Joint Optimization of Server and Network Resource Utilization in Cloud Data Centers

Biyu Zhou¹, Jie Wu², Lin Wang³, Fa Zhang¹, and Zhiyong Liu¹ ¹Institute of Computing Technology, Chinese Academy of Sciences ²Temple University ³Technische Universitat Darmstadt

- Backgrounds
- Problem
- Solutions
- Evaluation

Backgrounds

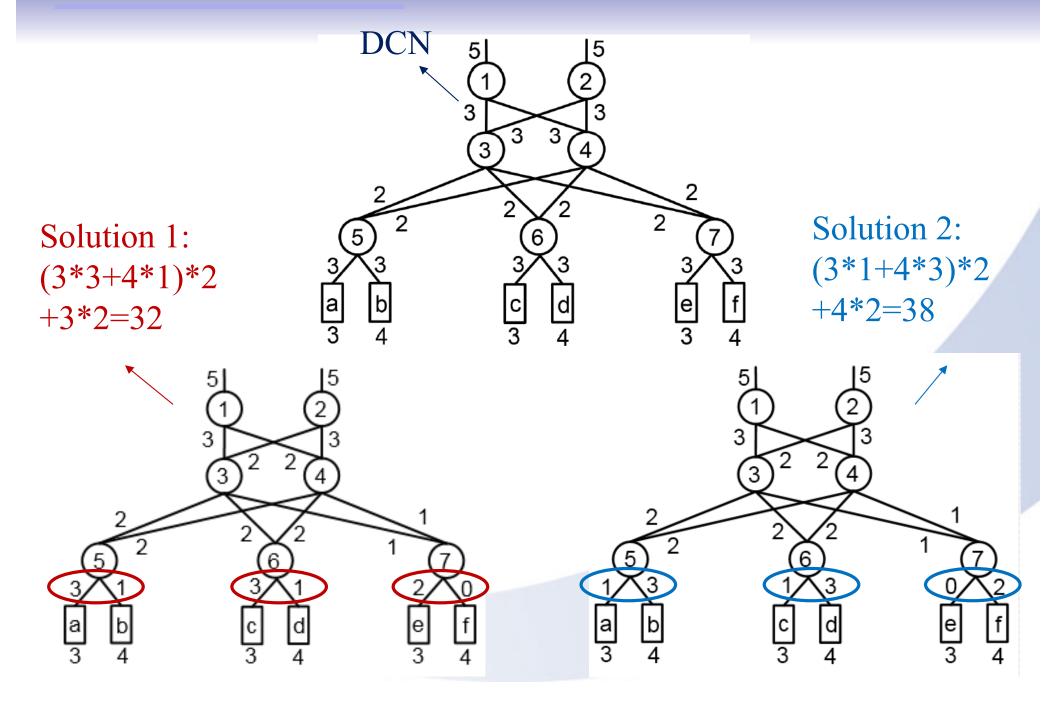
- Virtual machine placement
 - A key component of cloud resource management.
 - Improve resource utilization, reduce operational costs.
- Challenges
 - Jointly optimize the server and network resource utilization.
 - Design fast & performance-guaranteed algorithms.
- Our focus
 - Design efficient algorithms to maximize the overall resource utilization in multiple dimensions without violating resource capacity constraints.

- Background
- Problem
- Solutions
- Evaluation

Abstracting the problem

- Problem
 - Given a set of VMs, how to pack VMs into servers such that overall resource utilization is maximized while no constraints on resources are violated.
- Definition of size
 - The size of a VM is the product of the resource demands on all its resource dimensions.
 - Portray the level of load along multiple dimensions in a unified manner.
- Solving the problem is NP-hard.

- Background
- Problem
- Solutions
- Evaluation



Analysis

- Main difficulty
 - Networks are oversubscribed.
 - Bandwidth is shared among servers.
 - Server & network.
- Total resource capacity
 - The sum of the possible size of all its servers.
 - An upper bound.

