

AoI-aware Incentive Mechanism for Mobile Crowdsensing using Stackelberg Game

Mingjun Xiao¹, Yin Xu¹, Jinrui Zhou¹, Jie Wu², Sheng Zhang³, and Jun Zheng¹

¹University of Science and Technology of China ²Temple University ³Nanjing University

Background & Motivation

>Related Work & Problem Formulation

Basic Idea & Solution

Evaluation & Conclusion

Air Pollution Monitoring

Intelligent Transportation

Weather Monitoring

Indoor Management

Applications for Mobile CrowdSensing (MCS) systems

Definition of Age of Information (AoI) : how old the freshest received update is, the elapsed time of data from being collected by the worker to being received and processed by the platform currently.

Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, N. B. Shroff, "Update or Wait: How to Keep your Data Fresh," IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

Background & Motivation

Related Work & Problem Formulation

Basic Idea & Solution

Evaluation & Conclusion

Goal: Incentive mechanism design while considering data freshness and social networks

AoI optimization

[5] Z. Dai, et al., Aoi-minimal UAV crowdsensing by model-based graph convolutional reinforcement learning, INFOCOM2022

[6] R. D. Yates, et al., The age of information: Real-time status updating by multiple sources, TIT2019

Design with social network effects [4] M. H. Cheung, et al., Make a difference: Diversity-driven social mobile crowdsensing, INFOCOM2017

Pricing issue with AoI concerns

Auction, Game, Contract, DRL...
[1] X. Chen, et al., Timeliness-aware incentive mechanism for vehicular crowdsourcing in smart cities, TMC2022.
[2] B. Li , et al., Achieving information freshness with selfish and rational users in mobile crowd-learning, JASC2021.

Incomplete game

[3] Q. Xu, et al., Game theory and reinforcement learning based secure edge caching in mobile social networks, TIFS2020

Problem Formulation

System Model

- Workers {1,2,...,N}: collect and uploads the data to the platform with data update frequency p_i
- Unit-Reward R_i : the reward per data update frequency paid to worker $i \rightarrow \mathcal{R} = \{R_1, R_2, ..., R_N\}$
- Average AoI: the time elapsed since the worker collects this data, $\delta_i(t) = t U_i(t) \rightarrow \overline{\delta_i}$
- Social networks: an adjacency matrix $[v_{ij}]_{N*N}$; v_{ij} is the social influence of worker *j* on worker *i*.

Problem Formulation

➢ Worker's Utility: the reward + social benefits − cost

$$\Omega_{i}(p_{i}, P_{-i}) = R_{i}p_{i} + \Psi_{i}(p_{i}, P_{-i}) - s(ap_{i}^{2} + bp_{i}).$$
The quadratic the cost function to collect data
The reward that the platform pays to worker i Social benefits caused by the social network effects
$$\Psi_{i}(p_{i}, P_{-i}) = \sum_{j \in N_{i}} v_{ij} p_{i}p_{j}$$

> Platform's Utility : the income that it can gain from all collected data – the total payments

$$\Phi = \eta \sum_{i=1}^{N} (cp_i - dp_i^2) - \sum_{i=1}^{N} R_i p_i.$$
Income: a linear-quadratic function of the data update frequencies of all workers

Problem Formulation

Two-stage Stackelberg game : the platform is the leader and the workers are the followers

Ga	me	Stage Stage	$I \text{ [Leader Game]:} \Phi(p_i^*, R_i^*) \ge \Phi(p_i, R_i)$ $II \text{ [Follower Game i]:} \Omega_i(p_i^*, R_i^*) \ge \Omega_i(p_i, R_i)$ $\text{Subject to :} \delta_i(p_i, P_{-i}) \le \varepsilon, \forall i \in \mathcal{N}$ $\sum_{i=1}^N p_i \le \hat{p}$	 1'AoI constraint 2' Total data update frequency constraint
	 Incomplete Information Bayesian Sub-Game: □ The set of players i→ a set of N workers; □ The action of player i → the data update frequency p_i; □ The type of player i → the social network effects; □ The payoff of player i with its type and its action → the utility Ω_i; 			

