
Hierarchical Cooperative Caching in Mobile
Opportunistic Social Networks

Yunsheng Wang
Dept. of Computer Science

Kettering University
Flint, MI 48504

Jie Wu
Dept. of Computer and Info. Sciences

Temple University
Philadelphia, PA 19122

Mingjun Xiao
School of Computer Science and Tech.

University of Science and Tech. of China,
Hefei, China

Abstract—A mobile opportunistic social network (MOSN) is a
new type of delay tolerant network (DTN), in which the mobile
users contact each other opportunistically. While cooperative
caching in the Internet has been studied extensively, cooperative
caching in MOSNs is a considerably different and challenging
problem due to the probabilistic nature of contact among the
mobile users in MOSNs. In order to reduce the total access delay,
we let the mobile users cooperatively cache these data items
in their limited buffer space. We balance between selfishness
(caching the data items according to its own preference) and
unselfishness (helping other nodes to cache). The friends with
higher contact frequency may share similar interests, hence,
caching the data items for friend users can lead to some benefit.
In this paper, we present a hierarchical cooperative caching
scheme, which divides the buffer space into three components:
self, friends, and strangers. In the self component, mobile users
cache the data items according to their preference. In the friends
component, mobile users help their friends to cache some data
items. In the strangers component, mobile users randomly cache
the remaining data items. We formally analyze the access delay
of the proposed scheme. The effectiveness of our approach is
verified through extensive real world trace-driven simulations.

Index Terms—Access delay, cooperative caching, mobile op-
portunistic social networks (MOSNs), Zipf-like distribution.

I. I NTRODUCTION

Delay tolerant networks (DTNs) are characterized by inter-
mittent connectivity and limited network capacity, in which
most of the time there does not exist an end-to-end path
between some or all of the nodes in the network. With the
popularization of smart phones, mobile opportunistic social
networks (MOSNs), a new type of DTN, becomes popular. In
MOSNs, the individuals carrying smart phones walk around
and communicate with each other via Bluetooth or WiFi, when
they are in each other’s transmission range.

Because of the short contact duration and limited bandwidth,
only a small amount of data can be transferred during each
contact in MOSNs. Also, the slow development of the battery
and limited cache space of the mobile devices restricts the
message flooding between the mobile devices. Cache place-
ment is an important factor in improving the performance of
data access in such a network environment.

Mobile users may cache data items in a cooperative way to
improve the efficiency of data access. Recently, there are some
literatures focusing on the cooperative caching problem in
DTNs [1–6]. A typical strategy in cooperative caching works

Self (A) Friends (B) Strangers (C)

Selfish in narrow sense Unselfish in narrow sense

Unselfish in generalSelfish in general

Fig. 1. An illustration of hierarchical cooperative caching: A, B, and C

illustrate the size of each component.

as follows. Data sources transfer some data copies to some
nodes calledcache nodes. Each cache node selects a subset of
all the data items to cache, due to its limited storage. Other
nodes can access data items from cache nodes instead of data
sources. Consequently, access delay can be reduced becauseof
the service provided by these cache nodes, while cache costs
are increased; consistency should also be maintained if data
items change.

In MOSNs, the social relationship between the mobile
users becomes much more important. The individuals with
higher contact frequency may have similar interests [7], which
means that they have similar high-frequency access data items.
Therefore, designing an efficient cooperative caching strategy,
by considering the social relationship between the mobile
users, can improve the performance dramatically.

In this paper, we propose a hierarchical cooperative caching
scheme, which divides the buffer storage into three key com-
ponents:self, friends, and strangers, as shown in Fig. 1. In
the self component, the mobile nodes will cache its most
frequently accessed data items. The mobile nodes with higher
contact frequency are considered as friends to the cache nodes.
The cache nodes will help the friends to store the friends’
most frequently accessed data items in itsfriends component.
Finally, each mobile node randomly selects a subset of the
remaining data items into itsstrangers component.

Our detailed contributions are listed as follows: (1) To
address the problem of cooperative caching, we exploit social
relations among nodes. We define the relationship between
pairwise nodes based on the contact frequency among the
mobile nodes. (2) In order to reflect the selfishness and
unselfishness, we divide the cache space into three key com-
ponents: self, friends, and strangers. In each component, we
investigate different data caching and replacement policies.
(3) We formally analyze the total access delay of all mobile
nodes for the data items. (4) We develop a novel hierarchical
cooperative caching scheme in MOSNs, and demonstrate that

it can significantly improve the performance of data access
through trace-driven simulations.

