
Link-Based Fine Granularity Flow Migration 
in SDNs to Reduce Packet Loss 

Yang Chen and Jie Wu
Center for Networked Computing

Temple University, USA



Road Map

¡ Introduction
¡ Model
¡ Link-based Flow Migration
¡ Simulation
¡ Conclusion



1. Introduction
l Flow migration in SDN: Upon traffic changes
l Challenges: Asynchronous rule updates -> congestion -> deadlocks
l Current update methods: path-based

l In this paper, we migrate flows in a finer granularity of links.

Initial State Final State

Unit link capacity
Unit flow demand
Flows are unsplittable

The initial path of f1
overlaps the final path 
of f2, and vice versa



Example (Cont’d)
l Link-based update scheme:
Time Step (TS): the time to assign and release one link resource 

l Example:
1. TS1: f1 frees e12 and occupies e14 ; f2 frees e43 and occupies e41

2. TS2: f1 frees e23 and occupies e43 ; f2 frees e32 and occupies e12

Initial State Final StateNetwork Update

TS 1TS 2 1

2

2

1

3

3

4

4

2

2
3

3



2. Model
l Model

A network with capacitated links and a set of flows with demands

l Objective
Migrate flows from initial to final paths consistently

l Migration constraint:
Consistent: no congestion and packet loss

l Update network in the granularity of link:
Single link request and assignment in each time step

l Key observation
Link-based scheduling causes less deadlocks



Complexity of the problem

Theorem 1: Checking feasibility of a consistent migration is NP-hard.

Proof ideas: using a special update case
Link’s capacity: 2
Flows’ demands: f1+ f2+ …+ fn=2; fn+1=1
Reduction from the partition problem: whether f1, f2,…,fn can be

partitioned into two sets with the same sum of demands.

Initial State Final State

Partition
∑ "#$ = 1

1. Move one set down
2. Move fn+1 up
3. Move another set down



Concepts

Flow-link relationship scheme

l Resource Dependency Graph (RDG)
1. flows & links -> nodes
2. link’ requests & assignments -> directed edges 

l Deadlock: all links impossible to satisfy any request inside it

l Stuck State: remaining capacities unable to satisfy any request

l Knot: a set where each node only can reach all nodes in the set

f e f e
request assign



An illustrating example
Demand:
f1=2, others=1

Capacity:
e4 =1,others=2

Two deadlocks:
1. {e1, f1, e2, f2}
2. {e3, f4, e4, f5}
A knot: {e1, f1, e2, f2}Final StateInitial State

Stuck RDG



3. LInk-based Flow MIGration (LifMig)
l Algorithm 1: LifMig
l While migration not finished:
1. Construct RDG in the current time step;
2. Remaining resource allocation using Algorithm 2;
3. Deadlock detection;
4. Detected-> resolve by spare paths (ISPA’17) ;
5. Still stuck-> rate limiting flows;

l Algorithm 2: Remaining Resource Allocation
1. For each link with remaining capacity:
2. Find flows with demand less than the remaining capacity;
3. Assign to flows in order of benefit (demand ×	#link’s waiting

requests);
4. Update RDG;



An illustrating example

Demand: f1=2, others=1
Capacity: e4=1, esd =3, others=2

1. Move f -> stuck state
2. Move f1 to esd (spare path)
3. Move f2,f3,f4,f5

4. Move f1

Final StateInitial State Stuck State



Deadlock Detection in RDG
Theorem 2: A cycle in the RDG is a necessary condition for deadlocks.

Observation:
RDG with no cycles -> use the topological order to update flows

A cycle is
necessarily a deadlock.



Deadlock Detection in RDG
Theorem 3: In a stuck RDG, a knot is a sufficient condition for 
the existence of a deadlock.

Proof:
no assignment to out-knot nodes in stuck RDG

-> release resources only by intra-knot flows
-> intra-knot flows also wait intra-knot link resources

A knot is
sufficiently a deadlock.

A knot is not
necessarily a deadlock.

knot & deadlock deadlock & not knot



Theorem 4: In a stuck RDG with unit demands for all flows, a knot is 
a necessary and sufficient condition for the existence of a deadlock. 

Proof ideas:
1. Sufficiency by Theorem 3
2. Necessity: using contradiction

If no knots,
-> a path from any requesting flow to the occupying flow exists

-> not stuck
-> violate assumption

Deadlock Detection in RDG



4. Simulation

l Two comparison algorithms:
1. Dionysus: migrate flows in a topological order and opportunistically rates 

limit flows as zero for resolving deadlocks (SIGCOMM’14)

2. NUSL: a path-based consistent update strategy and solve deadlocks by
spare paths (ISPA’17)

l Network topologies

WAN network Fat-tree network



Settings and Measurements
l Settings

1. WAN topology (link capacity: 1 Gbps)

2. Fat-tree topology (link capacity: 1 Gbps )

l Measurement
1. Traffic loss ratio

the ratio of lost packets against all packets

2. Spare resource usage
bandwidth resource as spare paths

3. Update time
the number of time steps during the update

Traffic load 0.3 0.4 0.5 0.6 0.7 0.8
Flow number 1023 1548 1899 2302 2637 3110

Traffic load 0.3 0.4 0.5 0.6 0.7 0.8

Flow number 3608 4139 5302 6327 7122 8423



Simulation Results
Performance in the WAN topology

Performance in the Fat-tree topology

l LifMig always has the least traffic loss
l LifMig uses fewer spare resources than NUSL
l LifMig takes about 17% (WAN) and 25% (Fat-tree) more steps than NUSL

0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load Ratio

0

100

200

300

400

U
pd

at
e 

tim
e

Dionysus
NUSL
LifMig

0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load Ratio

0

20

40

60

80

100

Sp
ar

e 
R

es
ou

rc
e 

U
sa

ge

Dionysus
NUSL
LifMig

0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load Ratio

0

5

10

15

20

Tr
af

fic
 lo

ss
 ra

tio
(%

)

Dionysus
NUSL
LifMig

0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load Ratio

40

60

80

100

120

140

160

U
pd

at
e 

tim
e

Dionysus
NUSL
LifMig

0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load Ratio

0

10

20

30

40

50

60

Sp
ar

e 
R

es
ou

rc
e 

U
sa

ge

Dionysus
NUSL
LifMig

0.3 0.4 0.5 0.6 0.7 0.8
Traffic Load Ratio

0

5

10

15

20

Tr
af

fic
 lo

ss
 ra

tio
(%

)

Dionysus
NUSL
LifMig



5. Conclusion:

l A finer network update granularity: links
l Key observation:

¡ Link-based scheduling causes less deadlocks
l NP-hardness:

¡ Check the update feasibility
l Efficient network update scheme
l Deadlock existence conditions



Thank you!

Q & A


