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Abstract—In this paper, an up-and-down routing protocol is
proposed for mobile opportunistic social networks, which exhibit
a nested core-periphery structure. In such a network, a few
active nodes with large weighted degrees form the network core,
while the network peripheries are composed of many inactive
nodes with small weighted degrees. By nested, it means that the
core-periphery structure is preserved, when periphery nodes are
removed. Based on this structure, a message can be uploaded from
the source to the network core, through iteratively forwarding
the message to a relay that has a higher position in the nested
network hierarchy. Then, space-efficient Bloom-filter-based hints
are introduced to provide guidance for downloading messages
from the network core to the destination. Through utilizing
the network structure and space-efficient routing hints, subtle
balances between the data delivery delay, ratio, and cost are
achieved by our proposed approach. Finally, through extensive
simulations, we show that the up-and-down routing scheme
achieves a competitive performance on the data delivery delay
and ratio, with a relatively small cost on the prior information
maintenance and a relatively low forwarding cost.

Keywords—Bloom filter, mobile opportunistic social networks,
nested core-periphery network structure, routing hints.

I. INTRODUCTION

In recent years, we have witnessed the emergence of a
new kind of network known as the mobile opportunistic social
network (MOSN), where people contact each other by chance
using mobile wireless devices. A classic example of an MOSN
is a scenario where people walk around with smartphones
and communicate with each other via Bluetooth or WiFi
when they are in the transmission range of each other [1–3].
Routings in MOSNs are characterized by intermittent network
connectivity, where an instantaneous end-to-end path may not
exist. Therefore, the prior knowledge on the network state
information (e.g., the contact history) is extremely important
for improving the MOSN routing performance (e.g., the data
delivery delay, ratio, and cost). Meanwhile, the prior state
information collection and maintenance are usually difficult
and costly due to the highly-dynamical nature of MOSNs.

However, the information of network structure comes
handy sometimes for optimizing the routing process. Leskovec
et al. found that social networks generally exhibit nested core-
periphery structures [4], while We observe that MOSNs also
exhibit these structures, since wireless devices are actually
carried by people. This property is illustrated in Fig. 1: the
majority nodes are inactive (small degrees and low contact fre-
quencies), which become the network peripheries (on the left);
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Fig. 1. The contact network in a primary school [6]. Nodes represent people
(only nodes labeled “10xx” are selected), where the node with a higher degree
is larger and darker. Weighted edges represent contact frequencies, where the
edge with a higher weight is thicker and darker.

the minority nodes are active (large degrees and high contact
frequencies), which form the network core (on the right). By
nested, it means that the core-periphery structure is preserved,
when periphery nodes (and their associated links) are removed.
Specifically, after iterative removal, the last remaining node is
called the root node. Furthermore, in Fig. 1, we observe that
a few network core nodes in MOSNs hold a large fraction of
total contact frequencies, which is the top-heavy property [5].
To utilize these MOSN structural properties, we propose an
up-and-down routing scheme, which has an upload phase and
a download phase, as follows.

In the upload phase, a single copy is used to deliver the
message from the source node to the network core, by utilizing
the nested core-periphery structure, without resorting to the
other prior information. This structure enables a message to be
uploaded from any node to the root node, through iteratively
forwarding this message to a relay that has a higher position in
the nested network hierarchy than the message holder. This is
done through an iterative labeling process based on weighted
degree discounting neighbors that have already labeled. The
labeling time of a node determines the hierarchy of the node.
This hierarchy is not equivalent to the hierarchy used in
BubbleRap [7], which performs ranking by node degrees (or
weighted degrees). In addition, using only one copy in the
upload phase is because it achieves a competitive delivery
delay with a low forwarding cost.

A download phase is employed to deliver the message from
the network core to the destination. Extra network information
is introduced to provide routing guidance. At this stage, if
each node maintains an accurate routing table as the extra
information, then the delivery delay and ratio are good at978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



the cost of oversized routing tables. To balance the storage
demand, we compress the desired network information into
Bloom-filter-based hints (maintained by each node respective-
ly), which reduce the hint storage demand at the cost of hint
accuracy. To deal with the inaccurate hints, the download phase
uses multiple copies to ensure the delivery. The relationship
between the hint accuracy and storage demand can be predicted
by the top-heavy property. Moreover, Bloom-filter-based hints
enable multiple paths for the message download, and thus
using multiple copies can effectively reduce the download
delay. Meanwhile, the routing hint update is directional, which
follows the hierarchy used in the upload phase. Therefore, the
routing hints have a relatively small maintenance cost. These
subtle tradeoffs enable our routing scheme to achieve a good
data delivery delay and ratio with a low prior information
collection cost and a relatively low forwarding cost.

Our contributions are threefold:

• We systematically explore the MOSN structures, ver-
ifying the existences of the nested core-periphery and
top-heavy properties. An efficient routing protocol is
proposed with the utilization of MOSN properties.

• We study the upload feasibility of network hierarchies.
We show that the nested hierarchy has a subtle differ-
ence from the degree or weighted degree hierarchies.

• We introduce Bloom-filter-based hints as the down-
load routing guidance to achieve a good data delivery
delay and ratio with a low prior information collection
cost and a relatively low forwarding cost.

