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Abstract—Mobile CrowdSensing (MCS) is a mobile computing
paradigm, through which a platform can coordinate a crowd
of workers to accomplish large-scale data collection tasks using
their mobile devices. Information freshness has attracted much
focus on MCS research worldwide. In this paper, we investigate
the incentive mechanism design in MCS systems that take the
freshness of collected data and social benefits into concerns. First,
we introduce the Age of Information (AoI) metric to measure
the freshness of data. Then, we model the incentive mechanism
design with AoI guarantees as a novel incomplete information
two-stage Stackelberg game with multiple constraints. Next, we
derive the optimal strategies of this game so as to determine the
optimal reward paid by the platform and the optimal data update
frequency for each worker. Moreover, we prove that these optimal
strategies form a unique Stackelberg equilibrium. Based on the
optimal strategies, we propose an AoI-Aware Incentive (AIAI)
mechanism for the MCS system, whereby the platform and all
workers can maximize their utilities simultaneously. Meanwhile,
the system can ensure that the AoI values of all data uploaded to
the platform are not larger than a given threshold to achieve high
data freshness. Extensive simulations on real-world traces are
conducted to demonstrate the significant performance of AIAI.

Index Terms—Mobile Crowdsensing, Incentive Mechanism,
Age of Information, Stackelberg Game

I. INTRODUCTION

With the explosive spread of smart mobile devices, Mobile
CrowdSensing (MCS) has become an attractive paradigm of
data sensing and collection. A typical MCS system consists
of a collection of mobile users (a.k.a., workers) and a cloud
platform, through which service applicants can publish their
sensing tasks and employ workers to finish these tasks by
using their mobile devices (e.g., smartphones, wearables, etc.)
[1]–[4]. Due to users’ distribution and mobility as well as
the diversity of sensors embedded in mobile devices, MCS
can accomplish many large-scale sensing tasks that individuals
cannot cope with. Thus, it has stimulated extensive applica-
tions, such as traffic data collection, air pollution monitoring,
seismic amplitude sensing, etc [5]. Moreover, much effort has
been devoted to investigating diverse MCS issues, including
task allocation [6]–[8], privacy-preserving approaches [9]–
[11], incentive mechanism design [12]–[15], and so on.

In this paper, we focus on the incentive mechanism design
for MCS with the concerns on the freshness of sensing data
and workers’ social benefits. Consider such a scenario that
the platform incentivizes some workers via social networks to

periodically collect the desired data (e.g., traffic data) from a
group of Points of Interest (PoIs), so as to provide data services
for MCS requesters [4], [5]. Since data valuation and service
quality largely depend on the timeliness of data, the platform
will try to collect the data with sufficient freshness. More
precisely, the platform will ensure that the Age of Information
(AoI) values of all collected data are not larger than a certain
threshold. Here, AoI, i.e., the elapsed time of data from being
collected by the worker to being received and processed by the
platform currently, is a widely-used application-independent
metric to indicate data freshness [16]–[19]. On the other hand,
the workers in the MCS system are social network users so that
they can share their collected data with each other to obtain
extra social benefits [20]–[23]. For example, when a worker’s
trajectory of collecting data covers its social neighbors’ PoIs,
it might piggyback to collect data for the neighbors, which can
save their data collection time and costs as well as improve
its own social reputation. Then, an important issue is how to
design the incentive mechanism to maximize the utilities (i.e.,
net profits) of the platform and workers simultaneously while
taking the above two concerns into consideration.

There are two major challenges in the above-mentioned
incentive mechanism design issue. First, the platform wishes
to collect fresh data as much as possible, so the system needs
to stimulate workers to frequently update their collected data
on the platform (i.e., collect and upload the latest data copy
to the platform). When workers increase their data update
frequencies, the collected data will become fresher and the
corresponding AoI values will become smaller, yielding higher
data valuation and service quality. However, it will also incur
larger data collection costs for workers. Therefore, there must
be an optimal trade-off on the data update frequencies of all
workers that needs to be addressed. Second, when workers fre-
quently update their data, it might produce a congestion due to
the limited communication and processing capabilities of the
platform. Thus, there exists a game among workers to compete
for data update through queueing, which needs to be addressed
in designing the payment strategy of the incentive mechanism.
Meanwhile, since workers can bring extra social benefits to
the whole system by sharing their data with each other, their
social relationships need also to be considered. However, the
social relationships are generally unknown or incomplete to



the platform in many real-world MCS applications. Therefore,
the incentive mechanism involves an incomplete information
game, making the design much more challenging.

