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Abstract—Virtual backbones have brought about many ben-
efits for routing and data transmission in traditional wireless
networks. In cognitive radio networks (CRNs), virtual backbones
can also play a critical role, and would increase the efficiency
of routing and data transport. However, the virtual backbone
construction for CRNs is more challenging than for traditional
wireless networks due to opportunistic spectrum access. More-
over, when no common control channel is available to exchange
the control information, this problem is even more difficult.
In this paper, we propose a novel approach for constructing
virtual backbones in CRNs, without relying on a common control
channel. Our approach first utilizes the geographical information
to let the nodes of a CRN self-organize into cells. Next, the
nodes in each cell form into clusters, and a virtual backbone
is established over the cluster heads. The virtual backbone is
then applied to carry out the end-to-end data transmission. The
proposed virtual backbone construction approach requires only
limited exchange of control messages. It is efficient and highly
adaptable under the opportunistic spectrum access. We analyze
the capacity between an active node and a passive node in a
single area. Our approach is testified through evaluation of the
cost, and also through comparison with other models.

Index Terms—Cognitive radio networks, self-organization,
cluster head selection, virtual backbone construction, end-to-end
data transmission, capacity.

I. INTRODUCTION

Cognitive radio networks (CRNs) [1] are a promising solu-
tion to the channel (spectrum) congestion problem nowadays.
Primary users (PUs) in CRNs are privileged users, for whom
there should be no interference. Each secondary user (SU) or
node in a CRN is capable of sensing the available channels,
and can make opportunistic use of them without causing
interference with primary users.

When a PU begins to occupy a channel, SUs on that channel
need to quit immediately. Hence, the dynamics of channel
availability makes it difficult to carry out end-to-end data
transport in CRNs. For example, in Fig. 1, there are two PUs,
Tx and Rx. There is a data transmission route, consisting of
three SUs, S1, S2, and S3. When the link between PU Tx and
Rx is active, the links between the three SUs may be broken if
they use the same channel as the two PUs. Therefore, the end-
to-end data transmission from S1 to S3 is unstable (A practical
scenario is that the two PUs in Fig. 1 are TV towers, and the
SUs here are wireless devices using IEEE 802.22). If a node
in a CRN wants to reach another node that is multiple hops

PU Tx

PU Rx

SU S1 SU S2 SU S3

Primary user network

Fig. 1. Unstable data transmission.

away, two problems arise. First, the node needs to calculate
the route to the destination node. However, the high dynamics
of channel availability makes it costly to collect information
from other nodes and construct a routing path. Second, even if
the route is built, the links on the route are unstable. When the
dynamic channels on a link of the route become unavailable,
the route is broken.

To solve the problem of broken routes caused by unstable
links, we can make use of the virtual backbone structure [2].
A virtual backbone consists of a connected subset of nodes
in the network where every node is either in the subset, or
is a neighbor of a node in the subset. We use area to refer
to a backbone node and the nodes attached to it. If a virtual
backbone is constructed for a CRN, the backbone nodes can
calculate area routes for end-to-end communications. An area
route means a set of areas that would be passed in order to
reach the destination. For example, in Fig. 2, each node is
either a backbone node or is attached to a backbone node.
A1 denotes an area, which includes the backbone node and
its attached nodes. Nodes on the borders are called gateway
nodes. The source node S wants to reach the destination node
D, which is located in another area. The backbone node that
S is attached to calculates an area route for S, which is A1 →
A2 → ... → Ak. Moreover, the virtual backbone can solve the
unstable link problem, because with the area route, a packet
can be sent to any node in the next-hop area. This is much
more robust than the case with the route consisting of nodes,
where a packet must be sent to the next-hop node. Therefore,
the influence of unpredictable channel availability is reduced.

However, the virtual backbone construction in traditional
wireless networks relies on a control channel to exchange
extensive control information during the virtual backbone
construction. The dynamic availability of channels in CRNs
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Fig. 2. Example of the end-to-end transmission using virtual backbone.

makes it impractical to use a static channel to exchange
control information between nodes. While many studies on
CRNs assume a common control channel (CCC), it is vul-
nerable to jamming attacks and congestion. Furthermore, in
order for the spectrum authorities to allocate a static band
as the control channel for CRNs, it is often involved with
international negotiations, which are very time consuming.
Therefore, we need to find an efficient way for nodes in
CRNs to form a virtual backbone without a CCC. We also
provide more intuitive explanations regarding the benefits of
virtual backbones in CRNs and the challenges in Section 1 of
supplemental material.

In this paper, we propose a novel approach for virtual
backbone construction in a CRN without relying on a CCC.
We use nodes to refer to secondary users. The cognitive radios
of nodes are assumed to have the GPS waveform, so that
each node knows its geographical location. We make use of
the location information of each node, and select channels
for distributed control message exchange. Here, we apply a
cell division methodology and assign active/passive states to
each node. Through an efficient process of message exchange,
cluster heads are selected based on cells. Then, we efficiently
construct a virtual backbone by selecting backbone nodes from
the cluster heads. After the virtual backbone is constructed, it
is used for the end-to-end data transmission in a CRN. The
virtual backbone node calculates the area route for a source
node. Our approach supports simultaneous transmissions of
multiple communicating node pairs in an area. This differs
from the data transmission in a virtual backbone of traditional
wireless networks, in which individual nodes communicate
only with the backbone node. Reliability and throughput are
improved in our approach, in comparison with CRNs without a
backbone, as well as traditional wireless networks with a back-
bone. To avoid co-channel interference among different links,
we propose an algorithm that chooses a different transmission
channel for each node pair communicating simultaneously.