The remainder of the paper is organized as follows: The
related work is shown in Section II; the properties of MOSNs
are explored in Section III; in Section IV, the space-efficient
Bloom-filter-based routing hints are described; in Section V,
the up-and-down routing protocol is presented; in Section VI,
we evaluate the proposed scheme; and finally, in Section VII,
we conclude the paper. All proofs are presented in Appendix.

II. RELATED WORK

Routings in MOSNs have a tradeoff between the routing
performance and the prior knowledge on the network state
information. The first generation of MOSN routing algorithms,
such as Spray and Wait [8], ignores the importance of the prior
information. For example, message holders in Spray and Wait
share message copies with new encountered nodes that have no
copies (spray phase), until only one copy is left for waiting the
destination (wait phase). Since no prior information is utilized,
the performance of Spray and Wait is much worse than that
of the up-to-date algorithms, i.e., larger delivery delay, lower
delivery ratio, and higher forwarding cost.

After a short period of time, researchers have realized the
importance of the prior information. Therefore, routings with
prior information such as contact history [9] or pre-designed
hierarchical levels [10, 11] are developed. However, collecting
this prior information is very expensive. Researchers have
not focused on the network structural information until the
emergence of BubbleRap [7], which is a hierarchical approach
that uses the structural information. This algorithm uses ranks
(i.e., node degrees or weighted degrees) to layer nodes, where
the messages are iteratively forwarded to nodes with higher

(a) Complete trace. (b) 30% removed.

Fig. 2. The nested core-periphery structures of the MIT trace.

ranks, until a local community that contains the destination
is encountered. However, whether the messages will trap in
some local high-rank nodes or not remains unknown. To our
best knowledge, this paper is the first study on the upload
feasibility, which is done through the network structure anal-
ysis (we systematically explore the MOSN structures). The
nested hierarchy is proposed for the message upload, instead
of the degree and weighted degree hierarchies. Meanwhile,
BubbleRap tacitly assumes that high-rank nodes are connected
to a relay in the same community as the destination, which is
not always true among different MOSNs. We will deal with
this problem through Bloom-filter-based routing hints.

III. STRUCTURES OF MOSNS

In this section, we explore structures of small-scale MOSNs
that are composed of dozens of people moving around several
offices or rooms (e.g., attending an academic conference).
These MOSNs are modeled as directed weighted networks.
The contact frequency from node i to j is recorded as the
link weight [12], which is denoted as λij . A larger λij means
more frequent inter-meetings from node i to node j, and thus a
lower average link delay. For simplicity, we assume the links
to be symmetric, i.e., λij = λji. Meanwhile, we define the
weighted degree as the sum of the weights associated with
every outgoing link incident to the corresponding node:

weighted degree (i) =
∑

j
λij (1)

A larger weighted degree means that the corresponding node
is more active. For information dissemination in MOSNs,
node activities (i.e., weighted degree) are more important than
node connectivities (i.e., degree), since messages are delivered
through contacts. Note that a weighted edge can be viewed as
multiple edges with unit weights. Therefore, in the next two
subsections, we will use node activities to verify the nested
core-periphery property and the top-heavy property in MOSNs.
In the third subsection, we explore the hierarchies of MOSNs.

A. Nested Core-periphery Structures in MOSNs

The classic scenario of an MOSN is that people walk
around with smartphones and communicate with each other via
Bluetooth or WiFi when they are in the transmission range of
each other. Since wireless devices are actually carried by peo-
ple, MOSNs should inherit nested core-periphery structures, in
terms of weighted degrees, from social networks [4]. An active
person that has a large degree in the social network should
have a larger weighted degree in the corresponding MOSN. In
other words, the structures of MOSNs are similar to, but are



TABLE I. STATISTICS OF THE MOBILE OPPORTUNISTIC SOCIAL NETWORKS

CRAWDAD Trace Total Duration Internal External Network The Fraction of Contacts Hold by Total Number of
Contacts Nodes Nodes Diameter The Most-active 20% Nodes of Root Nodes

Cambridge/Haggle/Imote/Intel 2,766 6 days 9 128 1 30.72% 1 node

Cambridge/Haggle/Imote/Cambridge 6,732 7 days 12 223 1 51.27% 1 node

Cambridge/Haggle/Imote/Infocom 28,126 4 days 41 264 2 29.83% 1 node

Thlab/Sigcomm2009/Mobiclique/Proximity 285,880 5 days 76 11,938 2 43.64% 1 node

ST Andrews/Sassy/Mobile 112,265 79 days 27 N/A 2 55.14% 1 node
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Fig. 3. Verification of top-heavy properties in MOSNs (two traces).

much denser than structures of social networks. Therefore, the
nested core-periphery property also exists in MOSNs.

For further verification, we look into the MIT [13] trace,
as shown in Fig. 2 (the same setting as Fig. 1). In this figure,
nodes represent people, where a node with a higher weighted
degree (a higher node activity) is larger and darker. Weighted
edges represent contact frequencies, where the edge with a
higher weight is thicker and darker. Then, Fig. 2(a) shows
the complete trace (106 nodes), which has a core-periphery
structure. Fig. 2(b) shows the partial trace, where 30% nodes
with low weighted degrees are removed. Fig. 2(b) also exhibits
a core-periphery structure, i.e., the MIT trace has a nested core-
periphery structure.