The remainder of this paper is organized as follows. In
Section II, we review the related work. Section III describes
our scheme in detail. Section IV analyzes the the average delay
for the node to request the data item in our scheme. Section V
focuses on the simulation and evaluation. We summarize the
work in Section VI.

II. RELATED WORK

Research in DTNs has attracted a lot of attention in the
research community recently. Several solutions have been pro-
posed to handle storage congestion control problems in DTNs,
most of which are based on message dropping policies [8, 9]
or simply message migration policies [10, 11]. However, in
these kinds of mechanisms, the data access delay will increase
dramatically. Therefore, cooperative caching schemes have
been proposed for the DTN environment [1–3, 12]. They
improve the data accessibility from infrastructure networks,
such as WiFi Access Points (APs) [2], or the Internet [1],
as well as peer-to-peer (P2P) data sharing among the mobile
users [3].

Social-based cooperative caching has been studied recently
in DTNs [4, 5, 13]. In [4], Zhuo et al. propose a centrality
metric to evaluate the caching capability of each node within
a community, which is used to determine where to cache. They
also consider the impact of the contact duration limitationon
cooperative caching. In [5], Zhang and Zhao use social net-
work analysis to classify and study different diffusion schemes
based on the “homophily” phenomenon in social networks. In
this paper, we consider the mobile users’ social role from its
own perspective locally, to hierarchical cooperative cache the
data items in different components of its buffer.

III. H IERARCHICAL COOPERATIVECACHING

In this section, We first introduce the network model for our
work, then we highlight our motivation of cooperative caching
in MOSNs. The data item placement scheme is presented next.
Finally, we describe the cache replacement policy.

A. Network Model

In MOSNs, the opportunistic contacts are described by
network contact graphG(V,E), whereV is the set of mobile
nodes in the network, andE is the set of edges, with each edge
in E representing the opportunistic contact between pairwise
nodes. In this paper, there aren mobile nodes in MOSNs (V =
{N1, N2, ..., Nn}), andm data items (D = {d1, d2, ..., dm}).
We assume that the sizes (l) of all data items are the same.
Also the size (S) of the buffer space of each node is the same.
The data item can be updated when the mobile nodes access
the Internet via WiFi or WiMAX networks. Mobile nodeNi

requests the data itemdj with the frequencyf(i, j). Let t(i, j)
denote the waiting time for nodeNi receiving the data item
dj from its own cache (t(i, j) = 1), or another nodeNk which
caches this data item (t(i, j) is the inter contact time between
Ni andNk).

The objective of the cache placement problem is to deter-
mine which data items should be cached in which nodes,
in order to minimize the total access delay of all nodes
in the network. Therefore, the cache placement problem
becomes how to select a set of cache node setsM =
{{M1}, {M2}, ..., {Mm}}, where each mobile node in{Mj}
caches a copy of data itemdj . Hence, we represent the cache
placement problem as the following optimization problem:

min
n
∑

i=1

m
∑

j=1

(f(i, j)× t(i, j)) (1)

s.t. |{{Mj}|Ni ∈ {Mj}}| ≤

⌊

S

l

⌋

, ∀Ni ∈ V.

The constraint of this optimization problem is the buffer
space constraint, which means thatNi can appear in, at most,
⌊

S
l

⌋

sets ofM .
This optimization problem can be viewed as afacility

location problem [14], which has been proved to be an NP-
hard problem. In the general facility location problem, there
consists a set of potential facility sites where a facility can be
opened, and a set of demand points must be serviced. The
goal is to pick a subset of facilities to open, to minimize
the sum of distances from each demand point to its nearest
facility, and plus the sum of opening costs of the facilities. In
our problem, the caching nodes are considered as the facility
sites. The mobile nodes, which require access to the data, are
considered as demand points. The distances from each demand
point to its nearest facility are the waiting times requiredby
the nodes to receive the data. The limited buffer space is the
constraint of our optimization problem.

B. Motivation

In MOSNs, there is a key concept:community. The nodes
in the same community tend to contact more frequently, for
which we call them “friends.” Friends tend to have similar
interests [7]. Hence, we take advantage of such friends’
behavior to perform the cooperative caching, which enables
data sharing within a community. As we discussed before, the
objective of our work is to minimize the data access delay for
the requesters. If the nodes can help their friends to cache the
data items, the data access delay can be reduced according to
the community property and their opportunistic contacts.