Background & Motivation

>Related Work & Problem Formulation

≻Basic Idea & Solution

Evaluation & Conclusion

1 Characterizing AoI of Data

- Derive AoI for a single worker
- Derive AoI for Multiple Workers:
 - -- neighbors influence
 - -- competitive N sources system
 - -- the closed-form expression of average AoI of data

Solving the Leader Game

- Rewrite the utility function:
 - -- substitute $p^*(f)$ to Φ
 - -- AoI and total frequency constraint
 - -- Karush-Kuhn-Tucker (KKT) conditions
- Optimal unit-reward $R^*(f)$

Solving the Follower Game **2**

- Graph theory → Degree of a node f
 → the type of the worker
- Rewrite the utility function:
 - -- the degree distribution
 - -- average strategy of neighbors
- Optimal data update frequency $p^*(f)$

Algorithm & Analysis

- 4
- Propose the AoI-Aware Incentive (AIAI) mechanism
- Follower game
 - -- Bayesian Nash Equilibrium
- Unique Stackelberg equilibrium

Characterizing AoI of Data

Solving the Follower Game

Step 1

• Derive the expected utility of each worker

$$\omega_i(p_i, P_{-i}, \mathcal{R}) = \mathbb{E}[\Omega_i(p_i, P_{-i}), \mathcal{R}]$$

- $= R_i p_i + \upsilon p_i \mathbb{E}\left[\sum_{j \in \mathcal{N}_i} p_j\right] (a p_i^2 + b p_i)s.$
- Worker's type \rightarrow the degree: $\omega_i(p_i, P_{-i}, \mathcal{R}) = R_i p_i + \upsilon p_i f \overline{P_{-i}} - (a p_i^2 + b p_i) s.$

Step 2

- Degree distribution: F(f)
- Derive the utility of the worker with degree f $\omega_f(p(f), P_{-f}) = R(f)p(f) + vp(f)f\overline{P_{-f}} - (ap^2(f) + bp(f))s.$
- Bayesian Nash Equilibrium, BNE: $\Gamma_i(\psi_i) \in argmax_{p_i \in \mathcal{P}_i} \Omega_i(p_i, \Gamma_{-i}, \psi_i, \psi_{-i}).$

Step 4

• Given any unit-reward R(f), the closedform expression of the action:

$$p(f) = \frac{1}{2as}R(f) - \frac{b}{2a} + \frac{\upsilon f(\overline{R} - bs)}{2as(2as - \upsilon \overline{f})}$$

Step 3

- Apply the partial derivative: $\frac{\partial \omega_f(p(f), P_{-f}, \mathcal{R})}{\partial p(f)} = R(f) + v f \overline{P_{-f}} - (2ap(f) + b)s.$
- Derive the average data update frequency of neighbors $\overline{P_{-f}}$

 $\overline{P_{-f}} \approx E[p(l)||l \in G] = (\overline{R} - bs)/(2as - \upsilon \overline{f})$

