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Abstract—Routing for Delay Tolerant Networks (DTNs) are 
challengeable for the continuously varied network 
environment. Most of existing DTN routing algorithms mainly 
focus on metrics such as delay, hop count and bandwidth, etc. 
Green communication is a new focus with the goal of saving 
energy by optimizing network performance and ultimately 
protecting the natural climate. In this paper, we present an 
Energy-efficient Routing and Rate Allocation (ERRA) scheme 
based on Q-learning that can optimize the energy efficiency 
with the constraints of congestion, buffer and delay. ERRA 
solves the routing and rate allocation together with reinforce 
leaning, and then make decisions on relay selection and rate 
schedule. ERRA explores the possible strategies, and then 
exploits the knowledge obtained to adapt its relay and schedule 
strategies. ERRA achieves the desired overall objective by 
considering the stochastic non-cooperative game under on-line 
multi-commodity routing situations. The simulation results 
show that ERRA achieves good energy efficiency and delivery 
ratio within the delay bound. 
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I.  INTRODUCTION  
Delay Tolerant networks enable opportunistic 

intermittent communication when mobile nodes are 
connected only intermittently. The DTN topology is 
dynamic, since the network lacks continuous connectivity 
and may be partitioned at any instant. The uncertainty of 
network environment in DTNs is a result of the mobility, 
limit wireless radio range, sparsity of mobile nodes, energy 
resources, etc. [1]. Considering intermittent communications 
from end-to-end paths, routing in DTN takes a “carry and 
forward” approach [2] that store and carry the data locally, 
then eventually delivering it either to the destination or to a 
relay deemed to meet the destination sooner.  

The existing DTN routing protocols mainly focus on the 
schemes to increase the likelihood of finding opportunistic 
paths. But, it is difficult to model the DTNs and their 
possible connections in realistic network situations. The 
methods of replicate data packets can improve the 
possibility of opportunistic connections, but it also brings 
burden for storage and bandwidth resources. In order to 
perform efficient routing in DTN, nodes need to predict the 

varied network environment and wisely allocate network 
resources. Existing routing schemes mainly utilize metrics 
such as delay, hop count and bandwidth, in traffic data 
delivery. In previous related work, energy efficiency is not 
the main concern in DTNs. Nowadays, green ICT 
(Information and communication technology) is focused for 
reported high carbon emissions each year. We present an 
energy-efficient routing and rate allocation (ERRA) 
algorithm, which is designed to explicitly optimize the 
energy efficiency with constraints of congestion, buffer and 
delay bound. The main contributions of this paper include: 

• ERRA can carry and intelligently “pull” traffic data 
toward the optimal direction with rate allocation by 
predicting the network environment with reinforce 
learning of the distributed network systems.  

• ERRA achieves energy-efficient routing paths with 
the constraints on congestion, buffer and delay 
bound.  

• ERRA uses multi-agent Q-learning approach for 
on-line multi-commodity routing situations and 
provides the optimal routing and rate scheduling for 
each communication pair by Nash equilibrium 
strategy.  

Section II presents the related work. Section III presents 
some definitions and models. We present details of ERRA in 
Section IV. Section V is simulation results. Section VI 
concludes this paper. 

II. BACKGROUND AND RELATED WORK 
The existing routing schemes in DTNs can be classified 

into two categories that are based on replication and 
forwarding, respectively.  

Replication schemes are to replicate copies of a packet in 
the hope that it will succeed in reaching the destination. The 
schemes are commonly used to maximize the probability of 
a packet being successfully transferred. The kinds of routing 
schemes differ in the replication models and ways to cut 
down the replication overhead. Epidemic routing protocol [3] 
uses a naive flooding method, but it wastes resources and 
degrades the network performance. Spray and Wait routing 
scheme [4] replicates the packet by bounding the number of 
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replicas, but it is feasible with large amounts of local storage 
and enough bandwidth. There are some routing schemes that 
limit the packet replication with the consideration of storage 
constraints [5,6]. RAPID [7] is an intentional DTN routing 
protocol, which treats routing as a resource allocation 
problem and decides on packet replication according to per-
packet utilities. Replication schemes increase the 
opportunistic communication probability with the tradeoff 
of big burden on network resources like available storage 
and link bandwidth.   

