
NFV Middlebox Placement with Balanced Set-up Cost and
Bandwidth Consumption

Yang Chen

Temple University

yang.chen@temple.edu

Jie Wu

Temple University

jiewu@temple.edu

ABSTRACT
Network Function Virtualization (NFV) changes the way that we

implement network services, or middleboxes, from expensive hard-

wares to software functions. These software middleboxes, also

called Virtual Network Functions (VNFs), run on switch-connected

commodity servers. Efficiently placing such middleboxes is chal-

lenging because of their traffic-changing effects and dependency

relations. Private (used by one single flow) middleboxes can save

more link bandwidth resources while shared (used by multiple

flows) middleboxes cut down server resource expenses. This pa-

per formulates the resource usage trade-off between bandwidth

consumption and cost of middlebox placement as a combined cost

minimization problem. After proving the NP-hardness of our prob-

lem in general topologies, we narrow down to a specific kind of

topology: tree-structured networks. We study two kinds of con-

straints: traffic-chaining ratio and middlebox dependency relations.

With homogeneous flows, we propose optimal greedy algorithms

for the placement of a single middlebox first, and then multiple

middleboxes without order. We also introduce a dynamic program-

ming algorithm for the placement of a totally-ordered middlebox

set. A performance-guaranteed algorithm is designed to handle het-

erogeneous flows. Extensive simulations are conducted to evaluate

the performance of our proposed algorithms in various scenarios.

KEYWORDS
Network bandwidth, NFV, middleboxes, resource allocation, SDN.

ACM Reference Format:
Yang Chen and Jie Wu. 2018. NFV Middlebox Placement with Balanced

Set-up Cost and Bandwidth Consumption. In ICPP 2018: 47th International
Conference on Parallel Processing, August 13–16, 2018, Eugene, OR, USA.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3225058.3225068

1 INTRODUCTION
Network Function Virtualization (NFV) has been proposed to trans-

form the implementation of network functions from expensive hard-

wares to software middleboxes, called Virtual Network Functions

(VNFs) [9]. Software middleboxes are most commonly provisioned

in modern networks, demonstrating their increasing importance

[25]. As Software Defined Networking (SDN) emerges, so does a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00

https://doi.org/10.1145/3225058.3225068

(a) Independent middleboxes. (b) Dependent middleboxes.

(c) Multiple flows with shared middleboxes.

Figure 1: Middlebox placement with different constraints.
tendency to incorporate SDN and NFV in concerted ecosystems [8].

SDN manoeuvres through NFV traffic and allows middleboxes to

choose service locations from multiple available servers; traditional

hardwares, on the other hand, offer no such option [20].

In this paper, we study the NFV middlebox placement problem

in a SDN network with a given set of flows on a given topology.

We assume that each flow needs to go through a given set of mid-

dleboxes, with or without a particular order. In addition, when a

flow passes through a middlebox, its traffic may expand or diminish

depending on the type of middlebox (this phenomenon is called

traffic-changing effect) [16]. Multiple flows can share the same mid-

dlebox to save middlebox setup costs. The overall objective is to

minimize the cost of setting up middleboxes and the cost of total

bandwidth consumption by these flows. However, the flexibility

that SDN offers also creates new challenges for appropriate middle-

box placement because of three reasons:

(1) Traffic-changing effects of middleboxes [16]. For exam-

ple, the Bose-Chaudhuri-Hocquenghem encoder used for

satellite signaling messages adds 31% to traffic volume due

to checksum overhead [18]. The Citrix CloudBridge Wide

Area Network optimizer reduces traffic volume by up to 80%

by compressing traffic [5].

(2) Potential dependency relations among middleboxes
[17]. Some middleboxes have a serving order. For example,

a flow might go through a Middlebox Intrusion Detection

System before the proxy server [21]. An Internet Protocol

Security Decryptor must always be placed before a Network

Address Translation gateway [4].We classify the dependency

relations of a middlebox set into three categories: if all mid-

dleboxes must be placed in a specific sequence, the set is

https://doi.org/10.1145/3225058.3225068
https://doi.org/10.1145/3225058.3225068

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Yang Chen and Jie Wu

called totally-ordered; if there is no order requirement, the

set is called non-ordered; if certain middleboxes requires a

placement sequence, the set is called partially-ordered.
(3) Sharing middleboxes. Different flows requesting the same

network function can share the processing volume of a mid-

dlebox. We assume no volume limit of a middlebox.

However, most research only focuses on reducing middlebox

setup cost by sharing middleboxes without considering bandwidth

consumption. The traffic-changing effect due to the middlebox

placement may complicate the scheduling policy. Fig. 1 illustrates

the complexity of the placement problem with different constraints.

Non-order and totally-ordered middleboxes for one flow are shown

in Figs. 1(a) and 1(b), respectively, and sharing middleboxes among

multiple flows is shown in Fig. 1(c). The cylindrical nodes are

switches and the cubical nodes are middleboxes. Middleboxes are

assigned to servers (not shown in the figures) that are attached to

switches. All flows need to be served by two middleboxes:m andm′.
The traffic-changing ratios, which are the proportions of a flow’s

traffic rate before and after being processed by the middlebox, are

0.8 (diminishing traffic) and 1.3 (expanding traffic), respectively.

Their paths are pre-determined, shown in different lines.

Fig. 1(a) is the optimal placement without order. Our insight is

to place middleboxes that diminish traffic near the source of the

flow while middleboxes that expand traffic are stationed close to

the destination. Fig. 1(b) shows the optimal result with the totally-

ordered constraint:m′must be served beforem. Since the product of

these two ratios is more than 1, we place the middleboxes as late as

possible. Fig. 1(c) illustrates a more complicated case where multiple

flows may share middleboxes. Flow f2 monopolizes onem while f1
and f3 share onem. All these flows share onem′. This happenswhen
f2 traffic is so large that the reduced cost on bandwidth consumption

before the sharedm is more than the cost of setting up a privatem.

Sharing a middlebox lowers setup costs, but may be non-optimal

for some flows in terms of traffic reduction. Therefore, there is

a delicate trade-off between sharing middleboxes and placing a

private middlebox for traffic reduction.

This paper is the first to study a middlebox placement opti-

mization problem for multiple flows with constraints of middlebox

traffic-changing ratios and their dependency relations.We prove the

NP-hardness of optimally placing even a single type of middlebox

in a general network topology. We then focus on tree-structured

networks. For homogeneous flows with the same bandwidth, we

propose three optimal algorithms for three different cases, includ-

ing placing a single middlebox (as a basic solution), a non-ordered

middlebox set, and a totally-ordered middlebox set. For heteroge-

neous flowswith different bandwidths, we introduce a performance-

guaranteed algorithm. Extensive simulations show the efficiency

and effectiveness of our algorithms.

Our main contributions are summarized as follows:

• We prove the NP-hardness of middlebox placement in gen-

eral topologies, even for placing a single type of middlebox.

As a result, we narrow down to tree-structured topologies.

• We propose three optimal algorithms for homogeneous flows

in tree-structured topologies under three different cases: (1)

a single middlebox, (2) a non-ordered middlebox set, and (3)

a totally-ordered middlebox set.

• Aperformance-guaranteed algorithm is introduced to handle

heterogeneous flows for a non-ordered middlebox set.

• Extensive simulations are conducted to evaluate the effi-

ciency of our proposed algorithms.

