Friend Recommendation in Online Social Networks: Social Influence Maximization

Huanyang Zheng and Jie Wu

Center for Networked Computing Dept. of Computer and Info. Sciences Temple University

Road Map

- \odot 1. Introduction
- \odot 2. Model and Formulation
- \odot 3. Analysis and Algorithms
- 4. Experiments
- \odot 5. Conclusion

1. Introduction

Online Social Networks (OSNs)

- Social relations among users who share social stories
- 74% of online adults use OSNs
- Examples: Facebook and Twitter

Friend Recommendation System

- An essential component in OSNs
- Facebook: friend-of-a-friend

People You May Know

Bonny Bickford 4 mutual friends 纪 Add as Friend

Marv Albert 3 mutual friends 纪 Add as Friend

Sandy Baker 8 mutual friends 纪 Add as Friend

1. Introduction

Friend Recommendation System

- We aim to recommend friends to maximize influence
 - Friend acceptance probability
 - Influence propagation capability
- Applications: advertisements for salesman
 - Example: Facebook business page service

Social Influence Propagation

- Existing independent cascade model
 - > On a weighted directed graph (round-by-round)
- \Box Starts with one seed v_0
- When a node v first becomes influenced, v will influence its neighbors
 - Influence probability depends on edge weight
 - One-time influence from v
 - Terminates when no more nodes are influenced

Social Influence Propagation

Definition: The expected number of nodes eventually-influenced by seed nodes is defined as the influence spread.

Compute influence spread is NP-hard for given seeds

- Monte-Carlo simulations (time-consuming)
- Graph reduction (under-estimate: tree, DAG, our)
- Iterative exchange (over-estimate: IMRank)

Problem formulation

🗆 Given knowledge

Social network G (weighted & directed)

> User v_0 and constant k (# of new recommendations)

 \Box Maximize the influence spread gain of v_0

> Through k new recommended friends

> Influence spread gain over existing: $\sigma(R) - \sigma(\phi)$

NP-hardness

Reduction from maximum coverage problem

Problem formulation

Friend Acceptance Probability

Justifications for probability prediction
Let f_{vu} be predicted friend acceptance probability $f_{vu} = \alpha_u \times \frac{|N(v) \cap N'(u)|}{|N(v) \cup N'(u)|} + \beta_u$

 $\hfill\square$ N and N' are sets of outgoing & incoming neighbors $\hfill\square$ α_u and β_u are constant coefficients for u

Submodular Property

Diminishing return effect of recommendation

> R is set of recommended friends, $\sigma(R)$ is influence spread gain

Theorem: $\sigma(R)$ is submodular with respect to R, i.e., $\sigma(R\cup\{v\}) - \sigma(R) \ge \sigma(R'\cup\{v\}) - \sigma(R')$ for $R \subseteq R'$.

Kempe et al. "Maximizing the spread of influence through a social network." ACM SIGKDD, 2003

Alg 1: greedy approximation (ratio: 1-1/e)

Iteratively recommend the friend that maximizes the marginal gain of v's influence spread

Influence Spread Computation

□ NP-hard to compute influence spread for given seeds

Graph reduction approach

> Under-estimate influence spread

> Chen et al. "Scalable influence maximization for prevalent viral marketing in large-scale social networks." ACM SIGKDD, 2010.

Alg 2: influence spread computation

- □ Key idea: consider more paths in polynomial time
 - Estimate a number of needed paths for v, based on graph structure
 - Use Yen's algorithm to obtain a set of loop-free shortest paths from v_o to v
 - Construct a directed acyclic graph (based on the set of loop-free shortest path) to compute v's probability of being influenced by v₀

Example: DAG reduction v.s. our approach

Note: 1-(1-0.5)(1-0.4x0.8) = 0.66

DAG approach

Real data-driven experiments Facebook, Epinions, and Wiki

	Facebook	Epinions	Wiki
Number of nodes	63,731	18,098	7,115
Number of edges	817,035	355,754	103,689
Average degree	25.6	19.6	14.6
Network Diameter	15	11	7
Global clustering coefficient	0.148	0.138	0.141
Average edge weight	0.0271	0.0285	0.0076

Parameter settings

- $\succ f_{vu}$ is based on $lpha_u=0.9$ and $eta_u=0.1$
- > Given user is randomly selected (averaged 1,000 times)

Comparison algorithms (influence spread)

- OPT: the influence spread through time-consuming Monte-Carlo simulations
- Alg 2: our influence spread computation through multiple influence propagation paths
- Tree: graph reduction to a tree to compute the influence spread
- DAG: graph reduction to directed acyclic graph to compute the influence spread
- IMRank: influence spread through iterative neighborhood exchanges

Results (influence spread)

Popular user: more than 100 friend (otherwise normal users)

Tree and DAG underestimate the influence spread

IMRank may overestimate the influence spread

Comparison algorithms (friend recommendation)

- Alg 1 & OPT: our greedy recommendation with optimal influence spread computation (Monte-Carlo)
- Alg 1 & Alg 2: our greedy recommendation with our multi-path influence spread computation
- MaxSim: greedy algorithm that iteratively recommends a user with a maximum common neighbor similarity
- MaxDeg: greedy algorithm that iteratively recommends a user with a maximum outgoing degree
- Random: a baseline algorithm that recommends friends uniform-randomly

Results (friend recommendation)

Tune k (number of recommended friend)

All algorithms suffers from diminishing return
 Alg 1 outperforms others, Alg 2 is close to OPT

Results (friend recommendation)

Popular user: outgoing degree > 100 (otherwise normal users)

Popular users have higher gain on the influence spread by friend recommendations

5. Conclusion

Friend recommendation

Aim to maximize the influence spread of the user
 Friend acceptance probability v.s. influence capability
 Greedy recommendation has a ratio of 1-1/e

Influence spread computation

Consider multiple influence propagation paths

Closely approximate the optimal solution