Forwarding schemes maintain at most one copy of a 
packet in the network during routing process. The 
forwarding based routing schemes forward the packet 
toward the direction of optimal routing metrics. Jain et al [8] 
proposed a modified Dijkstra algorithm based on a time-
dependent Graph. Hay et al [9] proposed a deterministic 
DTN routing and scheduling when the contact times 
between nodes are known in advance or can be predicted. 
Dvir et al [10] proposed a dynamic backpressure routing in 
DTNs. Recently, intelligent algorithms are utilized in DTN 
routing. Ahmed et al [11] proposed a Bayesian classifier 
based DTN routing framework to infer the optimized 
routing. Huang et al [12] proposed a fuzzy logic based 
routing in DTNs, which is exploited to select the close-by 
intermediate node on the path to the destination. 

Recently, green communication and computing have 
been proposed as a solution to addressing the growing cost 
and environmental impact of telecommunications, in which 
energy efficient schemes provide positive solutions. Sanctis 
et al [13] discuss several techniques on energy efficient 
wireless networks towards green communications and 
outline challenges and open issues.  

III. PRELIMINARIES 
We assume that: each node gets knowledge of its 

locations and has specific traveling trajectory. There are 
some static access points are deployed in DTN network that 
help to make connections and disseminate some network 
routing information.   

A. Energy Consumption for Communications 
As in usual network communication, each node can be in 

one of the three working states: listening, send and receive 
data. ERRA is helped to choose route and rate for 
transmissions at the beginning of each frame. If no events 
occur on current node, it can tune into sleep state to save 
energy.   

The energy consumption of DTN nodes include energy 
consumed for transmitting Et, receiving Er and listening El. 
Here, we omit the energy consumption of sleep state. The 
energy consumption can be calculated as Formula (1), 
where ee is the energy consumed by transceivers per second, 
and ea is the energy consumed in the transmitter RF 
amplifier per second; ep is the energy consumed for 
processing in the receivers, and el is the energy consumed 
for listing to the radio environment. el equals ee. Those 

parameters are determined by the design characteristics of 
transceivers. R is the transmission range; n is the power 
index of the channel path loss. Tt is the time for sending data. 
Tr is the time for receiving. Tl is the listening time. T is the 
time length of a cycle.    

 
  
                                                                                             

(1) 
 

B. Rate and buffer 
We assume communication time is divided into 

continuous equal frames, which can be divided into 
continuous equal slots. Each node has the same frame 
structure and chooses transmit rate according to channel 
congestion and energy efficiency. The maximum rate of 
node u can be determined from Formula (2). In the formula, 
C is the channel capacity. W is the bandwidth and P is 
transmission power; g is the channel gain, and N0 is the 
noise power spectrum density; and F is the gap to ergodic 
channel capacity.  

                                                                                        
                                                                                         (2) 
 
In which, T is the time of a frame. Tc is the opportunistic 

contacting time of two nodes in a frame, where Tc is related 
with contacting topology changes and rate constraints. It is 
obvious that Tc/T is proportional to the schedule slot 
numbers.  

The sending and receiving rate on node u can be 
formulated as: 

                                                                                         (3) 
 
In which, (Tt +Tr)/T is the active fraction of slot allocation 

on current node for sending and receiving data. There is: Tt 
+Tr = Tc. We use �t and �r to represent the slot allocated 
fraction for sending and receiving data, respectively.  

Considering a half-duplex network interface card for 
node-to-node communications, there is:  

                                                                                          (4) 
 
Considering the congestions, for slot �, it should satisfy 

Formula (5), where u’ is in the interference node set I(u) of 
node u: 

                                                                                         (5) 
 

According to interference model, a node receiving data 
from a neighbor should be spatially separated from any 
other transmitter by at least a distance D, i.e., interference 
range. If distance between u and u’ is less than D, then the 
two nodes interfere with the transmission.  