In this paper, we introduce a novel idea that the cache
is divided into three hierarchical components:self, friends,
and strangers, as shown in Fig. 1. From the narrow sense,
the self component reflects the selfishness of the nodes. The
friends and strangers components are distributed for other
nodes, which shows the side of its unselfishness. In mobile
opportunistic social networks, friends group together as a
community. Therefore, in general, self and friends components
are considered to show the selfishness of the nodes.

C. Data Item Placement

In our proposed hierarchical cooperative caching scheme,
we treat the data items with different caching schemes, in
terms of selfishness and unselfishness, locally.

Algorithm 1 Hierarchical Cooperative Cache Replacement

/∗ When cache nodeNi is full, and receives a new data
item dj . ∗/
if dj belongs to the self component.then

if f(i, j) > f(i, x), dx is the data item cached inNi

with the smallest access frequency.then
dj replacesdx.

else
if dj belongs to the friends component.then

if
∑

f(k, j) >
∑

f(k, x), dx is the data item cached
in Ni with the smallest access frequency for all its
friendsNk. then

dj replacesdx.
else

if dj belongs to the strangers component.then
Randomly replace a data item.

• In the self component, each mobile node caches the
⌈

A
l

⌉

most frequently accessed data items, so that it can access
these data items with the minimum delay (we assume this
delay is 1).A is the size of the self component.

• In the friends component, each node will store the
⌈

B
l

⌉

most frequently accessed data items from its friends’
point of view, so that its friends can access these items
from this cached node with short delay.B is the size of
the friends component.

• In the strangers component, each mobile node randomly
selects

⌈

C
l

⌉

data items from the remaining ones to cache,
whereC is the size of the strangers component.

D. Cache Replacement

Caching locations of the data items are dynamically adjusted
by cache replacement. When the buffer is full, after the new
data item is received, we first check which component it
belongs to. If it is the most frequently accessed data item
for itself, it will compare the access frequency with the data
items in the self component and replace the lowest one. If this
received data item belongs to the friends component, it will
replace the data item in its friends component by comparing
its access frequency to the friend nodes. Otherwise, if the data
item belongs to the strangers component, it randomly replaces
one data item in the strangers component. The algorithm of
the cache replacement policy is shown in Algorithm 1.

IV. A NALYSIS

A. Request Frequency

In [15], the authors found that the web request follows a
Zipf-like distribution, with a small portion of the webs getting
the most requests. Therefore, in this paper, we use the Zipf-
like distribution as the data request pattern.

We only consider the frequency for a node to request all data
items. Moreover, we letf(i, j) be described by the probability
that nodeNi requests the data itemdj in each data request.
Let all the data items be ranked in order of their popularity,
where data itemdj is thej’th most frequently requested data

item. From [15], we know thatf(i, j) has a “cut-off” Zipf-like
distribution given by

f(i, j) =
Ω

jβ
, (2)

where

Ω =

(

m
∑

k=1

1

kβ

)−1

. (3)

Hence, the probabilityf(i, j) of a request for thej’th pop-
ular data item byNi is proportional to 1

jβ
, where0 < β ≤ 1.

B. Data Access Delay

Here, we will focus on calculating the average data access
delay time (t(i, j)). We assume that the system has run many
rounds, and it has entered into a stable state. Moreover, we let
Ii denote the set of data items that nodeNi is interested in.
The setIi can be determined by the Zipf-like distribution of
the frequencies for nodeNi to request the data items. We let
F (i) denote the set of friends of nodeNi, and letF+(i) denote
the set of friends of nodeNi, as well as nodeNi, itself. We
also letr̄ denote the average repeated number of a data item in
the nodes, and assume that the average request frequency for
each data item to be requested isp̄. These values also can be
determined by the Zipf-like distribution of the frequencies for
each node to request the data items. In addition, we assume
that the inter contact time of a mobile node to its friends and
strangers follows exponential distribution with mean time1

Λ
and 1

λ
, respectively [16]. Now, we consider the calculation in

four cases as follows.
The first case is that the data itemdj has been cached in

nodeNi. There are three subcases:
1) Data itemdj is cached in the self component ofNi as

an interested data item. Here, the probability thatdj is cached
in Ni is a

|Ii|
·1j∈Ii , where1j∈Ii is an indicator function to

indicate whetherdj is an interested data item ofNi, and a
|Ii|

is the average probability of an interested data item forNi to
be cached in its self component.