The remainder of this paper is organized as follows. Section II

surveys related works. Section III describes the model and formu-

lates the problem. Section IV introduces our algorithms for placing

a single middlebox with homogeneous flows. In Section V, we han-

dle cases with a middlebox set with homogeneous flows. Section VI

studies heterogeneous flows. Section VII includes the experiments.

Finally, Section VIII concludes the paper.

2 RELATEDWORK
NFV frameworks have recently drawn a lot of attention, especially

in the area of middlebox placement problem. We give a brief re-

view of state-of-the-art works. For placing a single middlebox for

all flows, Casado et al. propose a placement model and present a

heuristic algorithm to solve the placement problem [2]. Sang et al. in

[23] study the joint placement and allocation of a single middlebox,

where flows can be split and served by several middlebox instances.

They propose several performance-guaranteed algorithms to mini-

mize the number of middlebox instances. However, neither study

considers the middlebox traffic-changing effects. Moreover, there

is always a middlebox set of various types that need to be placed.

For placing multiple types of middleboxes, most research on

middlebox placement focus on placing a totally-ordered set as a

service chain. Mehraghdam et al. in [17] propose a context-free

language to formalize the chaining of middleboxes and describe the

middlebox resource allocation problem as a mixed integer quadrat-

ically constrained program. Rami et al. locate middleboxes in a

way that minimizes both new middlebox setup costs and the dis-

tance cost between middleboxes and flows’ paths. They provide

near optimal approximation algorithms to guarantee a placement

with a theoretically proven performance [6]. Both [13] and [14]

aim to maximize the number of requests for each service chain.

Kuo et al. in [13] propose a systematic way to tune the proper link

consumption and the middlebox setup costs in the joint problem

of middlebox placement and path selection. Li et al. present the

design and implementation of NFV-RT, a system that dynamically

provisions resources in an NFV environment to provide timing

guarantees so that the assigned flows meet their deadlines [14].

However, none of these works consider the traffic-changing effects.

Ma et al. in [16] are the first to take the traffic-changing effects

into consideration. It targets load balancing instead of middlebox

setting-up costs. It proposes a dynamic programming based algo-

rithm to place a totally-ordered set, an optimal greedy solution for

the middlebox placement of a non-ordered set, and proves the NP-

hardness of placing a partially-ordered set. However, this work only

processes a single flow and always builds new, private middleboxes

without sharing with other flows, which excessively increases the

setup costs of middleboxes. Sharing middleboxes among multiple

flows makes the placement more challenging. In this paper, we con-

sider not only the traffic-changing effects, but also the dependency

relations in the placement of a single middlebox or various types

of middleboxes for multiple flows.

NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 1: Symbols and definitions.

Symbols Definitions

V ,E, F ,M the set of vertices, edges, flows, and middleboxes

v, f ,m a vertex, a flow, and a middlebox

evv ′ ,hvf edge from v to v ′, hop count from f ’s source to v

rf ,pf ,Mf ,w (f) f ’s traffic rate, path, middlebox set, and cost

cm , λm m’s setup cost, traffic-changing ratio

bef ,w (bef) e’s bandwidth consumption, cost

xvm , fvm indicator functions ofm on v , f usingm on v

3 MODEL AND PROBLEM FORMULATION
In this section, we first propose our network model and then formu-

late our problem. We also prove the NP-hardness of placing even

a single type of middlebox in general topologies. Thus, we nar-

row the middlebox placement down to a specific kind of topology:

tree-structured networks.

3.1 Network Model
We first present our network model as a directed graph,G = (V ,E),
whereV = {v} is a set of vertices (i.e., switches) and E = {e} is a set
of directed edges (i.e., links). We use v to denote a single vertex and

evv ′ as the edge from vertex v to vertex v ′. M = {m} is the set of
middleboxes. Each middleboxm ∈ M has a constant setup cost cm
(including the cost of the later server resource occupation) and a

pre-defined traffic-changing ratio λm ≥ 0 that serves as the ratio of

a flow’s traffic rate before and after being processed bym. We use

an indicator function, xvm , to represent a middleboxm placed on

v . We express that a middleboxm′ depends onm by usingm →m′,
meaningm must process flows beforem′ [16].

We are given a set of unsplittable flows F = { f } because flow
splitting may not be feasible for applications that are sensitive to

TCP packet ordering (e.g. video applications). Additionally, split

flows can be treated as multiple unsplittable flows. We use f to de-

note a single flow that has an initial traffic rate of rf , and a required
middlebox set ofMf . Its path pf is an ordered set of edges from the

source of f to its destination. All flows’ paths are predetermined

and valid. We use bef andw (bef) to denote f ’s traffic rate and cost

on e . Then the total bandwidth cost of f is w (f) =
∑
e ∈pf w (bef).

hvf is the hop count from f ’s source to a vertex v , measured by

the number of edges. The total hop count of f is |pf |. We introduce

another indicator function, fvm , to express that the flow f uses

the middleboxm placed on the vertex v . In other words,m at the

vertex v is effective to f .
We assume each packet in a flow is served by a type of middlebox

only once, even if there are several middleboxes of the same type

along its path. This is because being served by any middlebox

will add an extra transmission delay, which should be avoided

as much as possible. The traffic-changing effects of middleboxes

are accumulative. We can generate the relationship between f ’s
initial traffic rate rf and its current rate on e along its path pf as:

bef = rf
∏

m λm ,∀v, e ∈ pf ,v ≺ e, and fvm = 1. The notation

v ≺ e means v appears before e in pf . Different weight values
corresponding to the importance of various middleboxes can also

be attached to the traffic-changing ratios. However, such weight

factors are not necessary since we can alternatively scale the cost

of setting up new instances cm for simplicity.

For a better understanding, we illustrate the notations using the

example in Fig. 1(b). There are three vertices along the flow’s path,

denoted (from left to right) asv,v ′, andv ′′. The flow f has an initial
traffic rate rf = 1. Then, the path is expressed as pf = {evv ′ , ev ′v ′′ }.
We have hvf = 0 and |pf | = hv ′′f = 2. There are two types of

middleboxes,m andm′, with traffic-changing ratios as λm = 0.8 and

λm′ = 1.3, respectively. Their setup costs are cm = 0.4 and cm′ =
0.8, respectively. Sincem′ must be served beforem, f ’s middlebox

set is simply represented bym′ →m. From the placement plan in

the example, we have xv ′′m = 1 and xv ′′m′ = 1, and the x values of

the rest are all 0. Since f uses both of the middleboxes, fv ′′m = 1

and fv ′′m′ = 1. After passingm andm′, f ’s bandwidth on the last

edge e is expressed as b
ev′v′′
f = rf × λm × λm′ . f ’s total bandwidth

cost isw (f) =
∑
e ∈pf w (bef) = w (b

evv′
f) +w (b

ev′v′′
f).