So far, a wide spectrum of incentive mechanisms has been
designed for MCS systems by leveraging different technolo-
gies, including auction theory, Stackelberg game, Bayesian
game, etc. [12]–[14], [24]–[26]. However, most of them have
not discussed the freshness of collected data. Only a few
works have studied the pricing issue with AoI concerns [16]–
[19], e.g., the authors in [18] proposed a linear AoI-based
reward mechanism. However, none of these works investigate
the incentive mechanism design with the concerns of AoI and
workers’ social benefits, which actually involves an incomplete
information game with the AoI constraint. Besides, although
there have been many researches that devote their efforts to
addressing diverse AoI optimization problems [27]–[30], these
solutions also cannot be applied to deal with our problem.

To address the above challenges, we model the incentive
mechanism design issue as a two-stage Stackelberg game, in
which the platform is seen as the leader and workers are
treated as the followers. Meanwhile, we model the data update
competition among the workers with social benefits as an
incomplete information Bayesian sub-game. Besides, we also
append the AoI constraint for workers’ data collection as well
as the constraint on the total data update frequency incurred
by the limited resources on the platform side to the Stack-
elberg game. By means of the Karush-Kuhn-Tucker (KKT)
conditions and a backward deduction approach, we derive an
optimal solution for this incomplete information Stackelberg
game with constraints, based on which we further propose
an AoI-Aware Incentive (AIAI) mechanism. More specifically,
our major contributions are summarized as follows:
• We propose the AIAI mechanism for MCS systems, which

not only can ensure the platform and all workers to obtain
their maximum utilities, but also can make the AoI value of
each worker’s data uploaded to the platform no larger than a
given threshold. To the best of our knowledge, this is the first
MCS incentive mechanism that takes the AoI values of data
and workers’ social benefits into account simultaneously.

• We introduce the AoI metric into the incentive mechanism
design of MCS systems, and derive the closed-form expres-
sion for the AoI of the data that each worker uploads to the
platform where workers’ social influences with each other
are also taken into consideration.

• We model the incentive mechanism design problem as a
novel incomplete information two-stage Stackelberg game
with constraints. We derive the optimal strategies for this
Stackelberg game to determine the reward and the data
update frequency for each worker. Moreover, we prove that
the optimal strategy forms a unique Stackelberg equilibrium.

• We conduct extensive simulations on real-world traces to
demonstrate the significant performance of AIAI.

II. SYSTEM MODEL & PROBLEM
A. System Model

We consider a typical MCS system, which consists of a
platform on the cloud and a crowd of workers, as illustrated

Fig. 1. System Overview

in Fig. 1. The platform has a long-term sensing task, e.g.,
collecting the latest traffic data from some PoIs. The workers,
denoted by N ≜ {1, 2, . . . , N}, are some social network users
who are willing to share data with each other to obtain extra
social benefits, e.g., save data collection time and cost by
piggyback, improve social reputation, and so on [20]–[23]. In
the beginning, the platform publicizes the task and the corre-
sponding requirements to all workers. Next, the platform and
workers will jointly determine an incentive mechanism. More
specifically, they will determine the data update frequency for
each worker and the payment strategy. After that, each worker
will perform the sensing tasks and will continuously collect
data from some specified PoIs. Note that, the data is packed
into packets of fixed-size. Meanwhile, the worker will collect
and upload the latest data to the platform with the update
frequency determined in advance. The platform will repeatedly
receive the data uploaded from each worker, conduct a data
cleaning process, and use the cleaned data to update the last
version of this data (or directly store this cleaned data if it is
the first version). Finally, the platform will periodically pay the
reward to each worker according to a pre-determined strategy,
until the whole sensing task is completed.

In the above MCS system, the platform will store the latest
data copy uploaded by each worker in its cache. Meanwhile,
to avoid conflicts, the platform will maintain a queue for
cleaning the data from different workers. The queue of data
cleaning adopts the First-Come-First-Service (FCFS) strategy.
In order to avoid congestion in the queue, the platform needs
to ensure that the total data updating frequency is not larger
than a specified threshold. In addition, the platform wishes the
collected data as fresh as possible. Therefore, it will record the
AoI value of data uploaded by each worker and also try to keep
the AoI values within a given threshold. For clarification, we
define some important concepts and notations as follows.

Definition 1 (Data Update Frequency and Total Frequency).
The data update frequency of worker i refers to the frequency
that the worker collects and uploads the data to the platform,
denoted by pi. We let P ≜ (p1, p2, . . . , pN ) and P−i (i ∈
N ) denote the data update frequencies of all workers and all
workers except worker i, respectively. Moreover, we assume
that the total data update frequency of all workers is not larger
than a constant p̂, i.e.,

∑N
i=1 pi ≤ p̂.

Definition 2 (Unit-Reward). The reward that the platform
pays to each worker i (i ∈N ) is proportional to its data update
frequency. We call the reward per data update frequency
paid to worker i as the unit-reward, denoted as Ri. Let
R = {R1, R2, ..., RN} be the unit-rewards to all workers.