Motivation solutions

Analysis

- Observation
 - An efficient solution will allocate the server that has a larger CPU capacity with a larger bandwidth capacity.

- A two-staged solution
 - Bandwidth allocation using min-cost max-flow algorithm.
 - Two-dimensional item packing.

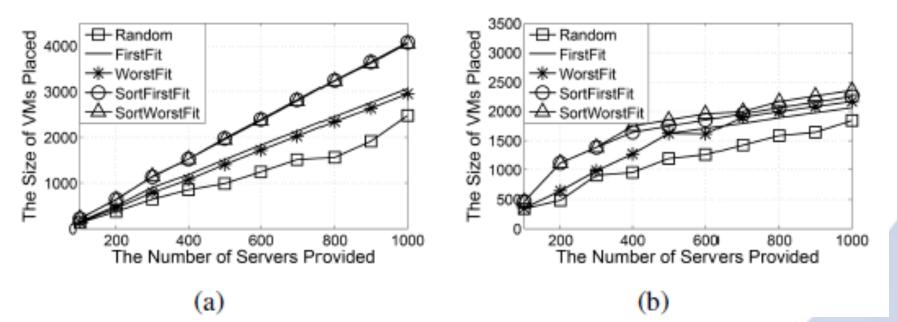
Solutions

- Offline scenario
 - For m identical servers, and an accommodating input, there exists an offline algorithm that achieves ¹/₄ approximation in linear time.
 - For an accommodating input, there exists an offline algorithm that achieves 1/4r approximation in linear time.

Solutions

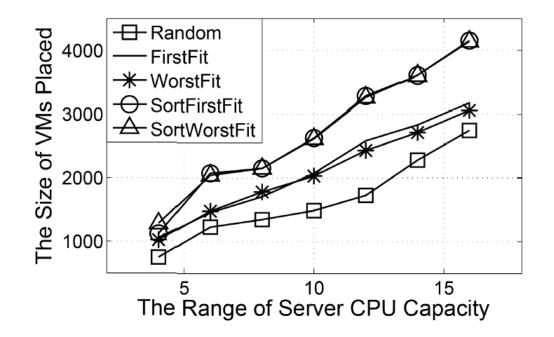
- Online scenario
 - SortFirstFit: always places the arriving VM into the server with maximum CPU capacity which has enough residual CPU capacity and bandwidth
 - SortWorstFit: always places the arriving VM into the server with maximum residual size.
 - The maximum possible bandwidth in both algorithms are computed by solving a min-cost max-flow problem.

- Background
- Problem
- Solutions
- Evaluation

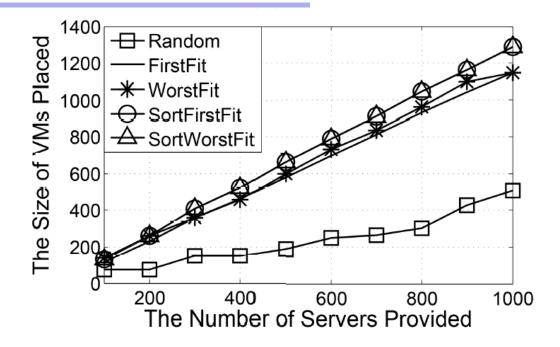


The evaluation setting

- Benchmarks
 - FirstFit (as less server as possible)
 - WorstFit (as balance as possible)
 - Random
- Metric
 - The size of VMs placed.


The impact of arriving VM sequence

- (a) our heuristics works much better than other heuristics under both the arriving VM sequence that consists of a sequence of small VMs followed by a sequence of large VMs and the arriving VM sequence that consists of a sequence of large VMs followed by a sequence of small VMs.
- (b) we can conclude that processing sorting before placement may make the placement more efficient.


The impact of hardware heterogeneity

• (a) the advantages of sorting will be more significant when the difference of resources of servers in the network are larger.

Testing with real traces

• The results in this situation verify that the performances of the five heuristics using trace-driven data sets are in line with those using the above three generated data sets.

Thanks for your attention!