3.2 Problem Formulation
Based on the above network model, we formulate the middlebox

placement as an optimization problem for minimizing the cost of

link and server resource usage as follows:

min

∑
m∈M

∑
v ∈V

cmxvm +
∑
f ∈F

w (f) (1)

s.t. w (f) =
∑
e ∈pf

w (bef) ∀f ∈ F (2)

bef = rf
∏
m

λm ∀v, e ∈ pf ,v ≺ e, fvm = 1 (3)∑
v ∈pf

fvm = 1 ∀f ∈ F ,m ∈ Mf (4)

xvm = {0, 1}, fvm = {0, 1} ∀v ∈ V ,m ∈ M (5)

Eq. (1) is our objective: minimizing the total costs ofmiddlebox setup

and bandwidth consumption. The cost of middlebox setup is the

sum of setting up middleboxes. The cost of bandwidth consumption

is the sum of each flow’s bandwidth cost. A flow’s bandwidth cost

equals the sum of its bandwidth cost on each link along its path,

shown in Eq. (2). Eq. (3) states the relationship between a flow f ’s
initial traffic rate rf and the bandwidth on e along its path pf . Eq.
(4) requires that each flow f ∈ F be served by all the required

middleboxes in the setMf once and only once. Eq. (5) shows that

xvm and fvm can only be assigned the values 0 and 1.

From Eq. (3), we can see that the effect of each middlebox on each

link is multiplicative and cumulative along the flow’s path, which

is difficult to handle. However, conversion from a non-linear to a

linear function can make the problem more tractable. We observe

that the effect is log-linear so we apply the translog function as

the link bandwidth cost function, i.e. w (bef) = log(bef). Addition-

ally, the logarithmic function has promising characteristics such as

monotonic as an increasing function [7]. Logarithmic cost functions

like the ones used by the Cisco EIGRP [3], and OSPF [19] protocols,

are common. For the middleboxes, log λ < 0, ∀λ ∈ (0, 1) implies

that the traffic-diminishing middleboxes decrease the bandwidth

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Yang Chen and Jie Wu

consumption cost; log λ = 0 if λ = 1 implies that they do not influ-

ence the flow’s bandwidth; log λ > 1, ∀λ ∈ (1,∞) implies that the

traffic-expanding middleboxes increase the bandwidth consump-

tion cost. The cost of f ∈ F on the edge e ∈ pf can be calculated as

follows for allm satisfying:

w (bef) = log(b
e
f) = log(rf

∏
fvm=1

λm) = log(rf)+
∑

fvm=1

log(λm) ∀v ≺ e (6)

Since log rf and log λm are frequently used, we simplify the

notations by replacing with rf and λm . Then, the cost of each flow

is calculated as:

w (f) =
∑
e ∈pf

w (bef) = |pf |rf +
∑

fvm=1

(|pf | − hvf)λm ∀v ≺ e (7)

Multiplication calculation is changed into summation by the selec-

tion of our link bandwidth cost function in Eq. (6), which is a linear

function of log λm . From Eq. (7), we find that the effects of middle-

boxes on different edges are independent of flows and middleboxes,

and that they only relate to the hop count hvf between f ’s source
and the effective middlebox. This simplifies our analysis. Note that

we can also add a weight factor to each part in order to show the

different importance of each middlebox.

3.3 NP-hardness Proof
In this subsection, we show that in general network topologies, it

is NP-hard to place middleboxes to minimize the cost.

Theorem 3.1. Middlebox placement for multiple flows is NP-hard
in a general topology, even when we place only one type of middleboxes
without any traffic-changing effects.

Proof: We construct a polynomial reduction from the set-cover

problem. Assume we have the network (V ,E) and a set of flows

F = { f } that each flow only needs to be processed by one middlebox

m, i.e. Mf = {m},∀f ∈ F . Middleboxes with no traffic-changing

effects mean that λf = 1 and log λf = 0,∀f ∈ F . This is the
special case of themiddlebox placement problemwith no bandwidth

consumption cost that is shown in Eq. (1). Our objective is reduced

to minimizing the cost of setting up middleboxes. Since there is only

one type of middlebox, the total setup cost is only related to the

number of middleboxes. Our problem is simplified to placing the

smallest number of middleboxesm to ensure that each flow passes

through at least onem. This problem is equivalent to the set-cover

problem. The elements are all the flows F = { f }. A middleboxm on

a vertexv in the network can cover a set of flows whose path passes

v , i.e. Sv = { f |v ∈ pf }. We need to find the minimum number of

subsets whose union equals the universe set. Since the set cover

problem is NP-hard, our placement problem is also NP-hard. ■

3.4 Tree Topologies
Since our problem is NP-hard in a general topology, we narrow

it to tree-structured networks, such as the one shown in Fig. 2(a).

(The vertices are numbered by Breadth-First Search (BFS).) Tree-

structured topologies are extremely common in streaming services,

Content Delivery Networks (CDNs) [24], and tree-based tiered

topologies like Fat-tree [1] or BCube [11] in data centers. More gen-

erally, data centers always use symmetric, hierarchical topologies

to balance traffic load [15]. Because of the bi-directional links, the

(a) Complete tree. (b) Hierarchical data center.

Figure 2: Tree-structured topologies in data centers.

topology can be abstracted as two connected, complete trees, as

shown in Fig. 2(b). The up and down links separate a hierarchical

physical data center topology into two virtual tree-structured net-

works, whose two parts are separately shown in Figs. 3 (a) and (b).

We call this kind of structure a shared-root-double-tree topology.

The connection point of the two triangles is the highest level node

(core switch), and the two side nodes are the same. Each of the

triangles is also a complete tree topology, as shown in Fig. 2(a). The

source and destination of each flow are two side nodes.

Here we introduce two classic structure definitions: “fork” and

“join” [26]. With flows from the left-most side to the right-most

side, Fig. 2(b) can be treated as a precedence graph with the depen-

dence of flows’ paths. Flows’ transmission process in the left-most

complete tree is the procedure of “join” because all the flows will

merge at its connection point. For example, all flows passing v2 or
v3 will meet at the nodev1. After merging atv1, flows start to sepa-
rate consistently until they reach their destinations; this process is

called a “fork”. Since we have already noted that traffic-diminishing

middleboxes should be placed near flows’ sources, we place them in

the left triangle. Similarly, we place traffic-expanding middleboxes

in the right triangle. In the physical network view, either traffic-

diminishing or traffic-expanding middleboxes can be placed in one

node, but traffic-diminishing middleboxes process flows from their

sources to the root and traffic-expanding middleboxes process flows

from the root to their destinations.

4 PLACEMENT OF A SINGLE MIDDLEBOX
WITH HOMOGENEOUS FLOWS

In this section, we study the simple case of placing a single type of

middlebox for all flows in a tree-structured topology. We treat all

flows with the same source and destination as a single flow with

a traffic rate of the sum of their traffic rates. First, we discuss the

conditions based on two parts of a shared-root-double-tree topology

and middlebox traffic-changing effects. Then we propose optimal

solutions of two non-trivial conditions.

4.1 Conditions on Traffic-changing Effects
If the middleboxm is unable to change the traffic rate (i.e. λ = 1), the

bandwidth consumption cost is a constant number |pf |rf ,∀f ∈ F ,
because log λf = 0. Since all middleboxes of the same type have an

identical unit price, our objective is equivalent to minimizing the

number ofm. In tree topologies, we only need to place middleboxes

as closely to the root as possible because the root is the “join” point

of all flows. If there are multiple types of such middleboxes, one

NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption ICPP 2018, August 13–16, 2018, Eugene, OR, USA

H

h

v

(a) Left Triangle.

H
h

v

(b) Right Triangle.

Figure 3: Illustration of variables H and h in two triangles.

optimal solution with the minimum cost is to sort the unit prices of

the middleboxes and then sequentially place each type of middlebox

in decreasing order by unit price. In the following subsections, we

only study the placement of traffic-changing middleboxes.