The main contributions in our work can be described in the
following five aspects:

• To our best knowledge, this is the first work to apply the
technique of virtual backbone to the CRN, to reliably and
efficiently transport data in CRNs.

• We provide an algorithm for CRN self-organization with
distributed control message exchange without CCC.

• We develop an approach for constructing a virtual back-
bone for a CRN with limited message exchange.

• We also propose a novel end-to-end data transmission
scheme for nodes in CRNs using the virtual backbone.

Here is the organization of our paper. In Section II, we
describe the related works. The system model is introduced
in Section III. Section IV describes the self-organization

algorithm. Sections V and VI present the virtual backbone
construction, and the end-to-end data transmission scheme.
The performance evaluation is presented in Section VII. We
conclude our paper in Section VIII.

II. RELATED WORKS

The related works are introduced from two perspectives.
The first is that regarding the traditional backbone construction
approach. The second part is about the data transmission in
CRNs without CCCs.

There are many studies on the virtual backbone construction
in traditional ad hoc networks [3]–[7]. The authors in [3]
and [4] adopted clustering formation approaches to form a
maximal independent set (MIS). In an ad hoc network, the
set of cluster heads is an MIS, acting as a virtual backbone.
There are disadvantages to these approaches, such as relatively
slow convergence, and high redundancy or overhead, which
make them difficult to apply in CRNs. Nodes in CRNs need
to use available channels more efficiently. Constructing virtual
backbones in CRNs requires a faster convergence and lower
overhead. The special method of dealing with mobility and di-
rectional antennas in virtual backbone constrution is discussed
in [6] and [7]. In [5], the authors used a clustering formation
approach followed by a pruning and marking process, which
is able to control the density. In addition, they applied an
adjustable transmission range, which reduces the energy cost
and the MAC layer contention. Their algorithm is for ad hoc
networks with one static channel, and requires the two-hop
nodes to exchange their information. Our work is for CRNs,
in particular, and solves the specific challenges of constructing
virtual backbones in CRNs.

In [8]–[13], several approaches to building links in CRNs
without CCC were proposed. [8] proposed an algorithm with
the nodes rendezvous time as a function of the number of
channels, while the algorithm in [9] has rendezvous time as a
function of the number of nodes. Both are based on the as-
sumption of some pre-known network information, such as the
number of nodes. Our model does not rely on the assumptions
of node numbers, and provides an efficient learning process for
nodes to know about each other. Our work focuses on building
virtual backbones for end-to-end data transmission use. The
authors in [10] proposed a rendezvous algorithm based on
the quorum systems. However, in this approach, many nodes
need to compete for one rendezvous channel. A jump-and-stay
model was proposed in [11]. It is a blind channel rendezvous
model. The approach in [12] utilizes the channel diversity
and allows all channels to be a control channel. The work in
[13] proposes the quorum and Latin squares channel Hopping
scheme, which has each node to guess the sequence of the
other nodes based on node IDs.

III. SYSTEM MODEL

We consider a CRN with a set of nodes N . Each node is
equipped with a GPS device and, therefore, is able to know
its current location. We assume that the transmission range
of each node is controllable. This can be achieved through
adjusting the transmitting power. Also, we assume the CRN
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Algorithm 1 Pro1(i,M(ck)), to compute IHC for node i

1. Set i as the seed for the pseudo-random number generator
Z.

2. Let Q = M(ck) // The channel segment for ck
3. repeat
4. k = Z(|Q|) // Generate k such that 1 ≤ k ≤ |Q|
5. q = Q(k) // Q(k) is kth channel in Q
6. Q = Q\{q} // Remove q from Q
7. until q ∈ Mi

8. Return q // Selected IHC

is a dense network. Let M denote the set of all available
channels to the CRN. The set of available channels at each
node is expected to be different from node to node, due to
spectrum sensing imperfection and the spatial diversity of
channel availability. Therefore, not all channels in M are
available at every node. We use Mi to denote the set of
available channels at node i. We assume that the nodes on
the same channel use an existing multi-access MAC protocol
to access this channel.

We treat the geographical location of the network as a
rectangle, and divide the network into a set of square cells,
C = {ck|k = 1, 2, 3, ...}. The length of each cell side is L.
Each cell has a unique ID, based on its geographical location.
Each node knows the information of the network field (the
rectangle), and L. Since each node knows its location using
GPS, it is able to calculate which cell it is located in. The
length of L is related to the transmission range of each node:
L =

√
2
4 R, where R is the data transmission range of each

node. We will explain this setting later. We will adjust the
transmission range for virtual backbone construction. When
performing the end-to-end data transmission, the transmission
range used by each node is R.

The objective of our model is to construct a virtual backbone
without a CCC. Then, using the virtual backbone, the end-
to-end data transmission can be efficiently conducted. Our
approach contains three phases: 1) self-organization: nodes are
spontaneously organized into cells, and learn the information
of other nodes in the same cell with limited control message
exchange; 2) virtual backbone construction: cluster heads are
selected from each cell, and a subset of these cluster heads
forms into a virtual backbone, which ensures both coverage
and connectivity; 3) end-to-end data transmission: with the
help of the virtual backbone, an efficient scheme for end-
to-end data transmission is developed. We will introduce the
above three phases in the following three sections.