B. Top-heavy Property in MOSNs

In this subsection, we investigate the weighted degree
distribution of MOSNs. The ST Andrews [14] and MIT [13]
traces are used to verify the existence of top-heavy properties
in MOSNs, the results of which are shown in Fig. 3 (the unit
of the weighted degree is the number of contacts per minute).
For the ST Andrews trace, devices with ID 16, 26 and 27 are
removed, since no data was collected. It can be seen that the
node activity distributions have heavy tails. In other words, a
few network core nodes in MOSNs hold a large fraction of
total contact frequencies. Therefore, these two traces satisfy
the top-heavy property.

Now, let us look into more MOSN traces in [13–16], where
all nodes in the network are classified into internal nodes
and external nodes. Only internal nodes are analyzed, since
contacts between external nodes are not collected. The results
are shown in Table I. A remarkable common feature of these
traces is the small network diameter. For Intel and Cambridge
traces, the diameters of 1 imply clique structure. This is
because wireless devices meet each other more or less during
a long time period. Nodes are very easy to opportunistically
meet each other, since transmission ranges of wireless devices
are not small (compared to the scenarios). The key differences
between nodes in MOSNs are their weighted degrees rather
than degrees: a few nodes hold a large fraction of the total
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Fig. 4. An illustration of the subtle difference between the nested hierarchy
and the degree (or weighted degree) hierarchy. A node labeled by a larger
number has a higher position in the hierarchy.

contact frequencies. This kind of top-heavy property is shown
in the second-to-last column of Table I.

C. Nested Hierarchies of MOSNs

At this time, it can be clearly seen that MOSNs have
both nested core-periphery properties and top-heavy properties.
Then, an interesting observation is that MOSNs have nested
hierarchies. Note that the nested hierarchy is totally different
from the degree or weighted degree hierarchies used in Bub-
bleRap [7]. For a clear explanation, we define:

Definition 1: The nested hierarchy of a network defines the
hierarchy of nodes in the network, through iteratively removing
nodes with the lowest degrees (or weighted degrees). The
nodes removed earlier have lower hierarchies, while the nodes
removed later have higher hierarchies.

Definition 2: The degree (or weighted degree) hierarchy
of a network defines the hierarchy of nodes in the network,
according to the degree (or weighted degree) of the node. The
nodes with smaller degrees (or weighted degrees) have lower
hierarchies, while the nodes with larger degrees (or weighted
degrees) have higher hierarchies.

To better show the subtle difference between these two
hierarchies, an illustration is shown in Fig. 4. In this toy
example, we consider the link weights to be identical for
simplicity. The original network is shown in the top left
corner of Fig. 4, while these two hierarchies are shown
in the right side of Fig. 4. Then, the key observation and
insight are described as follows. (1) The degree (or weighted
degree) hierarchy has local minimums, i.e., the two nodes
with the highest hierarchies are not connected. If we use the
BubbleRap [7] scheme and iteratively forward the message
to a encountered neighbor with a larger degree (or weighted



degree) than the message holder, then local minimums are
likely to be encountered and the message cannot be uploaded
to the node with the largest degree (or weighted degree). (2)
MOSNs have nested core-periphery structures. If we iteratively
forward the message to an encountered neighbor that has a
higher position in the nested hierarchy, then this message is
likely to be forwarded to the node that has a highest position
in the nested hierarchy. In other words, there are much fewer
local minimums in the nested hierarchy, since MOSNs inherit
nested core-periphery structures from social networks.

Therefore, the nested core-periphery structures of MOSNs
provide conveniences for the message upload. However, a
distributed pre-processing is needed to label the hierarchies
of nodes. Since node activities are much more important than
node connectivities for information dissemination in MOSNs,
the nested hierarchy of the weighted degree version is adopted
in our upload scheme. Then, the labeling scheme that deter-
mines the hierarchies of nodes is shown as follows:

• Effective weighted degree of a node is a summation of
weighted degrees among all its unlabeled neighbors.

• A node labels itself, only when it has the lowest
effective weighted degree among all its unlabeled
neighbors. The label is set to be the largest label
among its labeled neighbors plus one.

A larger label means that the corresponding node has a higher
position in the nested hierarchy. Actually, this distributed
labeling scheme is equivalent to the process of iteratively
removing the nodes with lowest weighted degrees. A node
that is labeled earlier has a lower hierarchy, while a node that
is labeled later has a higher hierarchy. Then, we define:

Definition 3: When all nodes in an MOSN are labeled, a
node is called a root node, if it has the largest label among all
its neighbors.

As previously mentioned, MOSNs are likely to have very
few root nodes. For further verification, we also look into the
real MOSN traces [13–16] that are analyzed in Table I. The
last column of Table I shows the number of root nodes in these
traces. One amazing observation is that these traces have only
one root node. In this sense, we have:

Theorem 1: In an MOSN with only one root node, the
message can be uploaded from any node to the root, if the
message holders iteratively forward the message to the relays
that have larger labels than they do themselves.