Solving the Leader Game

Algorithm 1: The AIAI mechanism						
input : degree distribution $F(f)$, worker <i>i</i> 's degree <i>f</i> , and						
some public parameters a, b, c, d, η, s ;						
output: $R^*(f)$, $p^*(f)$, Φ^* , and Ω_i^* ;						
1 Platform: Determine its tentative optimal strategy (i.e., the	> The leader (i.e. the platform) gives its strategy					
unit-reward $R^*(f)$) according to Eq. (31);	[The leader (i.e., the platform) gives its strategy					
2 for each worker $i = 1 \in \mathcal{N}$ do						
3 Determine its tentative strategy (i.e., the data update	$ \rightarrow$ 'each follower (i.e. worker) determines					
frequency $p_i^*(f)$ based on $R^*(f)$ and Eq. (32);						
4 if $\delta_i(p_i, P_{-i}) \leq \varepsilon$ for $\forall i$ then	its strategy based on the strategy of the platform					
5 if $\sum_{i=1}^{N} p_i \leq \hat{p}$ then						
6 Platform: Obtain Φ^* according to Eq. (33);						
7 Worker <i>i</i> : Obtain Ω_i^* according to Eq. (34);	Case I: $\zeta_1 \neq 0, \zeta_2 = 0$					
8 else Solving Eq. (36) and $g'(R(f)) = 0 \Rightarrow R^*(f);$						
9 Platform: Update its strategy as $R^*(f)$;						
10 Worker <i>i</i> : Update $p_i^*(f)$ based on $R^*(f)$;	$ \rightarrow \text{Case 3: } \zeta_1 = 0, \zeta_2 \neq 0$					
11 Calculate Φ^* and Ω_i^* based on Eqs. (33) and (34);						
12 else						
13 if $\sum_{i=1}^{N} p_i \leq \hat{p}$ then	$ \rightarrow 1 Case 2: 7. \neq 0, 7_2 = 0$					
14 Solving Eq. (35) and $\partial \mathcal{L}/\partial R(f) = 0 \Rightarrow R^*(f)$;	$ \zeta_{1}^{2} \zeta_{2}^{2} \zeta_{1}^{2} \zeta_{1}^{2} \zeta_{2}^{2} \zeta_{2}^{2} \zeta_{1}^{2} \zeta_{2}^{2} \zeta_{1}^{2} \zeta_{2}^{2} \zeta_{1}^{2} \zeta_{2}^{2} \zeta_{1}^{2} \zeta_{1}^{2}$					
15 else Solving Eq. (37) $\Rightarrow R^*(f);$	$ \rightarrow \int C_{\text{aso}} d \cdot Z \rightarrow 0 Z \rightarrow 0$					
Platform and Workers: Update $p_i^*(f), R^*(f), \Phi^*, \Omega_i^*$;	$\zeta_{1} \subset \zeta_{1} \neq 0, \zeta_{2} \neq 0$					

Lemma

 \checkmark The follower game exists at least one pure Bayesian Nash Equilibrium.

Proof: $\partial^2 \omega_i(p_i, P_{-i}, \mathcal{R}) / \partial p_i \partial \overline{P_{-i}} = vf > 0,$ $\partial^2 \omega_i(p_i, P_{-i}, \mathcal{R}) / \partial p_i^2 = -2as < 0.$ The follower game meets the Single Crossing Property of Incremental Returns.

Theorem

- ✓ The optimal incentive strategy (*R**(*f*),*p**(*f*)) determined by the AIAI mechanism constitutes the unique Stackelberg equilibrium while satisfying AoI constraints.
 Proof:
- The platform in Stage I uniquely determines $R^*(f)$: only associated with the constant input

Given $R^*(f)$, workers can pick their optimal data update strategies No one can improve its own utility by deviating from the optimal strategy during the process.

Background & Motivation

>Related Work & Problem Formulation

Basic Idea & Solution

Evaluation & Conclusion

Experimental Settings

Real Dataset

- ◆ Chicago Taxi Trips taxi driver → worker
- ◆ SNAP (Gowalla)
 mobile users → social friendship

Compared Algorithms

- \blacklozenge Auction-based algorithm
- ◆ Contract-based algorithm
- ◆ AIAI-NS mechanism

Parameter settings

- N ranges from [50, 300]
- The conversion parameters s and η change from [6, 20] and [7, 10]
- ♦ a=5, b=1, c=40, d=5, s=6

Evaluation Metrics

- ♦ AoI
- Worker/Platform's Strategy
- ♦ Worker/Platform's Utility

Honore and Technick

□ The existence of the Stackelberg equilibrium for the platform:

Influence of the strategy of the platform under different *d*

Influence of the strategy of the platform under η

□ The existence of the Stackelberg equilibrium for workers:

Influence of the strategy of the worker under different *a*

Influence of the strategy of the worker under *s*

□ Influence of the number of workers and the strategy of the platform:

Utility of the platform under different N
 → Increasing N can improve the profit of the platform

Utility of the worker under different PS
→ Investing more money can incentivize each worker to update data

D Different incentive mechanisms and varied parameters

- ✓ We investigate the MCS incentive mechanism design issue with AoI guarantee and social benefits.
- ✓ We derive the optimal strategies of this game and prove that these optimal strategies form a unique Stackelberg equilibrium.
- ✓ Extensive simulations on realworld traces validate its great performance.

 ✓ We model the problem as a twostage Stackelberg game, embedded with an incomplete information Bayesian sub-game.

We propose the AIAI mechanism
 -- the platform and workers can obtain their optimal utilities;
 -- meet the AoI constraint.

Thank you for your attention!

Question?

Yin Xu xuyin218@mail.ustc.edu.cn