IV. SELF-ORGANIZATION

We introduce the process of self-organization in this section.
We first describe how two nodes can communicate without
a CCC. Then, the process of how nodes are automatically
organized in each cell is presented. We also give an analysis
regarding the success probability of self-organization.

A. IHC Selection
For the communication between nodes that have no infor-

mation about each other initially, we define two states for each

(a) cells and subcells

i

j

IHi

IHj

[IHi-1, IHj+1]

  channels

(b) channel hoppings

Fig. 3. Example of self-organization

node: active and passive.
Definition 1: A passive node is a node that keeps listening

and receiving at a given channel. An active node is a node that
guesses the channel that a passive node is on, and switches to
that channel to send data packets. A node alternates between
the active and passive states periodically.

For effective self-organization, it is critical to choose a
channel on which a passive node can listen. We call such a
channel for each node an initial home channel (IHC), which
is used for exchanging control messages initially. We describe
how to select an IHC next.

1) IHC Selection Algorithm: First, the whole channel set
M is divided into |C| segments. Cell ck is assigned a channel
segment. We let M(ck) denote this segment of channels for
cell ck. Since each node is equipped with GPS, it is able to
know its location, and the cell that it is currently in. Thus,
the node would also be able to know the channels segment
that is assigned to its current cell. Nodes in the same cell
would choose their IHCs from the segment of channels for
the cell. For node i, its IHC is denoted as IHi. The procedure
Pro1(i,M(ck)) for node i in cell ck to obtain its IHi is shown
in Algorithm 1, which uses a similar approach as in [9].

2) Segment Size: Sometimes it is impractical to simply
use |M |/|C| to decide the number of channels for each
segment. For example, if |M | = 16 and |C| = 16, then
each cell is assigned only 1 channel, which may result in
unsuccessful self-organization. Hence, we use a better method,
which can determine the size of the channel segment. We
define a threshold for the minimum number of channels for
each cell, λ. The value of λ can be chosen based on users’
needs. The smaller value of λ may result in that nodes in the
cell have fewer available channel choices. The larger value
of λ may pose complexities in the later information learning
phase. Then, the number of channels assigned to each cell
equals the following expression:

min (max (λ, |M |/|C|), |M |).

3) Segment Reuse: The channel segment needs to be reused
under some circumstances, such as when |C| is relatively large.
For example, if |M | = 16, |C| = 8, and λ = 2, then each
cell can only be assigned 2 channel. Nodes in the same cell
have only two channels for choosing, which may cause many
conflicts. Under such circumstances, the channel segment can
be geographically reused. In the above example, we can divide
M into a smaller number of segments, e.g., 4 segments. Then,
each cell is assigned with one segment. Obviously, some
cells would be assigned with the same segment. We assign
the adjacent cells with different channel segments. The same
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channel segment would be reused in cells that are not adjacent.
The constraint for reuse is to avoid two adjacent cells from

being assigned with the same channel segment. Our policy is
to have the cells with smaller indices choose channel segments
first, and the cells with higher indices choose channel segments
that are different from their adjacent cells with smaller indices.
This policy does not require adjacent cells communicate with
each other. This is because each cell knows the cell numbers
of adjacent cells, and it is able to calculate which channel
segments are assigned to the adjacent cells that have smaller
cell indices. The reuse policy is to move to the next channel
segment that is not the same as that of any adjacent cell with
smaller indices.

B. Information Learning and Self-Organization within a Cell

After IHCs are selected, the next step is to have nodes in
the same cell learn about each others’ information, for cluster
heads will be selected from each cell later. There are three
problems to address. The first one is how to determine the
states (active/passive) of different nodes. We assume that nodes
in the network are synchronized. Another problem is how an
active node can efficiently guess the IHCs of passive nodes.
The third problem is how to let nodes in the same cell learn one
another’s information, with limited control message exchange.
We will solve the three problems one by one.

1) Subcell Construction: To determine the state of each
node, we apply the subcell concept here.

Definition 2: A cell ck is divided into a set of square
subcells, Sk. Each subcell is in either the active or passive
state. Nodes in active subcells are active, and nodes in passive
subcells are passive. Two adjacent subcells are in different
states.

The size of each subcell is l < L, where L is the size of
each cell. The value of l can be adjusted to ensure that the
number of active nodes is similar to the number of passive
nodes. Fig. 3(a) is an example of cells and subcells. In this
example, the network is divided into four cells. Each cell is
divided into four subcells. The subcells marked as “A” are
active subcells, and the subcells marked as “P” are passive
subcells. We let each node know the value of l, and the initial
state settings of subcells are based on geographical locations
of the subcells. Therefore, it is able to calculate which subcell
it is located in, and switches to the corresponding state.

2) Channel Hoppings: For an active node to guess the IHCs
of passive nodes in the same cell, it first runs Algorithm 1
and gets its own IHC. Since they are in the same cell, their
calculated IHCs are based on the same channel segment. When
the IHCs of active nodes and passive nodes are different, active
nodes need to do channel hoppings until they reach the IHCs
of passive nodes.