Theorem 1 is very intuitive, which can be proved by a
simple contradiction. We also propose strategies to cope with
the possibility of local minimums (i.e., multiple root nodes)
in Section V. Obviously, the nested hierarchy of MOSNs
comes handy for optimizing the routings, especially for the
upload phase. All nodes can find the root through iteratively
forwarding the message to the relays that have larger labels
than they do themselves. However, the root is not likely to
know all the other nodes and corresponding efficient rout-
ing paths. Therefore, prior information is necessary for the
message download from core nodes to the destination. In the
next section, Bloom-filter-based routing hints are introduced
to guide the download routing phase.

1 1
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Fig. 5. A traditional Bloom filter (m = 5, and k = 2). If {e1, e2} are
added, a query for e3 returns “in the set”, which is a false positive.

IV. BLOOM-FILTER-BASED ROUTING HINTS

In this section, we first present some preliminaries on
Bloom filters, followed by the detailed routing hint construc-
tion to guide the download routing phase. Then, the routing
hint update process is shown.

A. Preliminaries on Bloom Filters

The traditional Bloom filter [17] is a space-efficient prob-
abilistic data structure, which is used, through the query
operation, to check whether an element is a member of a
set. The returned answer of “in the set” may be wrong,
the probability of which is called false positive probability.
Meanwhile, the answer of “not in the set” is definitely correct.

Assume there are a total of n elements (denoted as e1 to
en) inserted into the Bloom filter, where each element belongs
to {1, 2, ..., N} (n≪N ). A traditional Bloom filter employs
a bit array of size m (n<m≪N ) to store these elements, as
illustrated in Fig. 5. There are k different independent hash
functions (denoted as h1 to hk), each of which maps the input
set to one of the m array positions. Initially, all bits in the
array are 0. To add an element ei, the bits of array positions
h1(ei), ..., hk(ei) are set to be 1. To query an element ej , k
bits in the array positions of h1(ej), ..., hk(ej) are checked.
If any bits are 0, then “not in the set” is returned. Otherwise,
it returns “in the set.” Since the k bit positions of ej may be
covered by some other elements, ej may be incorrectly verified
as existing, resulting in a false positive. The probability of false
positives is described in [17] as follows:

[

1− (1−
1

m
)nk

]k

≈ (1− e−kn/m)k (2)

The k that minimizes the probability of false positives is

k =
m

n
ln 2 (3)

Bloom filter is a tradeoff between the time complexity of
a query and the space complexity of the storage. If we use a
simple array to store these n elements, the time complexity of
a query is O(1), and the space complexity of the storage is
O(N). If we use a linked list, the time complexity is O(n) and
the space complexity is O(n). Note that, for Bloom filters, the
time complexity is O(k) and the space complexity is O(m),
while generally we have k ≪ n < m≪ N .

B. Routing Hints

Routing hints are essential for the download routing phase,
since the destination may not be connected to the network
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Fig. 6. The Bloom-filter-based routing hint of node 1.

core directly. In traditional IP networks, each node records the
best forwarder for a specified destination (the Bellman-Ford
algorithm in RIP) as the routing hints (or tables). However,
the node storage capacity is extremely limited in MOSNs,
where tracking all the connectivity information is not feasible.
Therefore, Bloom-filter-based hints are introduced to reduce
the hint storage demand at the cost of hint accuracy. The hints
locate within the MOSN nodes, while the sizes of hints are not
the same (described later in Theorem 2).

Without loss of generality, we assume that the total number
of nodes in the MOSN is N , with node ID ranging from 1
to N . Then, the proposed routing hint is an extension of the
Bloom filter, where the bit table is replaced by a weighted
table to record the contact frequency. An example is shown
in Fig. 6. Initially, each node stores the contact frequencies
of its neighbors, from lower node ID to higher node ID.
For example, node 2 is found as a neighbor of node 1, the
corresponding table position of which is set to be λ12. The
same thing happens for recording node 3. However, the 6th
table position has been taken by node 2, the value of which is
then refreshed. Finally, the routing hint of node 1 stores itself,
the corresponding table positions of which are set to be ∞.
The routing hint also supports query operations, which returns
the frequency of a queried node. A query operation looks into
all the k array positions of the queried node, and returns the
most “popular” value (the value that appears most frequently),
if these positions are all non-zero values. For example, if node
2 is queried (for the routing hint of node 1), λ12 is returned,
since it appears twice, and λ13 only appears once. If there
is a table position of value 0 among the k positions, 0 is
returned. For node i with Bloom filter T , the corresponding
hint initialization and query operation (Initializationi and
Queryi) are described in Algorithms 1 and 2 (for each node,
how to determine m and k is described later).

The time complexity of the hint initialization is the same
as the Bloom filter, i.e., O(nk). However, the time complexity
of the query operation is changed to be O(k log k), since
it needs to sort the values of the k array positions to find
the most “popular” one. Since k is generally a small value,
O(k log k) is an acceptable cost. Another advantage of the
proposed routing hint is that it supports the deletion operation,
which is the inverse operation of the query operation (delete
the most “popular” elements). The deletion operation provides
a method to update the connectivity information, which is
important for the MOSNs. In the next subsection, we will
describe the routing hint update, as well as the principal to
determine hint size for each node.