Each node has a buffer to store and carry the packets that 
have not been transmitted. The buffer has limited maximal 
size and can contain packets with its available space, e.g., 
node u has available buffer size as buf(u). Let occ(u, �) be 
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the number of bytes stored at node u at slot � under current 
routing strategies.  

For all u, �, there is:   
                           occ(u, �)�buf(u)                                     (6) 

C. Delay Bound 
A delay bound T_max is given to limit the maximal 

delivery time for traffic packets. For each node u of the 
route path with the hth hop in the network, the distance of 
itself from the destination dst can be measured by Euclid 
distance as: d=||u-dst||. Note that dst can be an average node 
or an access point.   

So an approximate average delivery velocity v needed is 
calculated as:  

 
                                                                                         (7) 

 
    In which, slack is the time left for routing, which is equal 
to the remaining part of delay bound minus cumulative time 
on each hop for the packet.  

D. Problem formulation 
The problem to find feasible routing and rate allocation 

with maximal delay bound can be formulated as: 
• Objective: The objective is to minimize the total 

routing and rate allocation cost on the route path, i.e., 
to minimize the cost of cumulative hops h on the 
route path as shown in Formula (9).  

                                                                                   (9) 
 

• Rate constraints: The corresponding rate on the path 
route should satisfy the interference constraint in 
Formula (4) and (5). 

• Buffer constraints: The relay node on the path 
should satisfy the buffer requirement in Formula (6).  

• Delay constraints: The relay node on the each hop 
should satisfy the delivery velocity in Formula (7). 

 

IV. ERRA SCHEME 

A. Q-learning approach 
The objective of ERRA is to learn from the environment 

states (dynamic connection events) and decide on actions, so 
as to maximize the reward i.e., minimize the cost function. 
The DTN control system is formulated by a tuple <S, A, �, 
�>, where S is the discrete hazard state space. A is the 
discrete action space that is dependent on strategies taken. 
�: S×A� R is the cost function, which implies the quality 
of a state-action combination of the network system.  �: S×A 
��S is the state transition function, where �S is the 
probability distribution over state space S.  

In ERRA, the actions include sets of selected route and 
rate strategies, i.e., a set of tuple pairs as: (relay(u), rate(u)). 
Once an action (i.e., with a specific strategy) is taken, the 
network system produces new performance signal (i.e., cost) 

according to it. Then ERRA receives the update cost �, 
which is used to evaluate the effectiveness of the action. The 
learning procedure is achieved by updating the Q-value. The 
Q-learning approach converges to an optimal strategy as 
long as the state-action pairs are continually updated. In 
scenarios discussed in the paper, each node will learn and 
predict the optimal routing relay and schedule through 
reinforce learning process. When traffic relay transmission 
beginning at time slot � is finished at the next time �+� 
(among it, � is the time slots for transmission schedule), 
then the Q-value for state-strategy pair is updated by 
Formula (10). 

                                                                                           
(10) 

 
In Formula (10), � is the learning rate and in the range of 

(0,1). � is the discount factor and is in the range of (0,1) too. 
We use a constant learning factor, and the learning 
procedure can track the dynamic network situations.  

B. Cost function  
The ERRA scheme aims to provide energy-efficient 

routing and rate allocation. The cost function is achieved by 
the average amount of energy consumption per bit on the 
current route path from 1 to h hops, which embodies the 
tradeoff among energy efficiency, connection duration and 
communication efficiency: 

                                             
                                                                                             
                                                                                           

(11) 
 
 
Considering the rate constraints and buffer constraints, 

we formally express the cost function of ERRA strategy S as 
Formula (12). 

  
                                                                                              
                                                                                       (12) 
 
For one-commodity routing situation, if node u   {s, d} on 

the route, then the traffic data bits sent out equal to the 
received data bits, i.e., �t =�r. The received traffic rate 
depends on the traffic rate sent out of the last hop on the 
route.   