We define a channel hopping range for active nodes. Sup-
pose node i is active, and node j is passive. They are in the
same cell, ck. We define an IHC for i, denoted as IHi. We
set a hopping range [IHi −∆M, IHi +∆′M ] for i to scan,
which means node i would scan ∆M channels down from
IHi and ∆′M channels up from IHi in Mi. Later on, we
will discuss how to analytically find ∆M and ∆′M so that the

self-organization process is successful, i.e., every node learns
the information of every other node in the same cell.

An example is shown in Fig. 3(b). Nodes i and j are
in the same cell, where i is active and j is passive. The
squares denote channels. Squares marked as grey are available
channels. IH(ck) is the middle channel, as shown in Fig. 3(b).
The ∆M and ∆′M here are both equal to 1. After searching
on [IHi − ∆M, IHi + ∆′M ], node i will find j’s IHj by
receiving ACKs from j.

3) Information Exchange and Self-Organization: Active
nodes send messages on the guessed IHCs of passive nodes.
If a passive node receives the request from an active node, it
would reply with an ACK. The transmission range used here
is: r0 =

√
2L. It ensures that a request from an active node

can cover the whole cell. In our model, only two steps are
needed for each node to know all other nodes’ information in
the same cell. Each node maintains two lists, La to store the
list of active nodes, and Lp to store the list of passive nodes.
The active node also maintains a list of channels with passive
nodes, Lc. Initially, La = ∅, Lp = ∅, and Lc = ∅. The
node information here contains the node ID and its location
in the network. The procedure for information exchange and
self-organization is:

1) Each active node scans the channel hopping range. For
each channel, it sends a request message containing its
information. Each passive node returns an ACK with
its own node information to every request it receives
on its IHC, and stores the active node’s information in
list La; upon receiving the ACK, the active node stores
the passive node information into list Lp, and stores the
corresponding IHC of the passive node into Lc.

2) After 1), each active node switches back to each channel
in Lc. The active node sends its passive nodes list Lp to
the passive nodes in this channel. On the other hand, the
passive node replies its list La to the active node. Note
that the active nodes are time-synchronized. If otherwise,
each active node needs to wait until all active nodes
complete channel hopping.

C. Success Probability of Self-Organization

In this subsection, we analyze the success probability of
self-organization, which is defined as the probability that a
node in a cell successfully learns the ID and other information
of another node in the same cell. In the self-organization
procedure, when an active node scans through the channels
to find passive nodes, it is still possible that the IHCs of some
passive nodes are not accessible by this active node. From
Section IV-B2, the channel searching range for an active node
is ∆M + ∆′M + 1 channels. Among the ∆M + ∆′M + 1
channels, let m denote the number of channels which are
available to the CRN communication. Let uk and vk denote
the mean busy and idle durations on the kth channel of
the ∆M + ∆′M + 1 channels. Let Xk = 1 or 0 denote
whether the kth channel is available or not. Xk follows the
Bernoulli distribution with parameter vk

uk+vk
. We assume that

the PU activities on different channels are independent. If
vk = v and uk = u for all k, then m =

∑∆M+∆′M+1
k=1 Xk
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Fig. 4. The self-organization success probability

follows the Binomial distribution with parameters v
u+v and

∆M+∆′M+1. Otherwise, m approximately follows a normal
distribution with mean

∑∆M+∆′M+1
k=1

vk

uk+vk
and variance∑∆M+∆′M+1

k=1
ukvk

uk+vk
. Furthermore, among the m channels,

not every channel is available to every node, due to the spatial
diversity of channel availability. Let p denote the probability
that a channel among the m channels is available to a node.
Next, we analyze the conditional success probability of self-
organization, given m and p. The unconditional success prob-
ability can be computed utilizing the Binomial distribution,
which m follows.

Lemma 1: Let Zjk denote the event that passive node j
selects the kth channel in the range [IHj−∆M, IHj+∆′M ]
as its home channel using Algorithm 1. Then the probability
of Zjk, denoted as β, is given as

β = Pr(Zjk) =
1
m (1− (1− p)m) . (1)

Note that β depends on m and p only, neither j nor k.
Let node i be an active node and node j be a passive node.

Let Ps denote the probability that node i can meet the passive
node j in the m available channels. Let Ñ denote the number
of passive nodes in the cell, and N̄ denote the number of
active nodes in the cell. We have the following theorem on the
self-organization success probability. The proof is presented in
Section 2 of the supplemental material.

Theorem 1: The Ps is lower-bounded as follows,

Ps ≥ 1− (1−mβp)min(Ñ,N̄). (2)

D. Estimation of Channel Hopping Range

Based on Theorem 1, we can find m that satisfies the
self-organization success probability requirement, for given
p, Ñ , N̄ . From m, we can find ∆M and ∆′M , the channel
hopping range in the self-organization. Fig. 4 illustrates the
self-organization success probability as a function of m. In
the simulation, we generate primary users on each channel
with random session requests. We can see that the analysis
results match the simulation results very well. When p = 0.9
and there are only 3 passive nodes and 2 active nodes, m = 3
makes the success probability as large as 0.99. If Ñ and N̄
are larger, the success probability is even larger, e.g., equal to
0.99999 for Ñ = 5 and N̄ = 5. Since the number of available
channels follows Binomial distribution B(j : v

u+v ,∆M +
∆′M + 1), as discussed in the preceding subsection, then the
channel hopping range ∆M+∆′M+1 ≈ mu+v

v . For instance,
if v

u+v = 0.6, which is a high spectrum utilization for primary
users, then the channel hopping range ∆M +∆′M + 1 ≈ 5.

i3

i5

L

j2j1
2
2
L

i1
i4

i2

Fig. 5. Example of backbone nodes selection.