Definition 3 (Age of Information, AoI). AoI of data is
the time elapsed since the worker collects this data. More
specifically, AoI of the data that a worker i (i ∈N ) uploads to
the platform (also called worker i’s data, or data i, for short)
is actually the difference between the current time t and the
creation time Ui(t) of this data, defined as follows:

δi(t) = t− Ui(t). (1)
Note that, each worker may need to collect data from

multiple PoIs along a planned trajectory, so the collection time
should be considered in δi(t). Moreover, if data i has been
updated to the platform multiple times, Ui(t) actually refers
to the creation time of the latest version of this data.

Definition 4 (Average AoI and AoI Threshold). Since the
AoI of data might change over time, the average AoI will be
adopted in practice. For a time interval of observation (0, T ),
we define the average AoI of data i as follows:

δ̄i =
1

T

∫ T

0

δi(t)dt. (2)

Actually, δ̄i,∀i ∈N can be seen as a function of pi and
P−i, so we will occasionally adopt the notation δi(pi, P−i)
to replace δ̄i for clarify. In addition, we set a threshold ε to
restrict the average AoI of each data.

Definition 5 (Social Benefits [20]–[23], [25]). The workers
are assumed to be social network users, so that they can share
data with each other via the social network and gain the social
benefits from shared data. More specifically, a worker can
receive an extra income caused by the data shared by its social
network neighbors (See Eq. (3)). Meanwhile, the worker might
also ask neighbors to piggyback its desired data which are
exactly close to them so as to save the data collection time
(See Theorem 1). Here, the social network can be presented by
an adjacency matrix [υij ]N×N , where υij indicates the social
network influence of worker j on worker i. Without loss of
generality, we exclude isolated workers and assume υij=υji,
υii=0 due to the reciprocity of social relations.

B. Problem Formalization
In the above MCS system, we need to determine the data

updating frequency for each worker and the unit-reward for
the platform. For formulating this problem, we first define the
utilities of each worker and the platform as follows:

Worker’s Utility: The utility of worker i refers to the net
profit of this worker, which can be defined as follows:

Ωi(pi, P−i) = R(pi) + Ψi(pi, P−i)− θi(pi). (3)
In Eq. (3), the first term R(pi) = Ripi represents the

reward that the platform pays to worker i. The second
term Ψi(pi, P−i) refers to the social benefits. Like in [20],
[22], [23], we adopt ψi =

∑
j∈Ni

υijpj and Ψi(pi, P−i) =∑
j∈Ni

υijpipj to model the social network effects and social
benefits of worker i respectively, where Ni denotes the set of
all socially-connected neighbors of worker i. The third term
θi(pi) is the cost function of worker i, which is assumed
to be monotonically increasing, differentiable, and strictly
convex. In this paper, we adopt a widely-used quadratic cost
function with coefficients a≥0, b≥0 like in [31]–[33], i.e.,

θi(pi) = s(ap2i + bpi). The tunable parameter s is used for
signifying the equivalent monetary worth.

Platform’s Utility: The platform’s utility is the income that
it can gain from all collected data minus the total rewards paid
to workers, which can be defined as follows:

Φ = η
∑N

i=1
(cpi − dp2i )−

∑N

i=1
Ripi, (4)

where η is also a tunable parameter denoting the equivalent
monetary worth. The first term is the income of the platform,
which can be seen as a function of the data update frequencies
of all workers. As in [21], [31], [33], we adopt a linear-
quadratic function, i.e., cpi−dp2i , in which c>0 and d>0 are
coefficients characterizing the concavity extent of the function
to capture the property of decreasing marginal returns. The
second term is the sum of rewards paid to all workers.

After defining the utility functions of workers and the plat-
form, we model the AoI-aware incentive mechanism problem
as a two-stage Stackelberg game, where the platform is the
leader and the workers are the followers, defined as follows:

Stage I (Leader Game): Φ(p∗i , R
∗
i ) ≥ Φ(pi, Ri) (5)

Stage II (Follower Game): Ωi(p
∗
i , R

∗
i ) ≥ Ωi(pi, Ri) (6)

Subject to : δi(pi, P−i) ≤ ε, ∀i ∈ N (7)∑N

i=1
pi ≤ p̂. (8)

In Eqs. (5) and (6), p∗i and R∗
i represent the optimal data

update frequency of worker i and the optimal unit-reward
paid by the platform to worker i, respectively. These optimal
strategies form a Stackelberg Equilibrium (SE) together. The
SE state shows that no one can improve its own utility by
deviating from the optimal strategy during the process. The
constraint of Eq. (7) means that the AoI value of each worker’s
data is not larger than the given threshold. Eq. (8) indicates
the constraint of total data update frequency.