Based on flow directions and middlebox traffic-changing effects,

we classify our problem into four cases: (1) If all the flows move

from the root to the leaf nodes (right triangle in Fig. 3(b)), it is trivial

to placem when λm < 1. The optimal placement is to place the

middleboxes as closely to the root as possible since both bandwidth

consumption and middlebox setup cost are the lowest. (2) If all

flows move from the leaf nodes to the root (left triangle in Fig. 3(a))

and λm > 1, the optimal placement is the same as case (1). (3) In

the subsection 4.2, we look at the placement of middleboxes when

all flows move from the leaf nodes to the root and λm < 1. (4) If all

flows move from the root to the leaf nodes and λm > 1, the analysis

of this scenario is shown in the subsection 4.3.

4.2 Placing a Traffic-diminishing Middlebox
We propose Left Greedy Algorithm (LGA), shown in Alg. 1, to solve

the problem of case (1) in a level-by-level manner. The insight of

LGA is: placing a middlebox at the root of a subtree can cover all

flows passing through it. For each internal nodev , we select a better
placement with the lower cost between placing one middlebox on

v and using the placements under the subtrees of its two children.

Since tree topologies are level-structured, we start with the leaf

nodes and move in a bottom-up manner to check all levels until the

root. We denote the minimum total cost of placing all middleboxes

under a node v , shown in the grey area in Fig. 3(a), as LGA(v).
In lines 1-2, the cost of placing one middlebox at each leaf node

v is cm + |pf |λm + |pf |rf . In lines 3-4, for each internal node v ,
suppose H = |pf | and h = hvf , which is illustrated in Fig. 3(a).

We have only two choices: (1) place onem at v with the total cost

cm+2
H−h×(H×rf +(H−h)×λm) or (2) combine the two placements

under the subtrees of its left and right children v ′ and v ′′, whose
sum of costs is LGA(v ′) + LGA(v ′′). The cost of the first choice is
generated as: setting up a middleboxm costs cm ; the bandwidth

consumption cost is equal to the bandwidth cost of each floww (f)
times the number of flows because all flows are homogeneous with

the same traffic rate. We havew (f) = H ×rf + (H −h)×λm from Eq.

(7). The number of flows in the subtree of v is equal to the number

of leaf nodes, which is 2
H−h

. The worst time complexity of Alg.

1 is O (|V |) because we go through all nodes (|V | in total) and the

cost calculation of each node needs a constant time.

Algorithm 1 Left Greedy Algorithm (LGA)

In: Sets of vertices V , edges E, flows F and middleboxesm
Out: The placement plan;

1: for each leaf node v do
2: Cost of placing onem at node v is LGA(v) = cm +H × λm +

H × rf
3: for each non-leaf node v with depth h from bottom up do
4: Select the placement plan with LGA(v) =min{cm + 2

H−h ×

(H × rf + (H − h) × λm), LGA(v ′) + LGA(v ′′)}
5: return The placement plan of the root.

A multiple “covered” situation such as Fig. 1(c) happens when

traffic is so heavily unbalanced that adding extra private middle-

boxes to some flows decreases the cost of the bandwidth consump-

tion more than setting a new middlebox. LGA is not optimal for

an arbitrary traffic distribution in tree topologies. However, the

following theorems state that LGA is optimal in some special cases.

Theorem 4.1. LGA is optimal in perfect trees for placing a single
kind of traffic-diminishing middlebox with homogeneous flows.

Proof: All levels in the perfect tree are full. If all flows have

the same traffic rates and are generated from leaf nodes that are

forwarded to the root, the optimal placement plan is obviously sym-

metric. Specifically, placements of any internal node’s two subtrees

are identical. Middleboxes should be placed at all the vertices in

the same depth. All flows can be served with the minimum cost

of the whole-level placement. Therefore, there is no need to place

two middleboxes along any flow’s path. LGA goes through all the

possible plans of the whole-level placement situations and selects

the one with the lowest cost, which is optimal. ■

Theorem 4.2. LGA is optimal in complete tree for placing a single
kind of traffic-diminishing middlebox with homogeneous flows.

Proof: Every level of a complete tree, possibly except the last level,

is completely filled. All leaf nodes are as far left as possible. We first

prove that each flow passes only one middleboxm in the optimal

solution, even in the most unbalanced traffic. The most unbalanced

traffic happens to a complete tree topology with homogeneous

flows when: the left and right subtrees of the root are perfect binary

trees, but one subtree has a depth that is one level deeper than the

other. The numbers of flows in two such subtrees are the least equal

because the difference between their numbers of leaf nodes is the

largest. From the view of the root vertex, we have two choices: (1) If

we do not place onem on the root, the placement plan combines the

placements of its two subtrees. Theorem 4.1 proves that the optimal

placement for a perfect tree places middleboxes at all the vertices

with the same depth. It ensures that the twice-covered situation

does not exist. (2) If we place onem on the root, we prove the twice-

covered impossibility by contradiction. As long as one flow passes

twom, all flows in the same subtree should also pass twom on the

same level in an optimal solution due to the symmetry of the perfect

tree. Then,m on the root is only used by the other subtree. We can

movem at the root one level lower in the subtree, which is able

to reduce the bandwidth consumption cost without changing the

server’s resource cost. Thus, placingm on the root is not optimal,

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Yang Chen and Jie Wu

Algorithm 2 Right Greedy Algorithm (RGA)

In: Sets of vertices V , edges E, flows F and middleboxesm
Out: The placement plan;

1: Placing onem at root v costs RGA(v) = cm + 2
H (Hλm +Hrf);

2: for each non-root node v with depth h from bottom up do
3: Select the placement plan with RGA(v) =min{cm + 2

h ×

(Hrf + (H − h)λm), RGA(v ′) + RGA(v ′′)};
4: return The placement plan of the root.

which contradicts our assumption. Then, there is no need to place

two middleboxes along any flow’s path. LGA is optimal because it

checks all the possible combinations of placement plans and selects

the one with the minimum cost. ■

4.3 Placing a Traffic-expanding Middlebox
A traffic-expanding middlebox should be placed in a right triangle,

which is illustrated in Fig. 3(b). All flows are from the root to each

leaf node.We propose an algorithm, Right Greedy Algorithm (RGA),

shown in Alg. 2. We denote the minimum cost of placing all middle-

boxes above a node v as RGA(v). In line 1, the cost of placing one

middlebox at root v is RGA(v) = cm + 2
H × (H × λm +H × rf). In

lines 2-3, for each internal node v , suppose H = |pf | and h = hvf ,
which is illustrated in Fig. 3(b). We have only two choices: (1) place

onem on v with the total cost cm + 2
h × (H × rf + (H − h) × λm)

or (2) combine the placements of the subtrees of its left and right

children v ′ and v ′′„ whose sum of costs is RGA(v ′)) + RGA(v ′′).
The reasons are similar to the last subsection. Setting up a middle-

boxm costs cm ; the bandwidth consumption cost is equal to the

number of flows times the cost of each flow. The cost of each flow

is H × rf + (H −h) × λm from Eq. (7). The number of flows is equal

to the number of leaf nodes in the subtree of v , which is 2
h
shown

in the grey area in Fig. 3(b). We select a better placement with the

lower cost each time. The time complexity of Alg. 2 is also O (|V |).