2) Data itemdj is cached in the friends component ofNi

as an interested data item ofNi’s friends. In this subcase, the
probability thatdj is cached in the friends component ofNi

is b
|∪k∈F (i)Ik|

·1j∈∪k∈F (i)Ik , where1j∈∪k∈F (i)Ik is an indicator
function to indicate whetherdj is an interested data item for
the friends ofNi, and b

|∪k∈F (i)Ik|
is the average probability of

an interested data item for the friends ofNi to be cached in
its friends component.

3) Data itemdj is cached in the strangers component of
Ni. In this subcase, the probability thatdj is cached in the
strangers component ofNi is c

|∪
k 6∈F+(i)Ik|

·1j 6∈∪
k∈F+(i)Ik

, where
1j 6∈∪

k∈F+(i)Ik
is an indicator function to indicate whether

dj is not an interested data item for the nodes inF+(i),
and c

|∪
k 6∈F+(i)Ik|

is the average probability of an interested
data item for the friends ofNi to be cached in its strangers
component. In addition, the delay for nodeNi to access the
data itemdj in this case is1. Denote the total probability

and average data access delay for this case asP1 and t1,
respectively. Then, we have:

P1 =
a

|Ii|
·1j∈Ii+

b

| ∪k∈F (i) Ik|
·1j∈∪k∈F (i)Ik+

c

| ∪k 6∈F+(i) Ik|
·1j 6∈∪

k∈F+(i)Ik
,

t1 = 1. (4)

The second case is that the data itemdj has been cached in
a friend node ofNi. There are also three subcases, i.e.,dj is
cached in the self component, the friends component, and the
strangers component of the friend nodes, respectively. Denote
the total probability and average data access delay for this
case asP2 and t2, respectively. By using the same analysis
we discuss in the first case, we have:

P2 =
(a+b)|F (i)|

| ∪k∈F (i) Ik|
·1j∈∪k∈F (i)Ik+

|F (i)|c

| ∪k 6∈F+(i) Ik|
·1j 6∈∪

k∈F+(i)Ik
,

t2 =
1

r̄Λ
. (5)

Note that the data item is repeated byr̄ times. The delay
for this case is forNi to access any one of them. Thus, the
average data access delay is1

Λ multiplied by 1
r̄
.

The third case is that the data itemdj has been cached in a
stranger node ofNi. Since the average request frequency for
each data item is̄p, the average probability for the data item
to be cached in the strangers ofNi is p̄(n−|F+(i)|)

n
. Denote the

total probability and average data access delay for this case as
P3 and t3, respectively. Then, we have:

P3=
p̄(n− |F+(i)|)

n
, t3=

1

r̄λ
. (6)

The fourth case is that the data itemdj has been cached
in any node.Ni receivesdj through WiFi or WiMAX from
the APs, if its request has not been satisfied in a predefined
waiting timeT . Then, the corresponding total probability and
average data access delay,P4 and t4, are:

P4=1−P1−P2−P3, t4=T, (7)

Based on the above analysis, we can get the average data
access delay timet(i, j)=P1 · t1+P2 · t2+P3 · t3+P4 · t4.

V. SIMULATION

A. Comparison Scheme and Evaluation Metrics

In the simulation, we compare our proposed scheme with
the following caching mechanisms in MOSNs:

Random Cache, in which every request node caches the
received data items in its cache space to facilitate data access
in the future.

Selfish Cache, which is similar as CacheData [17] in mobile
ad-hoc networks. The mobile nodes cache the pass-by data
items, according to their popularity in its own point of view.

Unselfish Cache, in which every mobile node only caches
the data items for other nodes, according to their knowledge
about the data items’ request frequency of their encountered
nodes.

The cache replacement policies are different for these
caching schemes above. For the Random Cache scheme, the
data item will be replaced randomly when the cache space
is full. For Selfish Cache and Unselfish Cache schemes, the
cache replacement policy will vary, according to the popularity
of the data items.

In this paper, the following metrics are used for evaluations:
• Data access delay: the average delay for receiving the

request data item.
• Successful ratio: the ratio of queries being satisfied with

the requested data item within the deadline.
• Overhead: the average number of data copies being

cached in the whole network.

