Vehicle Routing with Pickup and Delivery: A Greedy Approach

Huanyang Zheng and Jie Wu

Computer and Information Sciences, Temple University

Introduction
- Bike Sharing Systems (BSSs)
 - Bikes in different stations
- Rebalancing bikes among different stations
 - Use a vehicle to transport bikes
 - Vehicle is capacitated
 - Stations have different demands

System Model and Algorithm

Problem Formulation:
- **Objective**: minimize the total vehicle routing distances
- **Three constraints**: vehicle capacity, station demand, multiple companies

Algorithm Design
- **Starting with a TSP and trying to switch when constraints are not satisfied**

Experiments
- **Algorithm variations**:
 - Use different greedy criterions to switch the TSP
- **More starting points lead to a smaller total distance**
- **More stations usually require a larger total distance**
- **The algorithm’s run time can be controlled**

Challenges

Extension of TSP
- TSP does not guarantee our constraints (vehicle capacity, station demand, multiple companies)
- Solution: switch the TSP when a constraint is not satisfied (the switch must be efficient and effective)

Speed-up the computation
- System scale can be large since bike stations are distributed across the city
- Solution: divide the city based on geometric locations while each location corresponds to a TSP

Future Work
- Rebalancing bikes among different stations
- Use a vehicle to transport bikes
- Vehicle is capacitated
- Stations have different demands

Figure 2: Different starting point: TSP edges (black) have length 1, rewired edges (red) have length 2

Experiments

- **Algorithm variations**:
 - Use different greedy criterions to switch the TSP