5 PLACEMENT OF A MIDDLEBOX SET WITH
HOMOGENEOUS FLOWS

Based on the dependency relations among multiple types of mid-

dleboxes, we classify them into three situations: the non-ordered

middlebox set, the totally-ordered middlebox set, and the partially

dependent middlebox set.

5.1 Non-ordered Middlebox Set Placement
All types of middleboxes are independent in a non-ordered set. For

placing a non-ordered middlebox set, we propose an algorithm,

called Combined Local Greedy Algorithm (CLGA), which is ex-

tended from our LGA and RGA algorithms. CLGA applies LGA for

all traffic-diminishing middleboxes in the left triangle and RGA for

all traffic-expanding middleboxes in the right triangle, and com-

bines all the placements. We have:

Theorem 5.1. CLGA is optimal for placing a non-ordered middle-
box set in a complete tree topology.

Proof: We can place each type of middlebox optimally by apply-

ing LGA and RGA. Because of the infinite server capacities, each

Table 2: An illustration of calculating OPT (i, j) values.

Placed middlebox number j
OPT (i, j) ∅ m1 m1 →m2 m1 →m2 →m3

i = 1 5.00/5.00 4.12/4.12 5.62/5.62 5.59/5.42

i = 2 4.00/4.00 4.19/4.19 3.98/3.98 4.89/4.89

i = 3 1.00/1.00 0.23/0.23 2.09/2.09 0.89/∞

i = 4 2.00/2.00 1.56/1.56 2.83/2.83 2.63/∞

i = 5 2.00/2.00 1.56/1.56 2.83/2.83 2.63/∞

type of middlebox can be placed in its optimal location indepen-

dently. The placement with the lowest cost is the integration of

each middlebox’s optimal placement. All middleboxes are placed

optimally, which indicates CLGA’s optimality. ■

5.2 Totally-ordered Middlebox Set Placement
Flows are likely to pass through several middleboxes in a particular

order, known as the service chain [13]. A service chain is a totally-

ordered middlebox set. We propose a Dynamic Programming (DP)

algorithm to achieve the optimal placement plan with a finite server

capacity (infinite as a special case). Each vertex is numbered se-

quentially by BFS and each middlebox is numbered in service chain

order. Suppose n = |V |. OPT(i, j) denotes the minimum cost of the

placement in tree with the root vi when we have placed the first

j middleboxes for all paths from leaf nodes to vi . If the capacity
is not enough to place j middleboxes, the cost is ∞. The optimal

substructure gives a recursive formula in the left triangle:

OPT(i, j) =




min

0≤k≤j
{OPT(2i,k) + OPT(2i + 1,k)

+
∑

k<l ≤j
cl + ⌊log i⌋

∑
k<l ≤j

λl }, 1 ≤ i ≤ ⌊ n
2
⌋ .

∑
0≤l ≤j

cl + ⌊log i⌋rf , ⌊ n
2
⌋ < i ≤ n.

∞ if not enough node capacity.

0 otherwise.

(8)

After placing in the left triangle, we place the remaining middle-

boxes in the totally-ordered set in the right triangle in the reverse

order of the service chain. The nodes are also numbered by BFS.

The recursive formula for the placement in the right triangle is

shown in Eq. (9). Little difference exists between Eq. (8) and Eq. (9).

For simplicity, we only discuss Eq. (8) in the following.

OPT(i, j) =




min

0≤k≤j
{OPT(2i,k) + OPT(2i + 1,k) +

∑
k<l ≤j

cl

+(⌊logn⌋ − ⌊log i⌋)
∑

k<l ≤j
λl } 1 ≤ i ≤ ⌊ n

2
⌋ .

∑
0≤l ≤j

cl + ⌊log i⌋rf , ⌊ n
2
⌋ < i ≤ n.

∞ if not enough node capacity.

0 otherwise.

(9)

The insights of the dynamic programming methods are: for each

leaf node vi , as ⌊
n
2
⌋ ≤ i ≤ n, OPT(i, j) is simply the cost of placing

the first j middleboxes on the vertexvi . For an internal nodevi , the

NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption ICPP 2018, August 13–16, 2018, Eugene, OR, USA

optimal placement of the tree with the root vi is selected from all

its subtrees’ possible placements. If we place the first j middleboxes,

we can place the first k ∈ [0, j] middleboxes in its subtrees and

place the following j − k middleboxes on vi .
To better understand the DP algorithm, we use the topology in

Fig. 2(a) to illustrate the placement procedure in the left triangle.

There are 5 switches on 3 levels. There are 3 homogeneous flows

with the same initial traffic rate r = 1, whose sources are the leaf

switches and whose destinations are v1. Suppose we have the same

service chain for all flows with 3 middleboxesm1,m2, andm3 for

each flow. λ1 = 0.8, λ2 = 1.5, and λ3 = 0.5. c1 = 0.2, c2 = 0.1,

and c3 = 0.8. The dependency constraint is m1 → m2 → m3.

Tab. 2 lists the value of OPT (i, j). The first value in each cell is a

case with an infinite server capacity; the second is one with a finite

capacity. In the second case, the first level node can hold 1middlebox

and other level nodes are able to hold 2 middleboxes. OPT (4, 0) =
⌊log 4⌋×rf = 2. Similarly, we can calculateOPT (3, 0) andOPT (5, 0).
OPT (2, 0) = OPT (4, 0) + OPT (5, 0) and OPT (1, 0) = OPT (2, 0) +
OPT (3, 0). Without the constraint of servers’ capacity, OPT(2, 1)

equals the smaller cost between OPT(4, 0) +OPT(5, 0) + c1 + log λ1
and OPT(4, 1)+OPT(5, 1)+0+0. The cost of the optimal placement

is OPT(1, 3). According to the result of the DP algorithm, the optimal

placement placesm1 for each leaf node and placesm2 andm3 on

v1. In the second case with the servers’ capacity constraint, since

v2, v4, and v5 can hold at most 2 middleboxes, OPT(2, 1) equals

the smaller cost between OPT(4, 0) + OPT(5, 0) + c1 + log λ1 and
OPT(4, 1) + OPT(5, 1) + 0 + 0. However, OPT(3, 3) is ∞ due to

inefficient node capacity. The optimal placement of the second case

is to placem1 for each leaf node andm2 andm3 on v1.

Theorem 5.2. The DP algorithm is optimal for placing the same
chain of middleboxes for homogeneous flows in complete topologies
with or without server capacity constraint.

Proof: Theorem 4.2 states that each flow is “covered” only once,

when we need to place a single type of middlebox. As a result,

if both of the subtrees of vi have placed the first q middleboxes,

we do not need to place these middleboxes again. It breaks the

complex problem down into a collection of simpler sub-problems.

The detailed proof is omitted due to the optimality of the dynamic

programming method. ■
In the infinity server capacity case, the time complexity of the DP

is O (|V | |M |3). We separate the chain into two parts to be placed in

two triangles, which have |M | possibilities. The dynamic program-

ming table has |V | rows and |M |columns. It takes up toO (|M |) time

to calculate each table entry. Suppose the largest server capacity is

c . In the limited server capacity case, the dynamic programming

table at most has |V | rows and c columns, and it takes up to O (c)
time to calculate each table entry. If c ≥ |M |, its time complexity is

O (|V | |M |3); Otherwise, its time complexity is O (c2 |V | |M |).