Therefore, in the self-organization procedure, the active nodes
only need to scan about 5 channels to ensure that all nodes
will be found/connected (success probability close to 1).

V. VIRTUAL BACKBONE CONSTRUCTION

The next phase of our model is to construct the virtual
backbone. It is accomplished through two steps. The first step
is to select the cluster heads. The second step is to select
backbone nodes from the cluster heads.

A. Cluster Head Selection

The classical clustering approach [5] works as follows: (1)
all nodes are initially uncovered; (2) an uncovered node i
becomes a cluster head if it has the highest priority among
its 1-hop uncovered neighbors, including i; (3) the selected
cluster heads and its connected 1-hop neighbors are marked
as covered; repeat (2) and (3) on all uncovered nodes (if any).

In our model, the cluster heads are selected distributively
in each cell using the above approach, until every node, itself,
becomes a cluster head, or has one neighbor selected as its
cluster head. Based on our assumption, the transmission range
of each node can be adjusted. Here, we set the transmission
range for cluster head selection as: r1 = 2

√
2

3 L = 1
3R.

We can improve the head selection efficiency by utilizing the
information collected by nodes in the same cell. Since each
node learns about all other nodes’ IDs and locations in the
same cell from Section IV, it can run the classical clustering
approach by itself, without exchanging information with other
nodes. The priority we use here is the node’s ID. The node
with the lowest ID value has the highest priority. For example,
in Fig. 5, there are three nodes, i1, j1, and j2, in the upper
left cell. Since the three nodes already know each others’ IDs
and locations in one cell, they also know the nodes’ IDs and
locations within range r1 in one cell (r1 < L). Therefore, they
do not need to exchange any control message. All three nodes
would choose i as the cluster head after applying the classical
clustering approach distributedly.

Since our cluster heads are selected based on each cell,
they may differ from the results when running the clustering
approach in the whole network without any cell. We need to
prove that the coverage is unchanged in our algorithm. We use
H to denote the set of cluster heads. Please refer to Section 3
in the supplemental material for the detailed proof.

Theorem 2: The coverage remains unchanged if the cluster
heads are selected based on cells.
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B. Backbone Node Selection

After cluster heads are selected from cells, the next step
is to select the backbone nodes from cluster heads. Here, we
apply the approach in [5], consisting of two phases:

• Marking process: Each node is marked if it has two
unconnected neighbors; otherwise, it is unmarked.

• Pruning Rule: A marked node can unmark itself if its
neighbor set is covered by a set of connected nodes with
higher priorities.

The approach is to reduce the number of cluster heads and
construct the backbone, while ensuring the connectivity and
coverage. The process completes when the marking process
finishes, and there is no marked node that can perform the
pruning action. The marked cluster heads are the backbone
nodes. Details are in [5]. The priority among nodes still
depends on their ID. The remaining problem is how the cluster
heads exchange information with each other in order to run
the above marking process and pruning rule.

1) Cluster Head Communication: A cluster head needs
to exchange information with all cluster heads around it.
Therefore, it would exchange information with the eight cells
surrounding it. We set the transmission range used here as:
r2 = R, which is the same as the data transmission range R of
each node. This is for ensuring the coverage of cluster heads in
the eight surrounding cells, by the cluster heads in the central
cell. With r2 = R = 2

√
2L, it ensures that each cluster head

is able to reach the adjacent eight cells, which covers all the
cluster heads within r2 around it (since the longest distance
between two cluster heads in adjacent cells is 2

√
2L). For

example, node i5 in Fig. 5 is able to cover the upper left cell
using r2.

Since nodes in different cells use different cell IDs to
calculate their IHCs, cluster heads need to guess the IHCs
used by others in adjacent cells. For a h ∈ H that is located in
cell ck, it is not hard for h to guess the IHC of another cluster
head in H , which is located in the cell ck′ adjacent to ck. The
process for node h to send the request message to other cluster
heads in cell ck′ is in Algorithm 2. It uses Algorithm 1 to guess
the IHC of the cluster heads in cluster ck′ . For every channel
returned by Algorithm 1, cluster head h will broadcast request
messages through that channel, increasing the probability that
cluster heads in adjacent cells can receive the request message.

2) Efficiency Improvement: Because cluster heads are also
nodes in the network, they have active/passive states. A cluster
head sends a request message only when it is active. Cluster
heads in the same cell know each others’ information (ID,
location). To increase efficiency, the request message sent by
each active cluster head would include the information of all
the cluster heads in the same cell. Also, if a passive cluster
head receives a request message from its IHC, it replies a
message with the information of all cluster heads in its cell.
If a cluster head receives a request or reply message from an
adjacent cell, it would mark that cell as known. If no message
is received through the above process, the active cluster head
would back off and retry again later, until receiving the reply
or request message. The whole procedure continues for each
cluster head until the adjacent cells are all marked as known.

