Hierarchical naming for scalable content distribution in large networks

Yaxiong Zhao, Jie Wu, **Cong Liu**, and Mingming Lu

- Motivation
 - Challenges of scalable content distribution in large networks
- Designs
 - Meta network and attribute wise networks
 - Data delivery and mobility handling
- Performance measurement
- Conclusion

- Motivation
 - Challenges of scalable content distribution in large networks
- Designs
 - Meta network and attribute wise networks
 - Data delivery and mobility handling
- Performance measurement
- Conclusion

Ever-growing content distribution

- Internet is a global media consuming platform
 - Growing rapidly and already dominate the overall media consumption if consider broader types of devices and media types
 - Computer, Smart phone, tablet, e-reader ...
 - Audio, video, gamming, e-book, data ...
- Large organizations all have own ad-hoc data distribution solutions
 - Largely based on CDN and Http transport
 - Almost have no inter-operability
 - Sharing data across providers/devices are hard
- There is a need for ubiquitous content distribution designs that work for all

Challenges in large networks

- Diversity in demands and requirements
- Uncertainty and unreliability in system
- Low manageability
- High complexity
- As a tentative proposal, we present a content naming scheme that aims at addressing these problems
 - A deployment plan
 - Feasibility analysis

Motivation

Challenges of scalable content distribution in large networks

- Designs
 - Meta network and attribute wise networks
 - Data delivery and mobility handling
- Performance measurement
- Conclusion

Attribute-value based naming

- Attribute-value vs. digital naming
 - Attribute-value pairs are universally understandable to human
 - Inter-operating with digital networking protocols is not super-efficient, but manageable
 - Ease application development with more flexibility and expressiveness
 - Some security problem could be addressed easier than digital naming
- Digital naming can be fast
 - Can be difficult to work across networks and organizations
 - Efficient but unfriendly to application development

Overall architecture

- A hierarchical structure
 - A meta network at top that manages the mapping between attributes and attribute-wise networks
 - Attribute-wise networks at bottom to handling actually query load

Use attribute-value

- Content is described by attribute-value pairs
- Indexing record based on the value of an attribute

 Use Chord/DHT to organize records
- Content owners expose their identity and address information onto an attribute-wise network
 - A content description (attribute-value pairs), owner's ID and address form a content record
 - A content record is replicated onto multiple attribute-wise networks
 - For all its defined attributes
 - Eg: [name="wcnc"][organizer="IEEE"] needs to be replciated onto the attribute wise network for "name" and "organizer"

Meta networks

- Users search for contents for certain attribute-value criteria
- It needs to know an entry point into the attributewise network
 - If there is a cached valid one, use it
 - Otherwise, query meta network to get an entry point it interested in
 - Eg: looking for [name="wcnc"][organizer="IEEE"] but has not entry points to the "name" and "organizer" attribute wise network
 - Asking Meta network to find an entry point to those 2 networks

- Motivation
 - Challenges of scalable content distribution in large networks
- Designs
 - Meta network and attribute wise networks
 - Data delivery and mobility handling
- Performance measurement
- Conclusion

Request and response

- Content is queried first to obtain the address of the content owner
- Data is requested afterwards using appropriate protocols
- Handling mobility by introducing gate keeper that recording a moving host's address

- Motivation
 - Challenges of scalable content distribution in large networks
- Designs
 - Meta network and attribute wise networks
 - Data delivery and mobility handling
- Performance measurement
- Conclusion

Feasibility

• A publicly maintained meta network

Analog to root DNS

- Many organization-owned attribute wise networks
 - Analog to Autonomous Systems' DNS servers
- Cost analysis and technical feasibility
 - Please refer to the paper

Proof of concept study

1.0

0.9

Fig. 4. The CDF of the name resolution delay.

Delay of query Throughput of content delivery

Fig. 5. The achieved throughput of all hosts.

- Motivation
 - Challenges of scalable content distribution in large networks
- Designs
 - Meta network and attribute wise networks
 - Data delivery and mobility handling
- Performance measurement
- Conclusion

Conclusion

- A novel hierarchical name resolution network, which achieves fast name resolution through name record replication and provides a simple and flexible interface to application developers
- It's feasible and highly economical
- Proof of concept performance study is presented