In stage II, the worker i needs to derive the optimal strategy
p∗i from Eq. (3). However, the second term Ψi(pi, P−i) is
unknown owing to the uncertainty of social network effects.
As a result, the optimal strategy cannot be derived directly.
Faced with the problem, we turn it into a Bayesian game with
incomplete information, which can be modeled as follows.

Incomplete Information Bayesian Sub-Game (for Stage II):
The follower game can be formulated as an N -player Bayesian
sub-game with social network effects, expressed as follows:
• The set of players N is a set of N workers;
• The action of player i is the data update frequency pi;
• The type of player i is the social network effects ψi;
• The payoff of player i corresponding to its type ψi and its

action pi is the utility Ωi(pi, P−i);
• The strategy of player i is a function stating the action pi

for each type ψi at the unit-reward Ri, denoted by Γi :
φi × R → Pi, where φi and Pi are the type space and
action space of the worker i, respectively.

In summary, we model the AoI-aware incentive mechanism
design into a two-stage Stackelberg game, in which the second
stage is embedded with an incomplete information Bayesian
sub-game. Moreover, the Stackelberg game is attached with



Fig. 2. Example of the AoI

two constraints. Consequently, our problem is transformed into
acquiring the optimal strategies p∗i and R∗

i .

III. CHARACTERIZING AOI OF DATA

In this section, we derive the AoI of data as a premise for
solving the two-stage Stackelberg game, in which the impact
of the social network on AoI is taken into account. First, we
derive the average AoI for the case of a single worker, as
a building block. Then, we extend it to the case of multiple
workers and calculate the closed-form expression of the AoI
of data, which will be applied directly in the next section.

A. Building Block: AoI of Data for A Single Worker
In this subsection, we deduce the closed-form expression of

average AoI of data in a queue system with a single source,
in which the uploaded data can be seen as coming from a
worker. First, we illustrate a sample curve of AoI along with
time in Fig. 2. Since AoI is actually the sum of the time the
packet collected by the worker, the time it waited in the queue,
and the time it spent in the data cleaning process, the curve
increases linearly with time when no update completes and is
reset to a smaller value upon reception of a new data update.

The average AoI defined in Eq. (2) can be regarded as the
area under the curve, which is calculated by the sum of the
disjoint geometric part identified by Qk, k = {1, 2, ..., I(T )}.
Here, I(T ) indicates the number of data packets until the time
T . We use Tk = t′k − tk to represent the system time of the
update, where tk is the creation time and t′k is the update time.
Through accumulating all areas under the curve, we have

δ̄T =
Q1 + T 2

I(T )/2

T
+

I(T )− 1

T

1

I(T )− 1

∑I(T )

k=2
Qk. (9)

From Fig. 2, we observe that the area Qk can be calculated
as the difference between the areas of two isosceles triangles.
We define the interarrival time Xk as tk−tk−1. Then, we have
Qk = 1

2 (Tk +Xk)
2 − 1

2T
2
k and further get

δ̄T =
Q1 + T 2

I(T )/2

T
+
I(T )− 1

T

1

I(T )− 1

∑I(T )

k=2

[
XkTk+

X2
k

2

]
.

We notice that Q1 + T 2
I(T )/2 represents a boundary effect

that is finite with probability 1, and thus the first term in the
above equality will vanish along with the growth of T . Let
p = limT→∞ I(T )/T indicate the data update frequency in the
steady state. What’s more, the remaining term will converge
to the corresponding expected value when I(T ) approaches to
infinity. Hence, we obtain the average AoI of data:

δ̄ = limT→∞δ̄T = p(E[XT ] + E[X2/2]), (10)

where E(·) is the expectation operator. X and T are the
random variables that correspond to the interarrival time and
the system time of an update packet, respectively.

Now, we can derive the average AoI of a single worker’s
data. Consider an M/M/1 FCFS queue system with only one
source, which contains three critical parameters, i.e., collection
time β, data update frequency (a.k.a., arriving rate) p, and
serving rate µ. Moreover, the arriving time and serving time
follow the Poisson distributions of 1/p and 1/µ, respectively,
and the offered load is denoted by ρ = p/µ. Inspired by [34],
the average AoI of data can be easily derived using the queuing
theory, i.e., δ̄ = [(ρ− 1)(ρ2 − µρβ) + 1]/((1− ρ)ρµ).