Algorithm 2 h sends requests to cluster heads in an adjacent
cell c′k
1. Temp = Mh

2. while Temp ̸= ∅ do
3. temp = Pro1(h,M(ck′)
4. h broadcasts a request message using temp
5. Remove temp from Temp
6. end while

For example, in Fig. 5, node i1 ∈ H is an active cluster
head, and wants to learn the cluster heads in the bottom left
cell. i2 and i3 are passive cluster heads in the bottom left cell.
If IHi2 /∈ Mi, then i1 cannot reach i2 directly. However, if
i1 can reach i3, it would receive a reply message from i3. i3
would send both i2 and i3’s information to i1. i1 would mark
this cell as known. i3 also marks the upper left cell as known,
based on the information in the request sent by i1. Then i3
shares the information with i2. Therefore, i2 also marks the
upper left cell as known.

3) Backbone Formation: After cluster heads in H learn
about the neighbor information in adjacent cells, they perform
the marking process and pruning rule, and then form the final
virtual backbone. Now we need to prove that the connectivity
and coverage is unchanged through constructing the backbone,
using our approach. We have the following theorem (the
detailed proof is in Section 4 of the supplemental file):

Theorem 3: For any nodes i and j, if they are connected in
the original network, they are both covered and still connected
through nodes in the backbone node set B.

VI. END-TO-END DATA TRANSMISSION

We first describe how each node chooses the data transmit-
ting channel and how the single-hop links are built. Then, we
propose a scheme of having a virtual backbone to calculate
the area route, and use multiple links to transmit data simul-
taneously within and between areas until the destination node
is reached.

A. Single Hop Transmission

To build single-hop links for the network, each node uses
the active/passive states. The home channel for passive nodes
here cannot be the same as the IHCs in the previous section.
This is to allow multiple links to transmit simultaneously. If
the active nodes transmit through the IHCs of the passive
nodes, the interference would be relatively high among links
nearby. This is because IHCs of nodes in the same cell, which
are geographically close, are selected from the same channel
segment. Therefore, we need to choose a new home channel
for every node to transmit, which is called transmission home
channel (THC).

1) THC Selection: We adopt the approach in [9] for the
nodes to choose THCs and guess the THCs of others, which
has minimal control overhead and is highly effective. Algo-
rithm 3 describes how to select the THC of node i with
the available channel set Mi, denoted as Pro2(i,Mi). Note
that Algorithm 3 is similar to Algorithm 1. The difference
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Algorithm 3 Pro2(i,Mi), to compute THC for node i

1. Set i as the seed for the pseudo-random number generator
Z.

2. Let Q = M // The total channel set
3. repeat
4. k = Z(|Q|) // Generate k such that 1 ≤ k ≤ |Q|
5. q = Q(k) // Q(k) is kth channel in Q
6. Q = Q\{q} // Remove q from Q
7. until q ∈ Mi

8. Return q // Selected THC

here is the value of Q. Here, Q equals M , instead of the
channel segment assigned to the corresponding cell. Also, the
algorithm has been deliberately designed to make the channel
estimation (to be discussed) highly successful. It has a subtle
difference from a naive random channel selection that simply
picks a channel from set Mi at random. This subtle difference
has a profound impact on the success probability of a node
estimating the home channel of another node. This has been
proven in [9].

2) THC Estimation: When an active node i wants to trans-
mit packets to a passive node j, it estimates the THC of node i
as Pro2(j,Mi), i.e., using node j’s ID, but node i’s accessible
channel set Mi as parameters. Then node i switches to channel
Pro2(j,Mi). If the intended receiver, node j, is in fact on
the estimated channel Pro2(j,Mi), then the rendezvous is
successful, and the packet transmission starts. Algorithm 3
has been designed to ensure that the successful probability of
the channel estimation, i.e., Pr(Pro2(j,Mi) = Pro2(j,Mj)),
is high. This is also proven in [9]. This approach does not
require any exchange of control messages, which significantly
streamlines the communication and reduces overhead.

3) State Sequence Generation: After each node has its THC
selected, we need to decide the active/passive state sequences
over a time period. There is a potential issue: when node i
switches to the THC of node j to send packets, node j itself
has switched to the home channel of another node. To resolve
this issue, we adopt an approach similar to [14], and consider
two variants, depending on if a node knows the number of
nodes in its single-hop neighborhood. Since each node in our
network is equipped with a GPS device, the cognitive radio
is programmed to have the GPS waveform so that each node
can receive the GPS signal to have a common time reference,
i.e., all nodes are time-synchronized while operating in time-
slotted mode.

Variant 1: The node does not know the number of nodes in
its single-hop neighborhood. This happens when the number
of nodes in the neighborhood changes dynamically, and we do
not want to have overhead or incur a control structure to keep
track of the number of nodes at each node. In this case, we let
node i use a function g(i, t) to compute its state in time slot t.
The function g(•) is a pseudo-random number generator that
uses i and t as the seeds to generate a random number, either
0 or 1. If g(i, t) = 1, then node i is a passive node in slot
t, and stays on its home channel in this slot. If g(i, t) = 0,
node i is an active node in slot t. It selects a passive node and

switches to the home channel of the selected passive node for
packet transmission. Note that node i knows whether another
node, say node j, is a passive node, by calling the function
g(j, t) to find the status of node j.