C. Nash Q-learning approach 
For on-line multi-commodity cases, Q-learning approach 

is extended for multi-agent decision making. In on-line 
multi-commodity situations, each agent is selfish for routing 
desire. The network routing and allocation process is 
modeled as a stochastic non-cooperative game framework. 
Let <N, {S}, {�}> denote the stochastic non-cooperative 
routing and rate allocation game, where N is the number of 
routing commodities in the network, {S} is the strategy set, 
and {�} is the cost set. The objective of multi-commodity 
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routing is to minimize the overall cost. Different agents 
have their own objectives which could be conflicting with 
each other, so the overall cost is dependent on the strategy 
selection of each agent. The strategy of each agent is 
responsible for selecting routes and rates (i.e., transmitting 
slots) that the overall multi-commodity routing strategy cost 
achieves minimized cost during the learning process. 
Considering the multi-commodity situation, multi-agent Q-
learning approach is utilized to find out the optimized 
ERRA strategy to achieve the minimized cost for all route 
paths. We consider �i(S) as the probability for the ith routing 
commodity that selects a specific strategy S at time � with 
the game equilibrium. �i is the set of possible strategies. 
The overall objective in the stochastic non-cooperative 
routing and rate allocation game can be express as: 

                                                                                       (13) 
 
Where: 
                                                                                           (14) 

In the stochastic non-cooperative game based network 
system, each routing commodity finds a strategy with Nash 
equilibrium to achieve objective in Formula (13).  

Let NashQi
 be agent i’s cost in current state with the 

selected equilibrium. According to [14], the Nash 
equilibrium NashQ=(�1

*,…�n
*) is computed from Formula 

(15). In the formula, m is the number for players in the 
game. In order to calculate the Nash equilibrium, each agent 
i need to know the other agents’ Q-values. Then, each agent 
observes the other agents’ immediate costs and actions. So, 
agent i can update its Q-value according to other agents’ Q-
values as shown in Formula (16). In each time step at time �, 
a player observes the current state s, and then takes action a.  
An immediate cost � and the next state s’ are observed.   

                                                                                            
   (15) 

 
 
                                                                                       

(16) 
 
 
To minimize the network cost, the multi-agent Q-learning 

approach has to explore all possible strategies randomly and 
greedily, and then chooses the “good” strategy. The strategy 
exploration probability is updated as shown in Formula (17). 
	 is a constant factor between 0 and 1. The learning policy 
satisfies the GLIE (Greedy in the Limit with Infinite 
Exploration) property. 

 
(17)                                                 

 
 
The Nash Q-learning based ERRA algorithm is described 

in Algorithm 1.  Line 1-6 is the algorithm initialization. In 
line 4, |A| is the number of possible strategies, which is 
bounded by the multiplication of maximal degree of the 

network graph 
 and frame slot number L, i.e., |A|=
*L. 
Line 7-20 is the Nash Q-learning procedure. In line 13, 
�1…�m represent the cost for all players, and a1… am 
represent the strategy taken by the other players except ai.  
In Line 14, slot time � is updated as (�+�) mod L, where L is 
the frame length. Line 16 shows the Q-value update of each 
user for its next state according to Formula (16). As 
explained in [15], the time complexity and space 
requirement of this learning algorithm is high when agent 
number is big. For 2-player Nash Q-learning, it has 
exponential worst-case time complexity. The space 
complexity is also exponential in the number of users. In the 
network, the game of routing resources occurs among the 
routing commodities within the interference range during 
the contacting time. The routes diverged from interference 
range will not affect one another.  So the routing game 
process of the network system can be achieved by the local 
game with local routing commodities, when there are joints 
routes within the interference range from one another during 
the contacting time. 