B. AoI of Data for Multiple Workers
We extend the above closed-form expression of average

AoI of data to the case of multiple workers, in which the
AoI value of each worker may be affected by its neighbors.
Consider the FCFS M/M/1 system with worker i’s data
update frequency pi, collection time βi, serving rate µ, and
offered load ρi = pi/µ. The platform hopes to keep data
freshness and stimulates workers to update data frequently.
However, when worker i continuously sends its data with a
high frequency, the AoI value for each other N−1 workers
might have a rapid increase since it is a competitive N sources
queue system with AoI constraints. Thus, the AoI values of
some workers’ data may exceed the specified threshold ε. To
guarantee that each worker’s data can satisfy the constraints
in Eqs. (7) and (8), we first need to derive the average AoI of
each worker’s data under the multi-source MCS system and
the social network, as shown in the following theorem.
Theorem 1. (AoI for Multiple Workers) N workers compete
for the data update through an M/M/1 FCFS queue, in which
each worker i’s data update frequency, collection time, serving
rate, and offered loads are pi, βi, µ, and ρi, respectively. Then,
the average AoI δ̄i of worker i’s data satisfies

δ̄i=
αβi∑

j∈Ni
υi,j

+
pi/µ

2

1−ρ−i

[ ρiρ−i

(1−ρ−i)2
+
ρi/(1−ρ)
1−ρ−i

+
ρ−i

ρi

]
+

1

µ
+

1

pi
,

where ρ =
∑N

i=1
ρi, ρi = pi/µ, and ρ−i =

∑
j ̸=i

ρj . (11)

Proof. The system time of an update Tk can be expressed by
Ck+Wk+Hk, where Ck, Wk, and Hk represent the collection
time, the whole waiting time in the system, and the handling
time for data cleaning, respectively. Thus, we have

E(XkTk) = E(XkCk) + E(XkWk) + E(XkHk)

= E(Xk)E(Ck) + E(XkWk) + E(Xk)E(Hk). (12)

The second equality holds since Ck and Hk is independent
of Xk. If worker i collects data by itself from multiple PoIs,
it will consume the collection time βi. Consider that workers
can share data via the social network. Worker i might obtain
some data from its neighbors, and thus the expected collection
time can be expressed as E(Ck)=αβi/

∑
j∈Ni

υi,j . Here, α is
a constant coefficient. Meanwhile, we already know that there
are E(Hk) = 1/µ,E(Xk) = 1/pi, and E(X2

k) = 2/p2i . Then,
we substitute these equations and Eq. (12) into Eq. (10) to
rewrite the average AoI of worker i’s data as follows.

δ̄i = αβi/
∑

j∈Ni

υi,j + piE(XkWk) + 1/µ+ 1/pi. (13)

To compute E(XkWk), we consider two cases: Ak={Xk<
Tk−1} and Gk = {Tk−1 <Xk}. Next, we rewrite E(XkWk)



as E(XkWk) = E(XkWk|Gk)P [Gk] + E(XkWk|Ak)P [Ak].
Inspired by the work [34], we can derive that E(XkWk|Ak) =
E1+E2, with E1 = E[Xk(Tk−1−Xk)|Ak] = 1/(µ2(1−ρ)(1−
ρ−i)) and E2 = 2ρ−i/(µ

2(1− ρ−i)
2). That is, we have

E(XkWk|Ak) = (ρ−i − 2ρρ−i + 1)/((1− ρ−i)
2(1− ρ)µ2),

E(XkWk|Gk) = (1/(µ− µρ−i) + 1/pi)(ρ−i/(µ(1− ρ−i))).

Based on the above equalities and the probabilityP [Ai] =
ρi/(1− ρ−i), Eq. (12) can be deduced as follows.

E(XkWk)=
1

µ2(1−ρ−i)

[ ρiρ−i

(1−ρ−i)2
+

ρi
(1−ρ)(1−ρ−i)

+
ρ−i

ρi

]
. (14)

Finally, we substitute Eq. (14) into Eq. (13) and get the
average AoI of worker i’s data (i.e., Eq. (11)).

IV. AOI-AWARE INCENTIVE MECHANISM

In this section, we propose the AoI-aware incentive mecha-
nism, which exploits the backward induction approach to solve
the incomplete information two-stage Stackelberg game with
AoI constraints. First, we solve the follower game (i.e., Stage
II) including the incomplete social benefit information, through
which each worker i can determine its optimal data update
frequency p∗i under a given unit-reward Ri. Then, we turn to
the leader game (i.e., Stage I) to derive the optimal unit-reward
R∗

i paid by the platform. Finally, we prove that these optimal
strategies form a unique Stackelberg equilibrium.

A. Solving the Bayesian Sub-Game
In Stage II, each worker’s type (i.e., its social network

effects) is uncertain to other workers, forming an incomplete
information Bayesian sub-game. Due to the uncertainty of
workers’ types, we cannot obtain the expected utility for each
type of worker directly. Fortunately, many researches have
shown that workers’ degrees in the social network can indicate
their social influences [21]–[23]. Thus, we turn to use each
worker’s degree in the social network to derive its utility since
the distribution of each worker’s degree is public and known.
Based on this idea, we can derive the expected utility function
and then determine the closed-form expression of the optimal
data update frequency for each worker.