Variant 2: Each node knows the number of nodes in its
single-hop neighborhood. If we know n = |N |, which is the
number of nodes in the network, then we can generate the
node status, such that the number of passive nodes and the
number of active nodes are balanced, to maximize throughput.
Specifically, in time slot t, every node uses a pseudo-random
number generator function g′(t, n) that uses t as the seed to
generate the states for all n nodes, denoted as [g1, g2, . . . , gn]
with gi = 1 or 0, denoting that node i is a passive or an active
node. To balance the number of passive nodes and the number
of active nodes, we let the pseudo-random number generator
continue to generate [g1, g2, . . . , gn] until

∑n
i=1 gi =

⌈
n
2

⌉
;

i.e., the number of passive nodes is
⌈
n
2

⌉
. Note that as every

node uses the same seed t, every node would need exactly
the same number of rounds of the pseudo-random number
generator to get

∑n
i=1 gi =

⌈
n
2

⌉
. Hence, the [g1, g2, . . . , gn]

generated by each node is still the same. With the number
of passive nodes being equal to

⌈
n
2

⌉
, the spreading of both

passive and active nodes into different channels is maximized,
which maximizes the number of simultaneous transmissions
(on different channels) and, hence, the throughput.

B. Multihop Transmission

After the single-hop links are built, to implement the end-
to-end data transmission, the source node needs to know the
route to reach the destination. If the source node calculates a
route of individual nodes, the overhead and delay would be
very high. With the virtual backbone structure, we can provide
an efficient multihop transmission scheme.

1) Area route: Since the virtual backbone is connected and
covers the whole network, the backbone node that the source
node is attached to can calculate an area route from the source
area to the destination area.

Definition 3: The area route is a set of areas, through which
the source node must pass to reach the destination node. Each
area is a set of a backbone node and all the nodes attached to
it.

As shown in Fig. 2, the area route from source S to
destination D is A1 → A2 → ... → Ak. Source S belongs
to A1 and destination D belongs to Ak. The backbone node
only needs to communicate with other backbone nodes until
reaching the backbone node, to which the destination node is
attached. The overhead for a backbone node to calculate the
area route is much less, compared to the one in which the
source node calculates the full path to reach the destination.
We can apply any classical routing algorithm among backbone
nodes to calculate the area route.

2) Intra-area Data Transmission: For data transmission
within a single area, since each node knows the number of
nodes in the area, it applies the Variant 2 in the preceding
subsection to generate its state: 1) based on the border nodes
schedule, each node knows the number of nodes in this area in
the current time slot. Let N ′ denote this number; 2) each node
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generates the node status [g1, g(2), . . . , gN ′ ]; 3) if gi = 0, then
node i is active, and otherwise, node i is passive, and selects
its THC to keep listening; 4) the active node selects a passive
node, e.g., based on the first packet of the packet queue, and
switches to the estimated THC of the passive node.

3) Inter-area Data Transmission: For data transmission
between different areas, we need to design an active schedule
for different areas. We make use of the gateway nodes here.
If a node is at the border of two or more areas, then it
is a gateway node. To select the gateway nodes, we can
set a threshold of the distance differences from a node to
two backbone nodes. If the distance difference is within the
threshold, then the node becomes a gateway node. This can
be easily implemented, since each node has the GPS device,
and knows its own location, as well as that of the backbone
nodes.

A gateway node needs to communicate with all nodes of
each area it belongs to. Except the gateway nodes, a node
communicates with the neighbors in the same area only, even
though it can reach nodes in another area. A gateway node se-
quentially joins the areas it belongs to. Let {A1, A2, . . . , Ak}
denote the set of the areas that a gateway node, i, belongs to.
At time slot t, i would join area Ak1

where k1 = (t mod k)
+1. When i joins area Ak1 (1 ≤ k1 ≤ k), the nodes in area
Ak2

(k2 ̸= k1, 1 ≤ k2 ≤ k) know that node i is not in area
Ak2 , by the control information from the backbone node, and
hence do not try to communicate with node i. Nodes from an
area would send the data to a gateway node when it joins this
area. Then, after the gateway node joins another area, it would
forward the information received in the previous area to the
nodes in the current area.

The use of gateway nodes can improve the performance
in two aspects. First, the throughput is increased, because
there can be several gateway nodes in one area; hence, there
can be simultaneous data transmissions on different channels
between multiple nodes and the gateway nodes, as well as
between gateway nodes themselves. Second, the backbone
nodes only need to calculate area routes, and there are no data
packets being forwarded through the backbone nodes. Hence,
the traffic loads on the backbone nodes are minimized, which
avoids the congestion at the backbone nodes if all traffic has to
go through the backbone nodes. The packet delay is reduced
as well. The theoretical analysis of the capacity between an
active node and a passive node, and the capacity of an area,
are given in Sections 5 and 6 of the supplemental material.

VII. PERFORMANCE EVALUATION

In this section, we present the simulation settings and results
for our model. The simulation results testify our model.

A. Simulation Settings

We distribute nodes in a 200 × 200 unit square. The cell
size is set as 50 × 50. We also generate 40 PUs, which are
randomly active. The PUs are randomly distributed in the unit
square. When the PU is active, it occupies one channel from
the total channels. The interference range of the PU is set as
30. We vary the following two network parameters.
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Fig. 6. Average number of channel hoppings for different detection
probabilities.