 
Algorithm 1: Nash Q-learning based Algorithm  
1  for i=1…m //m agents with srci and dsti 
2    Let �=0, get the initial state s=s(�) 
3    for all s S and a A 
4   
5    endfor 
6  endfor 
7  while (network execution condition is TRUE) 
8     ui = srci   
9     for current node ui //ui is the current hop for ith agent 
10 if (ui == dsti)    break; 
11 endif 
12      Choose action ai according to (17) 
13          Take ai for s(�) and observe � 

1… � m, a1… am 
14    update � =( �+�) mod L, the next state s’=s(�) 
15    for all j�i, j=1…m  
16  Update Qj according to (16) 
17   endfor 
18    s=s’, ui=a(relay(ui))//update state and the next hop 
19  endfor 
20 endwhile 

 
The local game algorithm is illustrated in Algorithm 2. In 

Line 14, j is the commodity with routes that are within the 
interference range of i for current contacting state by 
satisfies: ||route(i)-route(j)||�D. The distance of the routes 
are defined as the minimal distances of the relay nodes from 
the two routes respectively. So we only observe the cost and 
action of contending commodity with current commodity i, 
but not all the other commodity in the network. In a general 
DTN, the network is usually sparse or loosely connected. 
The on-line routing commodity number is often small 
within the interference range, so the performance of local 
game based ERRA is acceptable. 
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Algorithm 2: Local game based ERRA  
1  for i=1…m //m agents with srci and dsti 
2    let �=0, get the initial state s=s(�) 
3    for all s S and a A 
4   
5    endfor 
6  endfor 
7  while (network execution condition is TRUE) 
8     ui = srci   
9     for current node ui // ui is the current hop for ith agent 
10 if (ui == dsti)    break; 
11 endif 
12      choose action ai according to (17) 
13      take action ai for s(�) and get � 

i 
14          observe �j, aj (j�i, j=1…m), if ||route(i)-route(j)||�D 
15 update � = �+�, the next state s’=s(�) 
16    for all j //j represent the local contender 
17  Update Qj according to (16) 
18   endfor 
19    s=s’, ui =a(relay(ui))//update state and the next hop 
20 endfor 
21 endwhile 

 

V. SIMULATIONS 
We simulate an ad hoc delay tolerant network with 30 

nodes around 500m× 500m area. The nodes travel with 
speed from 0 to maximal 2.5m/s around the test area. A 
predefined moving model is given for each node. A fixed 
static node is placed at the center of the area, which is used 
to simulate an access point in real networks. In the 
simulations, the nodes connect with each other by a half-
duplex wireless network interface card. The communication 
range is 15m, while the interference range is set to 30m. At 
the beginning of the simulation, the routing request with 
CBR traffic is periodically generated from a source node 
that is randomly selected. The traffic packet interval is 
500ms. By default, each node allocates a limited buffer with 
maximal 5 packets in buffer. The simulated access point is 
fixed chosen as routing destination. We initialize the 
parameters: �=0.1, �=0.9 and 	=0.5. The value of energy 
consumption related parameter ee, ea, ep, and el is chosen 
based on [15].  

We make simulations when the routing commodity 
number is 1, 2, and 4 respectively. In 4-commodity 
situations, we use local game based algorithm.  

A. Convergence  
The result is shown in Figure 1. It shows the average path 

cost from 10s to 250s during the simulation. We observe 
that the average path cost begins to converge around 200s 
for all the situations. Before the convergence point, there are 
fluctuates existed for the learning process. When comparing 
multi-agent results with 1-agent situation, they seem to have 
more path cost. This is because Nash equilibrium strategy is 

chosen to provide optimal routing cost for all the agents in 
the network, which may not be the optimal strategy for each 
single agent.  