5.3 Partially-ordered Middlebox Set Placement
Ma et al. [16] prove that placing a partially dependent middlebox

set with the minimum cost is NP-hard even for a single flow. Thus,

we propose a heuristic solution to transform a partially-ordered

middlebox set into a totally-ordered one. Simply speaking, the

transformation treats the middleboxes with dependencies as a sin-

gle middlebox whose traffic-changing ratio is the product of all

Algorithm 3 Group Flows by Initial Bandwidths (GFIB)

In: V ,E, F andM ;

Out: The placement plan;

1: for i = 1 to ⌊log
2

max rf
min rf

⌋ + 1 do
2: Find the i-th group of flows that satisfy:

{ f ∈ F |2i−1 ×min rf ≤ rf < 2
i ×min rf }.

3: For flows in the i-th group, approximate all of their initial

traffic rates to be 2
i−1 ×min rf (convert to homogeneity).

4: Call CLGA to placeM for all flows in the i-th group.

5: return The placement plan in all flow groups.

their ratios. If there are two middleboxes dependent on the same

middlebox, the order of the two is in the non-increasing order

of traffic-changing ratios. For multiple dependency relations, we

generate a topological order with non-increasing ratios. We sort

ratios of the new middlebox set in a non-increasing order leading

to a totally-ordered set. We use the dynamic programming method

discussed in subsection 5.2 to achieve an efficient placement.

For the transformation part, we provide an example. We have

4 middleboxes m1,m2,m3, and m4 for each flow. λ1 = 0.8, λ2 =
1.5, λ3 = 0.5, and λ4 = 0.8. The dependency constraints arem1 →

m3 andm1 →m4. Sincem1 is dependent onm3 andm4, and λ3 < λ4,
the order of these three ism1 → m3 → m4. They serve as a new

middlebox with a traffic-changing ratio of 0.32, which is less than

λ2 = 1.5. The final transformation result ism1 →m3 →m4 →m2.

6 MIDDLEBOX PLACEMENTWITH
HETEROGENEOUS FLOWS

The last two sections study homogeneous flows. This section ex-

plores middlebox placement under the flows’ initial traffic rate

heterogeneity. We only discuss the placement of a non-ordered

middlebox setM in details; its optimal solution, CLGA, is discussed

in Section 5.1. For placing a single middlebox, the method is similar

except for calling LGA instead of CLGA.

The main idea for handling heterogeneity is to group flows ac-

cording to their initial traffic rate, i.e., flows with similar initial

rates are grouped together. In each flow group, initial rates are

approximated to be the same. Then, CLGA algorithm places the

middleboxes in this group. The subtle design is the group criterion

in line 1 of Alg. 3. ⌊.⌋ is the round down operator. Let min rf and

max rf be the minimum and maximum flow initial traffic rate in

F , respectively. The i-th flow group consists of flows with initial

rate from 2
i−1 × min rf to 2

i × min rf , i.e., flows are grouped ex-

ponentially with respect to their rates in line 2. Note that each

flow belongs to exactly one flow group. In line 3, the traffic rates

of flows in the i-th group are approximated to their lower bound,

2
i−1 × min rf . Flows in the i-th group are approximated to have

identical initial rates that can be converted in the flows’ homo-

geneity case. Consequently, CLGA algorithm is called to place the

required middlebox in line 4. Finally, the placement plans in all flow

groups are returned together in line 5.

Note that the time complexity of Alg. 3 is max{O (|V | log |V |),

O (|V |(⌊log
2

max rf
min rf

⌋ + 1))}. This is because the group mechanism

in line 2 takes O (|V | log |V |) for all groups by sorting all flows’

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Yang Chen and Jie Wu

Table 3: Middlebox settings.

Middlebox typesm m1 m2 m3 m4

Traffic-changing ratio λm 0.7 0.8 1.1 1.2

Setup cost cm 0.4 0.6 0.2 0.8

initial rates (O (|V |) = O (|F |)). We have determined that the time

complexity of LGA is O (|V |). Line 3 only needs a constant time for

each group. Line 4 costsO (|V |(⌊log
2

max rf
min rf

⌋ + 1)) for all groups. If

a group does not include a flow, it is ignored.

Theorem 6.1. Alg. 3 guarantees an approximation ratio of
⌊log

2

max rf
min rf

⌋ + 1 to the optimal algorithm.

Proof: Let GFIB and OPT denote the costs of setting up middle-

boxes and bandwidth consumption taken by Alg. 3 and the opti-

mal algorithm, respectively. Let GFIBi denote the cost of placing

the middleboxes in the i-th flow group of GFIB. By definition, we

have GFIB =
∑
i GFIBi . Let OPTi denote the cost of the optimal

algorithm for only flows in the i-th group. Since OPTi does not

ensure that all flows will be served by the required middleboxes,

OPTi ≤ OPT. We claim that GFIBi ≤ OPTi . This is because CLGA

algorithm is optimal. Since Alg. 3 has at most ⌊log
2

max rf
min rf

⌋ + 1

groups, we have:

GFIB =
∑
i
GFIBi ≤

∑
i
OPTi ≤

∑
i
OPT

≤ (⌊log
2

max rf

min rf
⌋ + 1) × OPT (10)

The proof completes. ■
The key insight of Theorem 6.1 is that flows are divided into a lim-

ited number of groups. Flows in the same group have similar initial

bandwidths, and thus can be resolved by CLGA algorithm . Theorem

6.1 can be further improved by incorporating the flows’ initial traffic

rate distribution, which enlarges its range of application. For exam-

ple, ifdi is exponentially distributed, then ⌊log2
maxdi
mindi

⌋+1 becomes

a constant. To better understand Alg. 3, we propose a concrete ex-

ample. For all given flows f ∈ F , min rf = 1 and max rf = 64. Then,

we divide all flows into ⌊log
2

max rf
min rf

⌋+1 = ⌊log
2

64

1
⌋+1 = 7 groups.

If there is one flow f with rf = 10, it belongs to the ⌊log
2

10

1
⌋+1 = 4

group. The approximation ratio of Alg. 3 is 7.

7 EXPERIMENTAL EVALUATION
7.1 Settings
Our experiments are divided into four parts to evaluate the four

proposed algorithms: LGA, CLGA, DP, and GFIB.We do simulations

in a perfect five-layer binary tree with 31 switches for LGA and

GFIB. All flows’ sources are leaf nodes and all destinations are the

root. The simulations for CLGA and DP are in a shared-root-double-

tree topology, as shown in Fig. 2(b). The shared-root-double-tree

is symmetric so that each side is a perfect five-layer binary tree

with 31 switches in total. We adopt the flow size distribution of

Facebook datacenters, which is collected in 10-minute packet traces

of three different node types: a Web-server rack, a single cache

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

LGA
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

1

2

3

4

5

6

M
id

dl
eb

ox
 s

et
-u

p
co

st

LGA
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 4: Single middlebox under bandwidth homogeneity.

follower and a Hadoop node [22]. More than 80% flows are less

than 6 Mbps. As a result, the traffic rate ranges from 1 to 6 Mbps

with a stride of 1 Mbps in this paper. The sources of all flows are the

leaf nodes and their destinations are the root. We assume each link

is bidirectional and has enough bandwidth to hold all flows, which

eliminates congestion and ensures that the routing of all flows is

successful. This is because routing failure is not the concern in this

paper. The selections of the parameters are based on [10].