C. Periodic and Directional Routing Hint Update

Inspired by the study on the nested core-periphery network
structure, we propose that the routing hint of a node is only

Algorithm 1 Initializationi

Input: IDs and contact frequencies of the neighbors;

1: Initialize a weighted array T of size m;
2: Initialize k independent hash functions h1, ..., hk;
3: for each neighbor j of node i do
4: for each hash function h from h1 to hk do
5: Set T [h(j)] = λij ;
6: Set the corresponding positions of node i to be ∞;

Algorithm 2 Queryi
Input: A specified node ID j;
Output: The contact frequency λij ;

1: Initialize a weighted array R of size k;
2: for s = 1 to k do
3: Set R[s] = T [hs(j)];
4: if R contains an element of 0 then
5: return 0;
6: else
7: return the most “popular” element in R;

Algorithm 3 Updatei
Input: Routing tables from all the neighbors of node i;

1: for each neighbor j do
2: if label(j) < label(i) then
3: for each possible node ID e do
4: if 1/Queryj(e) + 1/λij < 1/Queryi(e) then
5: for each hash function h from h1 to hk do
6: Set T [h(e)] = 1/(1/Queryj(e) + 1/λij);

needed to be sent to adjacent neighbors that have larger labels
than that node (i.e., neighbors that have higher positions in
the nested network hierarchy than that node). In other words,
the routing hint update is directional, which is totally different
from the Bellman-Ford algorithm in RIP. Directional updates
result in a relatively small cost on the routing hint maintenance.
Moreover, the structure of the directional routing hint update is
a DAG rather than a tree, as shown in Fig. 7. A node sends its
routing hint to multiple higher-level neighbors (i.e., its parents
in the DAG). This kind of DAG structure will enable multiple
paths in the download phase (discussed later in Section V).

In our scheme, heterogeneous routing hint size is employed
to save the storage space, where the major periphery nodes
record less information, and the minor core nodes record
more information. Based on the received routing hints, the
node updates its routing hint to record the estimated contact
frequency (or the expected shortest path delay) with the
other node. Note that the reciprocal of the contact frequency
represents expected data delivery delay along the shortest path.
An example is shown in Fig. 7. After receiving the routing
hint from node 2 (which contains the information on node 3
and λ23), node 1 updates its routing hint to set up routing
information on node 3. Since the expected delay from node 1
to 3 is (1/λ12+1/λ23), node 1 set λ13 to be 1/(1/λ12+1/λ23).
The algorithm for the routing hint update of node i (denoted
as Updatei) is presented in Algorithm 3. Note that the hint
update is a periodic process, which is similar to the periodic
exchange routing tables in IP networks.
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Fig. 7. An example of the routing table updates, where the arrow represents
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Now, let us determine a reasonable routing hint size for a
node with degree d. Then, we have:

Theorem 2: According to Algorithm 3, the expected num-
ber of inserted elements in the routing hint of a node with
degree d (denoted as nd), satisfies nd ≤ d(α − 1)d−2, if (1)
the corresponding network has a power-law degree distribution,
and (2) the label of a node is proportional to its degree.

The proof of Theorem 2 is shown in Appendix A. In this
theorem, α is a parameter of the power-law degree distribution,
the assumption of which indicates the top-heavy property (see
Appendix B). Although the assumptions made in Theorem 2
are kind of restrictive, it is still an effective coarse estimation
of the routing hint size m. For practical usage, the routing hint
size of a node with degree d can be set as constant times as
large as d(α − 1)d−2. For example, m = 10 ∗ d(α − 1)d−2.
Meanwhile, the number of desired hash functions, k, can be
determined by Eq. 3. At this time, the probability of false
positives is 0.6185m/n. Again, note that nodes with different
degrees keep different sizes of routing hints, while the network
core nodes keep more information, since they usually have
higher degrees. Obviously, network core nodes are generally
more active and more powerful, and thus they are able to
have larger sizes of routing hints. Although this is unfair for
core nodes, “hotspot” effects are inevitable in MOSN routings.
This is because network core nodes are bottlenecks for high-
performance routing algorithms. In our future work, we will
further extend Theorem 2 to determine a proper number of
copies for the download phase to both effectively resist false
positives and take advantages of multiple routing paths.

V. UP-AND-DOWN ROUTING PROTOCOL

In this section, we describe the whole up-and-down rout-
ing protocol, which includes an upload routing phase and a
download routing phase. The message upload phase is based
on the nested hierarchies of MOSNs, as shown in Theorem
1. Then, the message download phase is implemented through
space-efficient Bloom-filter-based routing hints, the sizes of
which can be bounded by Theorem 2. These two phases are
respectively described in the following two subsections.