First, we derive the expected utility of each worker accord-
ing to Eq. (3). Specifically, we set the social network influence
υij=υ for all i, j (i ̸= j) without loss of generality, where υ
is a given social network effect coefficient. Note that, υ can
be treated as a variable instead of an exact value. Then, given
the reward vector R, the expected utility of worker i is

ωi(pi, P−i,R) = E[Ωi(pi, P−i),R]

= Ripi + υpiE[
∑

j∈Ni

pj ]− (ap2i + bpi)s. (15)

Then, in order to determine the optimal data update fre-
quency p∗i which can maximize ωi(p

∗
i , P−i,R), we introduce

the graph theory and leverage the degree to describe the type
of each worker. Specifically, we model the social network as
an undirected graph, whose structure can be described using
different degrees. The degree of worker i is denoted as f ∈G,
where G = {1, . . . , fmax} and fmax is the maximum value
of the degree. Let F be the probability distribution of the
degree, denoted by F : G → [0, 1], where

∑
f∈G F (f) = 1.

To a certain extent, the distribution of the degree captures the
social network effects from the network interaction patterns.
Therefore, we can gain E[

∑
j∈Ni

pj ] = f × P−i, where f

represents the degree of worker i and P−i is the average data
update frequency of worker i’s neighbors. Based on this, each
worker’s type can be transformed into the degree. Then, the
utility of worker i in Eq. (15) can be rewritten as:

ωi(pi, P−i,R) = Ripi + υpifP−i − (ap2i + bpi)s. (16)

Next, we need to figure out how to express P−i. Inspired
by the work [35], we introduce the concept of “Configuration
Model” in network science to model a randomly generated
network. We concentrate on the Bayesian game with the
symmetric type space, i.e., the workers with the same type
f will choose the same data update frequency p(f) and will
be awarded the same reward R(f) per data update frequency,
which is a widely-adopted assumption in the social network
studies [23], [36], [37]. According to the property of the
configuration model and the Bayes’ rule, for a worker, the
degree distribution of its randomly selected neighbor is

F (f) = F (f)f/(
∑

f ′∈G
F (f ′)f ′) = F (f)f/f, (17)

where f =
∑

f ′∈G F (f
′)f ′ indicates the mean value of the

degrees of the whole social network. We can conclude that
a randomly chosen social network neighbor of worker i
has the degree distribution F (f). Hence, each worker can
treat F (f) as its neighbors’ degree distribution although they
might not know the exact values of degrees. Based on Eq.
(17), we can compute the average data update frequency of
neighbors of a worker with degree f , denoted by P−f , i.e.,
P−f =

∑
f∈G F (f)p(f). Substituting it into Eq. (16), we can

get that the utility of the worker with degree f satisfies:
ωf (p(f), P−f )=R(f)p(f)+υp(f)fP−f−(ap2(f)+bp(f))s. (18)

Now, we can solve the Bayesian sub-game to determine
the optimal strategies of workers so as to maximize the
above utility function and achieve Bayesian Nash Equilibrium
(BNE), which is shown in the following theorem.

Theorem 2. (Follower’s Optimal Strategy). Given any unit-
reward R(f), the closed-form expression of the action (i.e.,
data update frequency) of the follower Game is

p(f) =
1

2as
R(f)− b

2a
+

υf(R− bs)

2as(2as− υf)
, (19)

where R =
∑

f∈G F (f)R(f) and f =
∑

f∈G F (f)f .
Proof. In order to acquire the closed-form solution of the
unique BNE point of the follower game, we first apply the
partial derivative of the expected utility in Eq. (18) and get

∂ωf (p(f), P−f ,R)

∂p(f)
= R(f) + υfP−f − (2ap(f) + b)s. (20)

Then, we let ∂ωf (p(f), P−f ,R)/∂p(f) = 0 and obtain

p(f) =
1

2as
R(f)− b

2a
+

υf

2as
P−f . (21)

Since our social network is treated as a configuration
model with dense types, we have the following approximation:
P−f = E[pj ||j ∈ Ni] ≈ E[p(l)||l ∈ G]. Thus, we have

p(f) =
1

2as
R(f)− b

2a
+

υf

2as
E[p(l)||l ∈ G]. (22)

By plugging Eq. (22) into P−f=
∑

f∈G F (f)p(f), we get



P−f =
∑

f∈G
F (f)

[
R(f)

2as
− b

2a
+

υf

2as
E[p(l)||l∈G]

]
⇒ E[p(l)||l ∈ G] =

1

2as
R− b

2a
+

υf

2as
E[p(l)||l ∈ G],

⇒ P−f ≈ E[p(l)||l ∈ G] = (R− bs)/(2as− υf), (23)

where R=
∑

f∈G F (f)R(f) and f=
∑

f∈G F (f)f . By sub-
stituting Eq. (23) into Eq. (22), we can get the closed-form
expression of data update frequency and finish the proof.