For most cases, the capacities of all servers are infinite since

the numbers of middleboxes are relatively small compared to the

servers’ volumes. When we test the influence of server capacity,

the capacity constraint is set to 2 for each server. We use two

performance metrics, the cost of middlebox placement and server’s

utilization, for benchmark comparisons. The cost of middlebox

placement is measured as the value of our objective function in Eq.

(1). We also evaluate the server’s utilization by using the cost of

setting up new middleboxes as the metric.

The setting is in accordance with our previous discussion. For

homogeneous flows, we change the variability of the initial band-

width. We test the totally-ordered cases with and without the node

capacity constraint. For heterogeneous flows, the initial bandwidth

of each flow is generated randomly. Internet Engineering Task Force

(IETF) non-exhaustively list 10 middlebox types and show the ser-

vice chain length is usually small (3 to 5) [12]. As a result, we adopt

from [16] a single type of middlebox with a traffic-diminishing ratio

of 0.7 and a setup cost of 0.4, and the set of multiple types of mid-

dleboxes with a traffic-diminishing ratio of 0.7, 0.8, 1.1, and 1.2 and

setup costs 0.4, 0.6, 0.2 and 0.8. For anything but a totally-ordered

set, we assume the dependency relation is 0.8→ 1.1→ 0.7→ 1.2.

The middlebox settings are listed in Tab. 3.

7.2 Comparison Algorithms
There are few existing works that study middlebox placement

with traffic-changing middleboxes, and we include two benchmark

schemes in our simulations:

(1) Ma et al. propose NOSP for the non-ordered case and TOSP

for the totally-ordered case in [16]. NOSP sorts the middleboxes

based on their traffic-changing ratios; it applies traffic-diminishing

middleboxes near the flow’s source and traffic-expanding middle-

boxes near the flow’s destination. TOSP is a dynamic programming

method.Since NOSP and TOSP are for single flows, we assume they

NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption ICPP 2018, August 13–16, 2018, Eugene, OR, USA

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

CLGA
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

5

10

15

20

25

30

M
id

dl
eb

ox
 s

et
-u

p
co

st

CLGA
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 5: Non-ordered middlebox set.

only handle flows one at a time. For each, we select one flow and

run the algorithms until all flows have been selected.

(2) Random-fit randomly places middleboxes on random nodes

on the paths until all flows are “covered”. The middleboxes are

sorted by their traffic-changing ratios.

7.3 Evaluation for Homogeneous Flows
We start with homogeneous flows. The independent variable in

x-axis is the unified bandwidth for all flows. First, we evaluate a

single type of middlebox placement using LGA in Fig. 4. All curves

in Fig. 4(a) are increasing because heavier traffic consumes more

bandwidths. LGA achieves the lowest cost value, and on average,

it costs about 20.3% less than NOSP and 35.1% less than Random-

fit. In the analysis in Section IV, we state that LGA is optimal

when placing a single type of middlebox for homogeneous flows

in complete tree topologies. In terms of middlebox setup, the cost

of NOSP is a constant because it places a required middlebox in

the source of each flow. If there are 16 leaf nodes, NOSP needs 16

middleboxes, which costs 16 × 0.4 = 6.4. This is the largest number

of middleboxes needed to ensure that all flows are “covered”. Hence,

the middlebox setup cost of NOSP is the largest. The middlebox

setup of our algorithm is the smallest because LGA considers not

only bandwidth consumption, but also middlebox setup cost.

Second, we evaluate a slightly more complicated case of inde-

pendent middleboxes using CLGA in Fig. 5. As described in the last

subsection, all flows need to be served by all middleboxes in the

non-ordered middlebox set {0.7, 0.8, 1.1, 1.2}. Because of the infinite

server capacity and the independence of the middleboxes, we apply

LGA to each type of middlebox and the final optimal solution is

the combination of the optimal placement of each middlebox. As a

result, CLGA performs best in both total cost and middlebox setup

cost. The superiority of CLGA is more obvious in Fig. 4 than that of

LDA. This is because our algorithms perform better when the setup

cost is relatively large compared to NOSP, which only considers

the bandwidth consumption. The advantages of LGA and CLGA lie

in not only bandwidth consumption, but also in middlebox setup

cost. The performance of the Random-fit algorithm is not smooth

enough. When the traffic load is heavy, the total cost of Random-fit

is 27.0% more than that of CLDA.

Next, we show the placement of a totally-ordered middlebox set

using DP with and without the node capacity constraint in Fig. 6

and Fig. 7. In both cases, with the desired optimality property of

Table 4: Different dependencies with rf = 3 Mbps.

Totally-ordered middleboxes Total cost Set-up cost
0.8→ 1.1→ 0.7→ 1.2 20.9 10.4

1.1→ 0.7→ 0.8→ 1.2 23.7 12.0

0.7→ 1.2→ 1.1→ 0.8 22.8 9.6

0.7→ 0.8→ 1.1→ 1.2 11.9 4.4

1.2→ 1.1→ 0.8→ 0.7 24.7 10.2

1 2 3 4 5 6
Traffic rate (Mbps)

10

20

30

40

50

To
ta

l c
os

t v
al

ue

DP
TOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

8

10

12

14

16

18

20

M
id

dl
eb

ox
 s

et
-u

p
co

st

DP
TOSP
Random-fit

(b) Middlebox setup cost.

Figure 6: Totally-ordered set without node capacity.

the dynamic programming, our proposed DP has the lowest cost in

both metrics. The cost is a little larger than that of the non-ordered

middlebox set. This is because the dependency relations make it

more difficult to place a single type of middlebox at its optimal

location. We also find that when the traffic becomes larger, the

Random-fit algorithm performs much worse than it does with the

independent set. The dependency relations limit the placement

more, so the random placement needs more middleboxes. Random-

fit performs a little better in the second case. The limitation of the

server capacity eliminates the location possibilities of Random-fit’s

middleboxes. As a result, the performance difference among these

three methods is decreased, especially when the traffic rate is large.

We also test the first case with no node capacity constraint under

different dependency relationships, as shown in Table I. The table

illustrates that the dependency truly affects both of the metrics.

The set with the lowest cost is 0.7→ 0.8→ 1.1→ 1.2. In the case

of the non-ordered middlebox set, the optimal placement sequence

is also 0.7 → 0.8 → 1.1 → 1.2, which verifies the correctness of

our DP. The largest total cost belongs to the sequence 1.2→ 1.1→

0.8 → 0.7, but its middlebox setup cost is not the largest. This is

because our objective is related not only to middlebox setup cost,

but also to bandwidth consumption.

7.4 Evaluation for Heterogeneous Flows
We show the case under flow bandwidth heterogeneity with GFIB

in Fig. 8. The bandwidths of the flows are generated randomly with

an average of 1 to 6 Mbps and a stride of 1 Mbps. Each time, we gen-

erate 300 flows. The results show that GFIB consistently achieves

the smallest total cost and smallest middlebox setup cost. On aver-

age, the total cost is saved about 36.9% and 34.0% compared to the

NOSP and Random-fit algorithms, respectively. This is because the

dependency relations make it more difficult to place a single type

of middlebox at its optimal location. Additionally, the middlebox

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Yang Chen and Jie Wu

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

DP
TOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

5

10

15

20

25

M
id

dl
eb

ox
 s

et
-u

p
co

st

DP
TOSP
Random-fit

(b) Middlebox setup cost.

