
free update sequence still exists even if some links are fully
utilized. Dionysus [8] employs dependency graphs to find a
fast congestion-free update plan according to different runtime
conditions of switches. Mizrahi et al. [15], [17] propose a time
synchronization protocol between the controller and the data
plane, which uses accurate timing to trigger network updates
and reduce congestion.

VIII. CONCLUSION

We studied the problem of minimizing update time in
timed SDNs. We proposed a decision algorithm to check the
feasibility in polynomial time and a greedy algorithm to solve
the problem. Evaluation results show that our solutions can
reduce transient congestion and save flow table space.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their helpful
comments on drafts of this paper.

REFERENCES

[1] CPqD of Softswitch. Accessed: 2015. [Online]. Available: https://github.
com/CPqD/ofsoftswitch13

[2] OpenFlow Switch Specification. Accessed: 2014. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[3] S. Brandt, K.-T. Forster, and R. Wattenhofer, “On consistent migration
of flows in SDNs,” in Proc. INFOCOM, 2016, pp. 1–9.

[4] L. R. Ford and D. R. Fulkerson, “Constructing maximal dynamic flows
from static flows,” Oper. Res., vol. 6, no. 3, pp. 419–433, 1958.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1979.

[6] C.-Y. Hong et al., “Achieving high utilization with software-driven wan,”
ACM Comput. Commun. Rev. SIGCOMM, vol. 43, no. 4, pp. 15–26,
2013.

[7] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic pricing and traffic engineering for timely inter-datacenter
transfers,” in Proc. SIGCOMM, 2016, pp. 73–86.

[8] X. Jin et al., “Dynamic scheduling of network updates,” ACM Comput.
Commun. Rev. SIGCOMM, vol. 44, no. 4, pp. 539–550, 2014.

2552 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

[9] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. NSDI, 2012, pp. 113–126.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. HotNets, 2010,
p. 19.

[11] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” ACM Comput. Commun. Rev.
SIGCOMM, vol. 44, no. 4, pp. 527–538, 2014.

[12] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz,
“zUpdate: updating data center networks with zero loss,” ACM Comput.
Commun. Rev. SIGCOMM, vol. 43, no. 4, pp. 411–422, 2013.

[13] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently secure
network updates,” in Proc. SIGMETRICS, 2016, pp. 273–284.

[14] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-
free network updates: It’s good to relax!” in Proc. PODC, 2015,
pp. 13–22.

[15] T. Mizrahi and Y. Moses, “Software defined networks: It’s about time,”
in Proc. INFOCOM, 2016, pp. 1–9.

[16] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in Proc. INFO-
COM, 2015, pp. 2551–2559.

[17] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in Proc. SOSR, 2015, pp. 21-1–21-14.

[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. SIGCOMM, 2012,
pp. 323–334.

[19] J. Sherry et al., “Rollback-recovery for middleboxes,” ACM Comput.
Commun. Rev. SIGCOMM, vol. 45, no. 4, pp. 227–240, 2015.

[20] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “We’ve got you covered:
Failure recovery with backup tunnels in traffic engineering,” in Proc.
ICNP, 2016, pp. 1–10.

Jiaqi Zheng is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Technology, Nanjing University, China. He was a
Research Assistant with the City University of Hong
Kong in 2015, and a Visiting Scholar with Temple
University in 2016. His research interests include
data center networks, software defined networks, and
cloud computing. He received the Best Paper Award
from the IEEE ICNP 2015.

Guihai Chen received the B.S. degree in com-
puter software from Nanjing University in 1984,
the M.E. degree in computer applications from
Southeast University in 1987, and the Ph.D.
degree in computer science from The University of
Hong Kong in 1997. He is currently a Distinguished
Professor with Nanjing University and Shanghai Jiao
Tong University. He has a wide range of research
interests with focus on parallel computing, wire-
less networks, data centers, peer-to-peer computing,
high-performance computer architecture, and data
engineering.

Stefan Schmid received the M.Sc. and Ph.D.
degrees from ETH Zurich, Switzerland, in 2004 and
2008, respectively. Subsequently, he held a post-
doctoral position at TU Munich and the University
of Paderborn (2009). From 2009 to 2015, he was
a Senior Research Scientist with Telekom Innova-
tions Laboratories, Berlin, Germany. He is currently
an Associate Professor with Aalborg University,
Denmark. His research interests revolve around the
fundamental algorithmic problems of networked and
distributed systems.

Haipeng Dai received the B.S. degree from the
Department of Electronic Engineering, Shanghai
Jiao Tong University, Shanghai, China, in 2010, and
the Ph.D. degree from the Department of Com-
puter Science and Technology, Nanjing University,
Nanjing, China, in 2014. He is currently a Research
Assistant Professor with the Department of Com-
puter Science and Technology, Nanjing University.
His research interests are mainly in the areas
of wireless charging, mobile computing, and data
mining. He received the Best Paper Award from the

IEEE ICNP 2015 and the Best Paper Award Candidate of the IEEE INFOCOM
2017.

Jie Wu (F’09) is currently the Associate Vice
Provost for International Affairs at Temple Univer-
sity, where he also serves as the Chair and the
Laura H. Carnell professor with the Department
of Computer and Information Sciences. His cur-
rent research interests include mobile computing
and wireless networks, routing protocols, cloud and
green computing, network trust and security, and
social network applications. He is a CCF Distin-
guished Speaker. He was a recipient of the 2011
China Computer Federation Overseas Outstanding
Achievement Award.

Qiang Ni received the B.Sc., M.Sc., and Ph.D.
degrees in engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China. He is
currently a Professor and the Head of Communica-
tion Systems Research Group, InfoLab21, School of
Computing and Communications, Lancaster Univer-
sity, Lancaster, U.K. His research interests include
future generation communications and networking
systems, including green communications, cloud
systems, cognitive radio network systems, heteroge-
neous networks, 5G and SDN, IoT, and big data
analytics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