B. Simulation Setting

We compare the performance of our proposed hierarchical
cooperative caching scheme with other three schemes we
discussed above, on theInfocom2006 trace, which is collected
by the computer laboratory at the University of Cambridge in
the Haggle project [18], andMIT reality mining trace, which
is gathered by the MIT reality mining project [19].

In all experiments, the first half of the trace is used for the
learning process, which is for the accumulation of the net-
work information, the process of distinguishing friends from
strangers, and the process of learning data item preference
of the other nodes. The data generation and requests happen
during the second half of both traces.

In the Infocom2006 trace, there are 78 participants with
Bluetooth embedded iMote devices to record their contacts
during a 4-day conference. There are 128,979 internal contacts
among these participants. In the MIT reality mining trace,
there are 97 participants with Bluetooth embedded cellphones
to record their contacts. The duration of the MIT reality mining
trace is 246 days. It records 822,626 internal contacts among
these participants.

In the simulation, we assume that the lifetime of the gener-
ated data item is infinite. The period for data item generation
is set to2T , which is according to the request satisfaction
deadline in Section IV-B. The data request pattern of each
mobile node follows Zipf-like distribution, as we discussed
in Section IV-A. Each request has a finite time constraintT .
Every timeT , each nodeNi determines whether to request
data itemdj in probabilityPi(j), according to Eq. 2, and we
setβ to 0.5. After timeT , if the requested data item has not
been received, we suppose an unsuccessful data request, and
the mobile node will download this data item from the APs
directly. Hence, in this situation, the data access delay isT .

We assume that the data item size is the same as 20MB,
and the caching buffer size of the mobile nodes is adjusting
in range [180MB, 900MB] for comparison purposes. We
compare the performance of the comparison schemes in the
following four categories:

1) Varying data request frequency: comparing the per-
formance of different values ofT .

2) Varying buffer space: comparing the performance of
different values of the buffer space of each node.

0

50

100

150

200

D

at
a

A
cc

es
s

D
el

ay
 (h

ou
rs

)

Request Satisfaction Deadline (hours)

 Random Cache
 Selfish Cache
 Unselfish Cache
 Hierarchical Cache

21607201682412

(a) Data access delay

10

20

30

40

50

60

70

80

90

216072016824

Su
cc

es
sf

ul
 R

at
io

 (%
)

Request Satisfaction Deadline (hours)

 Random Cache
 Selfish Cache
 Unselfish Cache
 Hierarchical Cache

12

(b) Successful ratio

2

3

4

5

6

 O
ve

rh
ea

d

Request Satisfaction Deadline (hours)

 Random Cache
 Selfish Cache
 Unselfish Cache
 Hierarchical Cache

21607201682412

(c) Overhead
Fig. 2. Comparison of the performance with different varying data request frequency.

3) Varying sizes of each component in hierarchical
cooperative caching scheme: comparing the perfor-
mance under different sizes of each component in the
hierarchical cooperative caching scheme.

In the first two categories, we assume that the size of each
component in the hierarchical cooperative caching scheme is
equal, 13 of the total buffer size for each.

C. Simulation results

1) Varying data request frequency: we first evaluate the
different caching schemes in varying data request frequencies
in the MIT reality trace. We set the buffer size of the
mobile nodes (S) to 540MB. Then, we adjust the data request
satisfaction deadline (T) from 12 hours to 3 months.

Fig. 2 shows the simulation results with different values
of T . We find that the performance is mainly restrained by
the data request satisfaction deadline. It is clearly showing
that our proposed hierarchical cooperative cache scheme has
much better performance than any other schemes. As shown
in Fig. 2(a), our scheme has 33.5%, 38.2%, and 41.7% shorter
delay than selfish cache, random cache, and unselfish cache
schemes, respectively. By comparing the successful ratio in
Fig. 2(b), we find that our scheme can increase to 104%,
147%, and 168% successful ratio, compared with selfish cache,
random cache, and unselfish cache schemes, respectively.

Fig. 2(c) shows that hierarchical cooperative cache scheme
only requires moderate overhead, which is much lower than
random cache scheme. WhenT is 12 hours, our scheme only
has 2.7 average copies of each data item, while the random
cache scheme has 3.1 copies, which increases the cost by about
15%. WhenT increases to 3 months, the random cahe scheme
has 6.1 average copies, which increases the cost even more,
to about 22%, compared to our scheme. The major reason
is that, in the random cache scheme, each node caches any
data item it receives until its buffer space is full. The selfish
cache and unselfish cache schemes can reduce about 12%
overhead, compared with our scheme. Since our scheme has
much shorter delay and much higher successful ratio, we claim
that our scheme is more cost-effective.