A. Upload Phase

In the previous discussions, Theorem 1 points out that
the source can upload its message to the unique root node,
through iteratively forwarding the message to the inter-meeting
relays that have higher positions (i.e., nodes with larger
labels) in the nested network hierarchy than the message

Algorithm 4 Upload Phase of Node i

Input: Routing tables of node i and its neighbors;

1: for each neighbor j do
2: if Queryj(destiantion) > 0 then
3: Upload phase terminates, download phase starts;
4: for the inter-meeting neighbor j do
5: if label(i) < label(j) then
6: Forward the message to node j;

Algorithm 5 Download Phase of Node i with c Copies

Input: Routing tables of node i and its neighbors;

1: for the inter-meeting neighbor j do
2: a = Queryi(destiantion);
3: b = Queryj(destiantion);
4: if label(i) > label(j) then
5: Hand over ⌈b× c/(a+ b)⌉ copies to node j;
6: Update c to be the number of the remaining copies;

holder. However, it is not necessary for the message to be
uploaded to the root, since there may be some shortcuts.
Therefore, the upload termination condition is that the message
is forwarded to a node, where the destination-related hint
(i.e., Query(destination)>0) is available among itself and its
neighbors, rather than achieving the root. Note that the routing
hint of the root contains all the nodes in the network. There are
also some alternative termination conditions, e.g., upload until
achieving several qualified neighbors. In the upload phase,
we use only one message copy, since it achieves competitive
delivery delay with a low forwarding cost. The insight is that
we optimize the routing performance by utilizing the prior
knowledge on the network structure. As a summary, the upload
phase is described in Algorithm 4.

Another potential problem for the upload phase is that,
multiple root nodes may exist in large MOSNs. A more
intuitive counterexample is that the two nodes with the highest
and second highest labels may not connect with each other,
due to the node mobility limitations in large-scale MOSNs.
Fortunately, there are several methods for solving the existence
of multiple root nodes, i.e., local minimums. These methods
are shown as follows. (1) A costly but effective method is to
use broadcasting for the root nodes to discover each other and
then set up virtual connections. The virtual connections can
be implemented as a pre-determined routing path. (2) Instead
of the virtual connections, the second method is the logical
link removal. If we logically disable part of the existing links,
some root nodes can be removed (i.e., they are no longer root
nodes due to the disappearance of partial links). (3) The third
method is using probabilistic uploads, where the message can
jump out of a root with a carefully designed probability. This
idea is borrowed from the simulated annealing algorithm [18].

Since the multiple roots problem is potential, but not
observed in current real traces (i.e., real trace simulations are
not available), we do not further discuss it in this paper. The
notable point is that the MOSNs naturally have nested core-
periphery structures. Therefore, the nested hierarchies will
bring much less local minimums than will the degree (or
weighted degree) hierarchies used in BubbleRap [7].



B. Download Phase

Whenever an uploading message holder finds qualified
neighbors, the upload phase switches to the download phase.
In the upload phase, we only use one message copy to save the
data forwarding cost, however, we use multiple copies in the
download routing phase. There are two reasons for the usage
of multiple copies as follows:

• The first reason is that the Bloom-filter-based routing
hints have false positives (i.e., multiple nodes claim
the destination as their descendant). Basically, the
hint storage is reduced at the cost of the routing
hint accuracy, which will cause a lower delivery
ratio. Therefore, multiple copies are used to mitigate
negative effects (in terms of data delivery ratio) from
the inaccurate routing hints. As shown in Fig. 7,
suppose node 1 wants to download a message to node
3 through two copies. Then, one copy is respectively
passed to node 2 and 4, since they both claim that they
have information on node 3 within their routing hints.
However, the truth is that node 4 has a false positive
and thus cannot deliver its copy to node 3.

• The second reason is that using multiple copies can
effectively reduce the download delay. Although the
routing hint within a relay only records the shortest
path to the destination, the opportunistic nature can
still accelerate the download phase. When the mes-
sage holder opportunistically meets a neighbor with
a secondary path (note that a DAG instead of a tree
is maintained), partial copies will be passed to that
neighbor to reduce download delay. As mentioned in
Fig. 7, a DAG is constructed when each node claims
more than one higher-level neighbor as its parents.

The node that terminates the upload phase would replicate
the message for the download phase. In the download phase,
the message copies are only allocated to relays that have
smaller labels than the message holder. Moreover, the number
of message copies allocated to the two nodes are proportional
to their estimated contact frequencies (i.e., reciprocal of the
expected delay) with the destination. This information is stored
in the routing hints and can be accessed by the query operation.
For example, if node i holds c copies, and node j contacts node
i, then the number of copies allocated to node j is

⌈ Queryj(destination)

Queryi(destination) +Queryj(destination)
× c

⌉

(4)

The insight behind this copy allocation scheme is very simple:
the node that has a lower expected shortest path delay is
allocated with more message copies. A formal description of
the download phase is provided in Algorithm 5. In the next
section, we will evaluate the up-and-down routing scheme
through extensive simulations.

VI. EVALUATION

In this section, extensive simulations are conducted to
evaluate the proposed routing protocol. After presenting the
traces and the settings, we show the algorithms and metrics
for comparison. Finally, the evaluation results are shown from
different perspectives to provide insightful conclusions.