Figure 7: Totally-ordered middlebox set with node capacity.

1 2 3 4 5 6
Traffic rate (Mbps)

0

20

40

60

80

To
ta

l c
os

t v
al

ue

GFIB
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

M
id

dl
eb

ox
 s

et
-u

p
co

st

GFIB
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 8: Non-ordered set under bandwidth heterogeneity.

setup cost of GFIB is much lower than that of the other two due

to it addressing the middlebox-sharing issue. Though it is not op-

timal, GFIB is still worth applying to the middlebox placement. It

demonstrates the efficiency and effectiveness of our algorithms.

In summary, the experiments verify the correctness and effi-

ciency of our proposed algorithms in the complete tree topologies

and in the shared-root-double-tree topology. They also show that

only considering bandwidth consumption is too one-sided because

sharing middleboxes among flows saves a lot of server resources.

Taking both the bandwidth consumption and the server resource

usage into consideration, it is worth mentioning that our LGA

and CLGA can be used as efficient, greedy algorithms with signifi-

cant insights in all kinds of tree topologies and traffic distributions.

Additionally, our shared-root-double-tree can be embedded in tree-

structured data centers using the up-and-down process. The sim-

ulation results show that our greedy algorithms and the dynamic

programming algorithm empirically perform excellent in trees.

8 CONCLUSION
We study the middlebox placement with the constraints, including

traffic-changing effects and dependency relations of middleboxes.

Private middleboxes save more flow bandwidth while shared mid-

dleboxes cut down the middlebox setup cost. We first formulate the

dilemma as a cost minimization problem. We prove it is NP-hard

to optimally place even a single middlebox in general topologies

and then narrow down to tree-structured networks. With homo-

geneous flows, we propose three optimal algorithms for several

special cases: a single middlebox, a non-ordered middlebox set,

and a totally-ordered middlebox set. With heterogeneous flows, we

introduce a performance-guaranteed algorithm. Extensive simula-

tions show efficiency and effectiveness of our algorithms.

REFERENCES
[1] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center

network architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (Aug. 2008), 63–74.
[2] Casado, M., Koponen, T., Ramanathan, R., and Shenker, S. Virtualizing the

network forwarding plane. In Proceedings of the Workshop on Programmable
Routers for Extensible Services of Tomorrow (New York, NY, USA, 2010), PRESTO

’10, ACM, pp. 8:1–8:6.

[3] Cisco. Cisco eigrp protocol.

[4] Cisco. Cisco: Nat order of operation.

[5] Citrix. Citrix cloudbridge product overview, 2015.

[6] Cohen, R., Lewin-Eytan, L., Naor, J. S., and Raz, D. Near optimal placement of

virtual network functions. In 2015 IEEE Conference on Computer Communications
(INFOCOM) (April 2015), pp. 1346–1354.

[7] Dixit, S. IP over WDM: building the next-generation optical Internet. John Wiley

& Sons, 2004.

[8] Fayazbakhsh, S., Sekar, V., Yu, M., and Mogul, J. Flowtags: Enforcing network-

wide policies in the presence of dynamic middlebox actions. In Proceedings of the
Second ACM SIGCOMMWorkshop on Hot Topics in Software Defined Networking
(New York, NY, USA, 2013), HotSDN ’13, ACM, pp. 19–24.

[9] Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid,

J., Das, S., and Akella, A. Opennf: Enabling innovation in network function

control. In Proceedings of the 2014 ACM Conference on SIGCOMM (New York, NY,

USA, 2014), SIGCOMM ’14, ACM, pp. 163–174.

[10] Guerzoni, R. Network Functions Virtualisation: An Introduction, Benefits, Enablers,
Challenges and Call for Action, Introductory white paper. 2012 SDN and OpenFlow

World Congress, 2012.

[11] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu,

S. Bcube: A high performance, server-centric network architecture for modular

data centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (New York, NY, USA, 2009), SIGCOMM ’09, ACM, pp. 63–74.

[12] Inc, C. S. Service function chaining (sfc) architecture, 2015.

[13] Kuo, T., Liou, B., Lin, K., and Tsai, M. Deploying chains of virtual network

functions: On the relation between link and server usage. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Communications
(April 2016), pp. 1–9.

[14] Li, Y., Phan, L. T. X., and Loo, B. T. Network functions virtualization with soft

real-time guarantees. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications (April 2016), pp. 1–9.

[15] Liu, Y., Muppala, J., Veeraraghavan, M., Lin, D., and Hamdi, M. Data center

networks: Topologies, architectures and fault-tolerance characteristics. Springer

Science & Business Media.

[16] Ma, W., Sandoval, O., Beltran, J., Pan, D., and Pissinou, N. Traffic aware

placement of interdependent nfv middleboxes. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications (May 2017), pp. 1–9.

[17] Mehraghdam, S., Keller, M., and Karl, H. Specifying and placing chains of

virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet) (Oct 2014), pp. 7–13.

[18] Miller, M., Vucetic, B., and Berry, L. Satellite communications: mobile and
fixed services. Springer Science & Business Media, 1993.

[19] Moy, J. Ospf version 2.

[20] P. Zave, P., Ferreira, R., Zou, X., Morimoto, M., and Rexford, J. Dynamic

service chaining with dysco. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017), SIGCOMM

’17, ACM, pp. 57–70.

[21] Quinn, P., and Nadeau, T. Service function chaining problem statement. Active
Internet-Draft, IETF Secretariat, Internet-Draft draft-ietf- sfcproblem-statement-

05, 2014, 2014.

[22] Roy, A., Zeng, H., Bagga, J., Porter, G., and Snoeren, A. C. Inside the social

network’s (datacenter) network. In SIGCOMM 2015.
[23] Sang, Y., Ji, B., Gupta, G., Du, X., and Ye, L. Provably efficient algorithms for

joint placement and allocation of virtual network functions. IEEE INFOCOM 2017
- IEEE Conference on Computer Communications (2017), 1–9.

[24] Seyyedi, S., andAkbari, B. Hybrid cdn-p2p architectures for live video streaming:

Comparative study of connected and unconnected meshes. In 2011 International
Symposium on Computer Networks and Distributed Systems (CNDS) (Feb 2011),
pp. 175–180.

[25] Sherry, J., and Ratnasamy, S. A survey of enterprise middlebox deployments.

Tech. Rep. UCB/EECS-2012-24, EECS Department, University of California, Berke-

ley, Feb 2012.

[26] Wu, J. Distributed system design. CRC press, 1999.

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Problem Formulation
	3.1 Network Model
	3.2 Problem Formulation
	3.3 NP-hardness Proof
	3.4 Tree Topologies

	4 Placement of a Single Middlebox with Homogeneous Flows
	4.1 Conditions on Traffic-changing Effects
	4.2 Placing a Traffic-diminishing Middlebox
	4.3 Placing a Traffic-expanding Middlebox

	5 Placement of a Middlebox Set with Homogeneous Flows
	5.1 Non-ordered Middlebox Set Placement
	5.2 Totally-ordered Middlebox Set Placement
	5.3 Partially-ordered Middlebox Set Placement

	6 Middlebox Placement with Heterogeneous Flows
	7 Experimental Evaluation
	7.1 Settings
	7.2 Comparison Algorithms
	7.3 Evaluation for Homogeneous Flows
	7.4 Evaluation for Heterogeneous Flows

	8 Conclusion
	References