2) Varying buffer space: we evaluate the performance with
different buffer size constraints in the MIT reality trace.We
set the data request satisfaction deadline (T) to 1 week. Then,
we adjust the buffer size (S) from 180MB to 900MB.

It shows that when the buffer size becomes larger, more
data items can be cached, as shown in Fig. 3(c). Hence, the
data access delay reduces and the successful ratio increases
in Figs. 3(a) and 3(b). WhenS increases from 180MB to
900MB, the data access delay of our proposed hierarchical
cooperative cache scheme decreases about 37.5%, and the
successful ratio increases from 47% to 63%. From Fig. 3(a),
we find that our scheme can have 32% less delay, compared
with the selfish cache scheme, and 39% less delay than the
random cache scheme. Fig. 3(b) shows that our scheme can
increase the overall successful ratio by about 63%, 139%, and
168% compared with the slefish cache, random cache, and
unselfish cache schemes, respectively. In Fig. 3(c), it shows
that our scheme slightly increases the overhead compared with
the selfish cache and unselfish cache schemes. Our scheme has
less copies of data items than the random cache scheme.

3) Varying size of each component in hierarchical coop-
erative caching scheme: in this part, we will compare the
performance of our proposed hierarchical cooperative caching
scheme with different sizes of each component, which can
indicate the importance of all components in designing the
caching scheme, in Infocom2006 trace.

We compare four conditions of our scheme: the first one
includes all components, and each one is1

3 of the whole buffer
space –(13 ,

1
3 ,

1
3); the second one only includes self and friends

components, and each one is half of the whole buffer space –
(12 ,

1
2 , 0); the third one includes self and strangers components,

and each one is half of the whole buffer space –(12 , 0,
1
2); the

final one includes friends and strangers components, and each
one is half of the whole buffer space –(0, 1

2 ,
1
2). We setT to

2 or 4 hours, andS to 360MB or 720MB.

The simulation results are shown in Fig. 4. It shows that our
scheme, including all components, has the best performance
among all schemes, which means that all components are very
important in cooperative caching scheme. Fig. 4(a) shows that
missing the strangers component, the delay will increase about
21%; missing the friends component, the delay will increase
about 27.5%; and missing the self component, the delay will
increase about 44.8%. In Fig. 4(b), we find that missing one of
the three key components, the successful ratio decreases about
14%, 16.5% or 34%, resepectively. For the average number of
copies, the four schemes perform similarly.

180 360 540 720 900
10

20

30

40

50

60

70

80

D

at
a

A
cc

es
s

D
el

ay
 (h

ou
rs

)

Buffer Size (MB)

 Random Cache
 Selfish Cache
 Unselfish Cache
 Hierarchical Cache

(a) Data access delay

180 360 540 720 900

20

30

40

50

60

70

Su
cc

es
sf

ul
 R

at
io

 (%
)

Buffer Size (MB)

 Random Cache
 Selfish Cache
 Unselfish Cache
 Hierarchical Cache

(b) Successful ratio

180 360 540 720 900

2

3

4

5

6

7

8

 O
ve

rh
ea

d

Buffer Size (MB)

 Random Cache
 Selfish Cache
 Unselfish Cache
 Hierarchical Cache

(c) Overhead
Fig. 3. Comparison of the performance with different buffer sizes.

0.8

1.0

1.2

1.4

1.6

D
at

a
A

cc
es

s
D

el
ay

 (h
ou

rs
)

T (hours)/S (MB)

 (1/3,1/3,1/3)
 (1/2,1/2,0)
 (1/2,0,1/2)
 (0,1/2,1/2)

4/7202/720 4/3602/360

(a) Data access delay

30

40

50

60

Su

cc
es

sf
ul

 R
at

io
 (%

)

T (hours)/S (MB)

 (1/3,1/3,1/3)
 (1/2,1/2,0)
 (1/2,0,1/2)
 (0,1/2,1/2)

4/7202/720 4/3602/360

(b) Successful ratio

3

4

5

4/7202/720 4/360

O
ve
rh
ea
d

T (hours)/S (MB)

 (1/3,1/3,1/3)
 (1/2,1/2,0)
 (1/2,0,1/2)
 (0,1/2,1/2)

2/360

(c) Overhead
Fig. 4. Comparison of the performance with different sizes of each key component.