In Eq. (19), in order to get the value of p(f), a worker
only needs to know its own type f and the type distribution
of neighbors instead of the exact type values of other workers.
As a result, each follower’s optimal strategy with incomplete
information is solved. It is worth noting that the follower’s
strategy p(f) relies on the strategy R(f) of the leader (i.e.,
the platform), so it is necessary to derive the optimal unit-
reward for the platform in the next subsection.

B. Solving the Leader Game with Constraints
As the leader, the platform wants to maximize its expected

utility E[Φ] by finding the optimal unit-reward R∗(f) for each
worker. After applying the configuration model, the expected
utility of the platform can be expressed as follows.

ϕ = E[Φ] = E[η
∑N

i=1
(cpi − dp2i )−

∑N

i=1
Ripi]

= N
∑

f∈G
F (f)

[(
ηc−R(f)

)
p(f)− ηdp2(f)

]
, (24)

where F (f) is known in advance. When taking the AoI
constraint and the total data update frequency constraint into
account simultaneously (i.e., Eqs. (7) and (8)), the optimization
objective of the platform can be rewritten as follows:

max ϕ(R(f))

s.t. g(R(f)) = δf (R(f))− ε ≤ 0,

g′(R(f))=N
∑

f
F (f)p(f)− p̂ ≤ 0. (25)

To find the optimal solution, we construct the Lagrangian
function: L(R(f), ζ) = ϕ(R(f))+ ζ1g(R(f))+ ζ2g

′(R(f)),
where ζ1 and ζ2 represent the Lagrangian multipliers. Since it
is a convex optimization problem, the optimal solution must
satisfy the Karush-Kuhn-Tucker (KKT) optimality conditions:

∂L/∂R(f)|R(f)=R∗(f) = 0; ζ1g(R(f))=0; ζ2g
′(R(f))=0;

g(R(f)) ≤ 0; g′(R(f)) ≤ 0; ζ1 ≤ 0; ζ2 ≤ 0. (26)

To meet the KKT conditions, we consider four cases:
(i) Case 1: ζ1 = 0, ζ2 = 0. When the optimal solution of

maximizing ϕ(R(f)) just falls within the feasible region (not
including the boundary), the limitation of the feasible region
does not work. Therefore, we can solve Eq. (25) by letting
the first-order derivative of ϕ(R(f)) equal to zero directly.
For ease of presentation, we define ∆= υ

2as(2as−υf) . Due to
∂R

∂R(f)
=F (f),

∂p(l)

∂R(f)
=

υlF (f)

2as(2as− υf)
=∆F (f)l (l ̸= f),

∂p(f)

∂R(f)
=

1

2as
+

υfF (f)

2as(2as− υf)
=

1

2as
+∆F (f)f, (27)

we can derive the derivation ∂ϕ/∂R(f) as follows:
∂ϕ

∂R(f)
=NF (f)

[
− p(f) +

(
ηc−R(f)− 2ηdp(f)

)
(

1

2as

+∆F (f)f)
]
+N

∑
l̸=f

F (l)
[
(ηc−R(l)−2ηdp(l))∆F (f)f

]
.

Since our social network is regarded as a configuration
model with large numbers of workers, we have the ap-
proximation:

∑
l ̸=f F (l)

[
(ηc− R(l)− 2ηdp(l))∆F (f)f

]
=

MF (f)
∑

l∈G F (l)l
(
ηc−R(l)−2ηdp(l)

)
. According to the

definition formulas R=
∑

f∈G F (f)R(f), f=
∑

f∈G F (f)f ,
and f=

∑
f∈G F (f)f , we get

∑
f∈G F (f)f

2=ff . Moreover,
we let Λ =

∑
f∈G F (f)fR(f) for convenient presentation.