B. Learning ability 
We then make simulations with the varied network 

scenarios. The first scenario is: we add 5 more default nodes 
into the network to help the connections at 60s after the 
simulation begins, and then we remove them at 120s. The 
corresponding results are shown in Figure 2. We observe 
that ERRA can track the change and adapt the strategies 
toward the network environment. The average path cost of 
routing situations with 5 more nodes added into the network 
is a little lower than the original situations. It implies that 
the added nodes help to improve the contacting opportunity 
in the network without extra congestions because of 
effective rate allocation control. At 120s of the simulations, 
we remove those added nodes. It incurs a few fluctuations of 
average path cost, because each agent has to predict and 
learn new strategy toward the changes. The second scenario 
is: we half the routing traffic interval from 60s of the 
simulations, and then recover it at 120s. The corresponding 
results are shown in Figure 3.  We observe that the average 
path cost increases a little from 60s to 120s when compared 
with the original results. This is because the increased traffic 
load incurs possible congestions. According to ERRA, the 
routing and rate strategies will adapt to improve the cost. 
Then more idle energy consumption needed in long 
schedule for the increased traffic. After 120s, the traffic load 
is recovered to the original situations. The results show 
there are many fluctuations after 120s, because ERRA 
learns and select new strategies toward the current the new 
network environment. 

C. Delay-bounded delivery 
Figure 4 shows the data average real-time delivery ratio 

as delay bound increases from 200ms to 2000ms, which is 
based on results of 250s simulations. We observe that the 
data delivery ratio increases as relax the delay bound. And 
1-agent achieves better delivery when compared with 2-
agent and 4-agent situations. This is because more routing 
agents bring more possible congestions in the networks and 
the need more schedule time for transmission according to 
ERRA rate allocation.   

D. Comparisons 
We then compare ERRA with Epidemic [3] and modified 

Dijkstra algorithm [8]. Firstly, we simulate under network 
scenario 1 with 2-commodity routing situations: add 5 more 
default nodes into the network at 60s after the simulation 
begins, and then remove them at 120s. Figure 5 shows the 
average energy consumption per bit during the simulations. 
From the results, we can see that ERRA has much better 
energy efficiency when compared with the other two 
algorithms, especially when network topology changes from 
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60s to 120s. Epidemic algorithm uses replication to deliver 
data packets in the network, so the more energy is needed. 
And this is even worse when simulation goes on, because 
much replicated forwarding occurs during the packet 
delivery. The modified Dijkstra algorithm uses forward 
method to minimize the average delivery delay, but it does 
not consider the energy consumption of packets and cannot 
adapt toward the varied network environment. When more 
nodes are added into the networks, the modified Dijkstra 
consumes more energy for increased congestions. Since we 
simulate the 2-commodity situation, the increased 
congestions are not big, so the a little more energy needed to 
consume for the varied topology. Figure 6 shows the energy 
consumption per bit with scenario 2: we half the routing 
traffic interval from 60s of the simulations, and then recover 
it at 120s. The results show similar tendency as in scenario 1. 
More energy consumptions in Epidemic and modified 
Dijkstra algorithm, because increased traffic load brings 
more congestions and waste energy for packets. 
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Figure 1.  Convergence. 
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Figure 2.  Learning ability with scenario 1. 

50 100 150 200 250
2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Av
er

ag
e 

pa
th

 c
os

t (
m

W
/b

it)

Simulation time (s)

 1-agent with scenario 2
 2-agent with scenario 2
 4-agent with scenario 2
 1-agent
 2-agent
 4-agent

 
Figure 3.  Learning ability with scenario 2. 
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Figure 4.  Data delivery ratio. 
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Figure 5.  Ave. energy consumption in scenario 1. 
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Figure 6.  Ave. energy consumption in scenario 2. 

 

VI. CONCLUSION 
Considering necessity for green communication and 

computing, we make research on energy-efficient routing 
and rate allocation in delay tolerant networks. We propose 
to utilize Q-learning approach to “pull” the data packets 
toward optimal routing direction with optimal schedule by 
predicting the unknown network environment with 
opportunistic communications. Our ERRA provide energy 
efficient, less-congested and delay-bounded data delivery. 
We make simulations on DTN networks and make 
performance evaluations. The results show ERRA can 
effectively improve the energy efficiency and data delivery 
ratio within unknown and varied network situations.  
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