A. Traces and Settings

In our simulations, two traces are used. One is a real trace,
the Sigcomm [16], which is one of the largest real traces (only
internal nodes employed). The details of the Sigcomm trace are
shown in Table I. The reason why we choose only one real
trace is that the network structures are similar for different
real traces. Since the real traces are too small-scale to extract
α (the power-law parameter in Theorem 2, as to set the sizes
of routing hints), we set α = 2.5 as an estimation for the
Sigcomm trace. The other trace is a synthetic trace produced
by the preferential attachment model (100 nodes with average
degree 10 in the Barabási-Albert model with α = 2.1). More
details are attached in Appendix B. In the synthetic trace,
the weight of each link follows a uniform distribution in the
interval [0, 0.1]. To guarantee connectivity, one random node
in each small component is assigned a link to the node with
the largest degree in the giant component. This synthetic trace
will bring a microcosm of large-scale MOSNs.

In our simulations, the unit of the edge weight is deter-
mined as the number of contacts per minute. We use 500
minutes as the data delivery deadline. If the destination is not
achieved before the deadline, then the data delivery is viewed
as failed, and the deadline is regarded as the delivery delay.
For the up-and-down routing protocol, we use the routing hints
with size m = 10∗d(α−1)d−2 according to Theorem 2. Here,
the constant 10 is denoted as the robustness ratio, as to observe
the influence of the false positives of the routing hints. A higher
robustness ratio means the routing hints are more accurate (and
also indicates higher storage demands), and thus are supposed
to bring better performance. The influence of the robustness
ratio on the routing performance is also observed and analyzed
in our simulations.

B. Algorithms and Metrics in Comparison

We assign the following four algorithms for comparison:
(1) Epidemic, where the nodes continuously replicate and
transmit messages to newly discovered nodes that do not
already possess a copy. Epidemic represents the minimum data
delivery delay (and the highest cost) of all routing algorithms;
(2) (Binary) Spray and Wait [8], where the data delivery is
composed of a spray phase and a wait phase; during the spray
phase, the message holders share their copies with encountered
nodes that have no copies. When a message holder has only
one copy left, it enters the wait phase, and waits for meeting
the destination; (3) (Binary) Spray and Focus, where the wait
phase in the former algorithm is replaced by a single-copy
utility routing scheme (forward the copy if the relay has a
higher contact frequency than the destination); (4) Delegation
Forwarding, which is modified to use a limited number of
copies. Instead of holding a copy for each message transmitter,
the numbers of copies allocated to the message holder and
relay are proportional to their contact frequencies with the
destination (similar to Eq. 4). In addition, the BubbleRap [7]
is not used for comparison, since it requires an additional
community information.

Three classical metrics are used to measure the quality
of the up-and-down routing, including data delivery delay,
ratio, and cost (the number of forwards when achieving the
destination). For further analyses, three additional metrics are
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Fig. 8. Simulation results of the Sigcomm trace.

proposed: the marginal delivery delay, the marginal delivery
ratio, and the marginal delivery cost. These metrics measure
the percentages of reduced delivery delay, increased delivery
ratio and cost brought by using one more copy in the download
routing phase. Through these metrics, we can determine the
appropriate number of copies to be used in our routing scheme.

C. Evaluation Results

The simulation results for the Sigcomm trace are shown in
Fig. 8. It can been seen that up-and-down routing outperforms
the other routing schemes (except for Epidemic) in the view
of both data delivery delay and ratio. In the view of delivery
cost (i.e., number of forwards), the up-and-down protocol is
also good (only larger than the Spray and Wait). Note that
the reason for a low cost if the Spray and Wait is that it
has a low delivery ratio, since all the copies are waiting for
the destination rather than being forwarded to better relays.
Figures 8(d) to 8(f) show the marginal delivery delay, ratio
and cost. Obviously, the number of copies follows the law of
diminishing returns (decreased marginal delivery delay, ratio,
and cost). We found that 4 copies are enough for the Sigcomm
trace. Figures 8(g) and 8(h) show the influence of robustness
ratio on the data delivery. When this ratio is less than 2, the
routing scheme almost fails due to the inaccurate routing hints.

Meanwhile, a robustness ratio of 10 is good enough to support
the up-and-down routing scheme. Therefore, Theorem 2 gives
out an effective estimation, in terms of the simulations. Finally,
note that the weighted degree distribution of the Sigcomm trace
is shown in Fig. 8(i).

The simulation results for the synthetic trace are presented
in Fig. 9. Since routings in this trace usually need more
than two hops, the delegation forwarding does not work,
considering that all the neighbors of the source may not
recognize the destination. In this situation, the proposed up-
and-down routing protocol performs much better than the
traditional schemes, in terms of the delivery delay and ratio
in Figures 9(a) to 9(b). The cost of the proposed protocol is
a little higher than the other schemes as a tradeoff to obtain
much better delivery delay and ratio. In the view of marginal
delivery delay and ratio, almost the same results are obtained
as the Sigcomm trace. However, the delivery costs no longer
have diminishing return for all algorithms. Finally, we also
obtain similar results on the robustness ratio (the higher ratio
the better), as shown in Figures 9(g) and 9(h).

The outstanding performance of the proposed up-and-down
protocol has been verified by the evaluation results. Based on
the network structure, the message is uploaded to the root
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Fig. 9. Simulation results of the synthetic trace.

efficiently. Based on routing hints, the message download is
also efficient. The proposed routing scheme achieves good
performance in data delivery delay, ratio, and cost, as the
tradeoff of acceptable storage usage for the routing hints.