1) number of nodes: 100 ∼ 200 with an increment of 20;
2) number of channels: 80 ∼ 160 with an increment of 40.
We first evaluate the performance of self-organization. Then

we compare the throughput and delay with the approach in [9],
which does not have a virtual backbone construction.

B. Simulation Results

The simulation results are presented from three aspects,
based on the three categories above.

1) Performance of our model: We first show the cost of
self-organization in terms of the average number of channel
hoppings for an active node to reach a passive node in
Figs. 6(a) and 6(b). We compare the average number of
channel hoppings with three different channel busy time ratios,
i.e., u

u+v = 0.4, 0.6, and 0.8. The results show that the number
of channel hoppings for all cases are less than 5, which verifies
the analysis in Section IV-D. Fig. 6(a) shows that when the
number of nodes increases, the number of channel hoppings
increases slowly. Fig. 6(b) actually has a slight increment in
the number of channel hoppings when the number of channels
increases. However, the increase of the channel availability
does not have a huge influence on the number of channel
hoppings. This is because of simulation settings. Even the
minimum number of channels here is sufficient for one cell to
have enough channels to ensure high success probabilities, as
proved in Section IV-C.

Next, we set the number of nodes as 100 and the number of
total channels as 80. Also, we show the process of backbone
node selection using our model. The process is shown in Fig. 7.
Fig. 7(a) shows the nodes distribution in the network with cell
divisions. In Fig. 7(b) the square nodes are the selected cluster
heads from each cell. Fig. 7(c) shows the selected backbone
nodes (the diamond ones).

2) Comparison with other models: We implement the
algorithm in [9], which does not have a virtual backbone
construction, and compare it with our approach. In the network
without a virtual backbone, each node does not know the
number of nodes in the network, and uses the Variant 1 in
Section VI to reach their next hop. Also, since no virtual
backbone exists, the source needs to calculate the route to
the destination itself.

The comparison results of throughput are shown in Figs. 8.
The throughput is the average throughput for all the active
sessions in the network. In Fig. 8(a), the throughput at the
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Fig. 7. Process of a backbone construction.
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Fig. 8. Comparison of average throughput for different models.
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Fig. 9. Comparison of average delay for different models.

first 6 time slots are shown. The one with the virtual backbone
structure increases faster than the one without the virtual back-
bone over time. At the 6th time slot, our approach achieves
almost 1.6 times over the one without virtual backbone. In Fig.
8(b), the results show that the throughputs of both approaches
increase slowly when the number of nodes increases. In Fig.
8(c), the throughput of both approaches increases while the
number of channels increases. Overall, the throughput with
the virtual backbone structure is much larger than the one
without a virtual backbone structure.

Moreover, we compare the packet delay between the two

approaches. The results are shown in Figs. 9. In Fig. 9(a), we
vary the number of active sessions, while setting the number
of nodes as 100. The delay in both approaches increases,
when the number of active sessions increases. The delay for
the approach without the virtual backbone structure increases
more rapidly. In Fig. 9(b), the delay in both approaches
decreases, as the number of nodes increases. Nevertheless, the
speed of delay decrement becomes slower as the number of
nodes increases. This happens when there are more nodes,
the average number of channels available to each node is
smaller. In Fig. 9(c), we vary the number of total channels
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Fig. 10. Average capacity.

in the network, while setting the number of nodes as 100. The
results show that when the number of total channels increases,
the delay decreases for both approaches. Overall, the delay of
the approach with the virtual backbone structure is less than
the one without a virtual backbone structure.

3) Area capacity evaluation: We also perform the simu-
lation regarding the capacity between an active node and a
passive node in one area, and also the average capacity of
a forwarding area. The simulation results are presented to
be compared with the analysis results. First, we simulate the
capacity between an active node and a passive node within
the same area. We increase the average number of nodes in
a single area from 10 to 60. Other settings remain the same
as in the above parts. We evaluate the mean capacity between
an active node and a passive node. The results are shown in
Fig.10(a). The capacity decreases as the number of nodes in
a single area increases. Fig. 10(b) is the function graph of the
capacity regarding the total number of nodes in one area. The
number of gateway nodes is set to be half of the total nodes
in each area. The simulation results are also shown in the
same figure. The two lines have the similar values and trends,
which testify our analytical results. The gateway nodes, G, G′,
are set to 0.25 of the number of nodes in one area. The value
of I is set to be 0.5 of the number of nodes in one area.
There are gaps in both figures regarding the analysis results
and the simulation results. This is because the channel set of
each node in the simulation is different, due to the location of
primary users nearby. Some links cannot be built because of
the primary users.

VIII. CONCLUSION

In this paper, we propose an approach regarding how to
construct a virtual backbone in CRNs. Our approach does not
rely on a common control channel (CCC) for coordination
among different nodes. Each node makes use of the location
information and adjustable transmission range for the virtual
backbone construction. We let each node choose its own
channel for data transmission, and reduce the interference
among different links. We analyze the success probability of
two nodes selecting the same channel for initial transmission.
In addition, we propose an efficient scheme for end-to-end data

transmission. We select gateway nodes to reduce the overhead
among backbone nodes. The simulation results verify our
theoretical analysis. In comparison to another model without
a virtual backbone, the improvement in the efficiency of our
approach is proven.
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