D. Summary of Simulation

We evaluate our proposed scheme with other existing
schemes in different network conditions. The performance of
all schemes are restrained by the buffer size and data request
frequency constraints. Our proposed hierarchical cooperative
cache scheme performs best in all conditions, which reduces
the data access delay and increases the successful ratio dra-
matically. To evaluate the importance of all components in our
scheme, we compare the performance by deleting one of the
key components. The simulation results show that the scheme,
including all components, has the best performance.

VI. CONCLUSION

In this paper, we propose a hierarchical cooperative caching
scheme in mobile opportunistic social networks (MOSNs).
We divide the cache space into three key components: self,
friends, and strangers. In the self component, each mobile
node caches its most frequently requested data items. In the
friends component, each node helps its friend nodes to cache
the data items which are the most popular for its friends. In the
strangers component, the remaining data items are randomly
cached. We also investigate the cache replace policies for each
component, respectively. Then, we formally analyze the data
access delay by using the proposed hierarchical cooperative
caching scheme. Trace-driven simulation results show thatour
proposed caching scheme performs better than other schemes.
Our future work will focus on the adaptive adjustment of the
size of each component, based on the popularity of the mobile
nodes in the network.

REFERENCES

[1] M. J. Pitkänen and J. Ott, “Redundancy and distributed caching in
mobile DTNs,” in Proc. of ACM/IEEE MobiArch, 2007.

[2] Y. Huang, Y. Gao, K. Nahrstedt, and W. He, “Optimizing file retrieval in
delay-tolerant content distribution community,” inProc. of IEEE ICDCS,
2009.

[3] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Supporting cooperative
caching in disruption tolerant networks,” inProc. of IEEE ICDCS, 2011.

[4] X. Zhuo, Q. Li, G. Cao, Y. Dai, B. Szymanski, and T. La Porta,“Social-
based cooperative caching in dtns: A contact duration awareapproach,”
in Proc. of IEEE MASS, 2011.

[5] Y. Zhang and J. Zhao, “Social network analysis on data diffusion in
delay tolerant networks,” inProc. of ACM MobiHoc, 2009.

[6] Y. Wang, J. Wu, and W.-S. Yang, “Cloud-based multicastingwith
feedback in mobile social networks,”IEEE Transactions on Wireless
Communications, vol. 12, no. 12, 2013.

[7] J. J. Brown and P. H. Reingen, “Social ties and word-of-mouth referral
behavior,”Journal of Consumer Research, vol. 14, no. 3, 1987.

[8] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling
of epidemic routing,”Comput. Netw., vol. 51, no. 10, 2007.

[9] A. Krifa, C. Baraka, and T. Spyropoulos, “Optimal buffer management
policies for delay tolerant networks,” inProc. of IEEE SECON, 2008.

[10] M. Seligman, K. Fall, and P. Mundur, “Alternative custodians for con-
gestion control in delay tolerant networks,” inProc. of the SIGCOMM
workshop on Challenged networks, 2006.

[11] Y. Wang, J. Wu, Z. Jiang, and F. Li, “A joint replication-migration-based
routing in delay tolerant networks,” inProc. of IEEE ICC, 2012.

[12] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” inProc. of IEEE INFOCOM, 2010.

[13] C. Boldrini, M. Conti, and A. Passarella, “Design and performance
evaluation of contentplace, a social-aware data dissemination system for
opportunistic networks,”Comput. Netw., vol. 54, no. 4, 2010.

[14] D. S. Hochbaum, “Heuristics for the fixed cost median problem,”
Mathematical Programming, vol. 22, 1982.

[15] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: Evidence and implications,” in Proc.
of IEEE INFOCOM, 1999.

[16] A. Balasubramanian, B. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem,” inProc. of ACM SIGCOMM, 2007.

[17] L. Yin and G. Cao, “Supporting cooperative caching in adhoc networks,”
IEEE Trans. on Mobile Computing, vol. 5, no. 1, Jan. 2006.

[18] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD trace cambridge/haggle/imote/infocom2006 (v. 2009-05-
29),” May 2009.

[19] N. Eagle, A. Pentland, and D. Lazer, “Inferring social network structure
using mobile phone data,” inPNAS, vol. 106(36), 2009.