VII. CONCLUSION

In this paper, we propose an up-and-down routing protocol,
which has an upload phase and a download phase. Firstly, we
verify that the nested core-periphery property and the top-
heavy property both exist in MOSNs. The nested network
hierarchy enables a message to be uploaded from the source to
the network core, through iteratively forwarding the message
to a relay that has a higher position in the nested network hi-
erarchy. Then, space-efficient routing hints are proposed based
on the Bloom filters, which provide guidance for the message
download. Multiple copies are used in the download routing
phase to resist inaccurate routing hints, as well as reduce the
download delay. Through using the network structure and a
few routing hints as prior information, subtle balances between
the data delivery delay, ratio, and cost are achieved by our
proposed approach. Finally, the simulation results show that
good data delivery delay and ratio are achieved with a low-
cost prior information collection process and a relatively low
forwarding cost.
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APPENDIX

A. Proof of Theorem 2

Now, let us assume that the network has a power-law
degree distribution, i.e., the fraction (denoted as Pd) of nodes
with degree d is proportional to d−α:

Pd = (α− 1)d−α where d ∈ {1, 2, 3, ...,∞} (5)

Here, α is the power-law distribution parameter that usually
satisfies α ∈ [2, 3] in real networks [19]. Another point is
that, in Section III, we have assumed the MOSNs to be
symmetric (i.e., in-degree equals out-degree), and here we use
degree to denote both in-degree and out-degree. Note that this
assumption is reasonable, since MOSNs have the top-heavy
property, which can be usually inferred by the power-law
degree distribution [5]. More materials can be found in [19].

According to Eq. 5, the fraction Wd of free ends of edges
provided by nodes with degree d is

Wd =
dPd

∫∞

1
iPidi

=
(α− 1)d1−α

(α− 1)/(α− 2)
= (α− 2)d1−α (6)

Note that the fraction of ends of edges, which are attached to
a node with d (given by Eq. 6) is (α− 2)d1−α. Assuming the
label of a node is proportional to its degree, then nd (d ≥ 2)
can be calculated by

nd = d
d−1
∑

i=2

(α− 2)i1−αni = d(α− 2)
d−1
∑

i=2

ni

iα−1
(7)

The meaning of Eq. 7 is shown as follows. (1) For each edge
of the node with a degree d, the probability of connecting to
a lower degree node with a degree i is (α − 2)i1−α. (2) The
node with a degree i brings ni elements to the routing hint of
the node with a degree d. (3) Here, the requirement of d ≥ 2
is that nodes with degree one do not need to store the routing
hint. This is because the nodes with degree one are at the
bottom of the network hierarchy.

Since the expression of nd−1 is similar to the expression
of nd in Eq. 7, we have the following equation:

nd

d(α− 2)
−

nd−1

(d− 1)(α− 2)
=

nd−1

(d− 1)α−1
(8)

Eq. 8 can be rewritten as follows:

nd =
[ d

d− 1
+

d(α− 2)

(d− 1)α−1

]

nd−1 (9)

Since α ∈ [2, 3], we have (d−1)α−1 > (d−1). Therefore,
Eq. 9 can be simplified as follows:

nd ≤
[ d

d− 1
+

d(α− 2)

d− 1

]

nd−1 =
d(α− 1)

d− 1
nd−1 (10)

Note that n2 ≤ 2, since a node with degree two has at most
two records. If we do the recursion in Eq. 10, then we get:

nd ≤ d(α− 1)d−2 (11)

Now, Eq. 11 shows the expected number of inserted elements
in the routing hint of a node with degree d.

B. The Preferential Attachment Model

In the past decades, researchers tacitly assumed compo-
nents of complex network systems (such as society and the
Internet) to be randomly wired together, which is impractical
for real networks. In recent years, an avalanche of research
has shown that many real networks can be abstracted as
scale-free network architectures [20]. The key feature of these
networks is the power-law degree distribution [19], as analyzed
in Appendix A.

Currently, the Barabási-Albert model is one of the most
acknowledged models for generating the scale-free networks
[21]. In this model, nodes are iteratively added one by one to
a growing network, and each new node connects to a suitably
chosen set of previously existing nodes. The probability that
the new node is connected to a previous node i is proportional
to node i’s degree plus a constant. This constant is used to
tune the corresponding power-law distribution parameter α.
Obviously, the existing node with a larger degree is more
intended to connect to the new nodes (the rich get richer,
and the poor get poorer), and thus a large number of edges
are connected to a few nodes with the highest degrees. This
phenomenon has been verified in the real networks [5]:

Proposition 1: Let W denote the fraction of ends of edges,
which are attached to a fraction P of the highest-degree nodes.
In scale-free networks, W and P satisfy W = P (α−2)/(α−1).

The proof is shown in [19]. Since generally α∈[2, 3] (see
[19]), α−2

α−1 is in the range of [0, 0.5], i.e., W>P . This implies
that a few network core nodes hold a large fraction of links,
which is also found as the top-heavy property in MOSNs.