Afterwards, we let ∂ϕ/∂R(f)=0 and acquire[ 1

2as
+ (∆F (f)f +

1

2as
)(1 +

ηd

as
)
]
F (f)R(f)

= F (f)
[ b

2a
−∆̃f+(∆F (f)f+

1

2as
)
(
ηc+

bηd

a
−2fηd∆̃

)]
+∆F (f)

[
− (1 +

ηd

as
)Λ +

ηf(ac+ bd)

a
− 2ηd∆̃ff

]
, (28)

where ∆̃=∆(R− bs). Based on Eq. (28), we can gain the
expression of R(f) easily. However, the expression of R(f)
still contains unknown parameters R=

∑
f∈G F (f)R(f) and

Λ=
∑

f∈G F (f)fR(f), which will be worked out below.
Because the degree distribution is known, we can directly

calculate an algebraic expression of F (f). By substituting
R(f) into the definitions of R and Λ, we can get two equations
which together formulate a system of linear equations with two
unknowns, i.e., R and Λ. Thus, we can solve the system of
simultaneous equations to get the closed expressions of R and
Λ, defined as R∗ and Λ∗. Thereafter, we substitute the closed
expressions of R∗ and Λ∗ into Eq. (28), and then obtain the
closed expression of R(f) as follows:

R∗(f)=
2a2s2

(2as∆F (f)f+1)(as+ηd)+as

[ b

2a
−∆f(R∗−bs)

+(∆F (f)f +
1

2as
)
(
ηc+

bηd

a
− 2∆fηd(R∗ − bs)

)
+∆f

(
− (1+

ηd

as
)
Λ∗

f
+
η(ac+ bd)

a
−2∆ηd(R∗−bs)f

)]
. (29)

After the platform has determined the optimal unit-reward
R∗(f) according to Eq. (29), each worker i can also determine
its own optimal data update frequency p∗i (f) by substituting
R∗(f) and R∗ into Eq. (19). In short, the closed-form expres-
sion of the optimal data update frequency of worker i is

p∗i (f) =
1

2as
R∗(f)− b

2a
+

υf(R∗ − bs)

2as(2as− υf)
. (30)

By plugging R∗(f) and p∗i (f) into the utility functions
(i.e., ϕ and ωi), both the platform and each worker can reap
their maximum expected utilities, denoted as Φ∗ and Ω∗

i , i.e.,
Φ∗=N

∑
f∈G

F (f)
[(
ηc−R∗(f)

)
p∗(f)−ηdp∗2(f)

]
. (31)

Ω∗
i =R∗(f)p∗(f)+υp∗(f)fP−f−(ap∗2(f)+bp∗(f))s. (32)

(ii) Case 2: ζ1 ̸=0, ζ2 =0. In this case, R∗(f) and p∗i (f)
derived by Case 1 are not eligible under the AoI constraint.
Thus, we attain R∗(f) by letting the g(R(f)) equal to 0, i.e.,
αβ

fυ
+
p2(f)

µ2ρ̌

[
ρ−i(f)

µ(ρ̌)2
+

1

ρ̌µ(1−ρ(f))+
ρ−i(f)µ

p2(f)

]
+
1

µ
+

1

p(f)
=ε, (33)

where ρ̌=1−ρ−i(f), ρ(f)=
∑

f p(f)/µ, ρ−i(f)=(
∑

f p(f)−
p(f))/µ, and β is the identical collection time. Combining
with ∂ϕ/∂R(f)+∂g/∂R(f)=0, we can derive R∗(f) through
solving Eq. (33) and further gain p∗i (f) as well.

(iii) Case 3: ζ1=0, ζ2 ̸=0. In this case, R∗(f) and p∗i (f)



Algorithm 1: The AIAI mechanism
input : degree distribution F (f), worker i’s degree f , and

some public parameters a, b, c, d, η, s;
output: R∗(f), p∗(f), Φ∗, and Ω∗

i ;
1 Platform: Determine its tentative optimal strategy (i.e., the

unit-reward R∗(f)) according to Eq. (29);
2 for each worker i = 1 ∈ N do
3 Determine its tentative strategy (i.e., the data update

frequency p∗i (f)) based on R∗(f) and Eq. (30);
4 if δi(pi, P−i) ≤ ε for ∀i then
5 if

∑N
i=1 pi ≤ p̂ then

6 Platform: Obtain Φ∗ according to Eq. (31);
7 Worker i: Obtain Ω∗

i according to Eq. (32);
8 else Solving Eq. (34) and g′(R(f))=0 ⇒ R∗(f);
9 Platform: Update its strategy as R∗(f);

10 Worker i: Update p∗i (f) based on R∗(f);
11 Calculate Φ∗ and Ω∗

i based on Eqs. (31) and (32);

12 else
13 if

∑N
i=1 pi ≤ p̂ then

14 Solving Eq. (33) and ∂L/∂R(f)=0 ⇒ R∗(f) ;
15 else Solving Eq. (35)⇒R∗(f);
16 Platform and Workers: Update p∗i (f), R

∗(f),Φ∗,Ω∗
i ;

derived by Case 1 do not satisfy the total data update frequency
constraint. Therefore, we calculate the derivation ∂ϕ/∂R(f)+
ζ2∂g

′/∂R(f) and let it equal to zero. Then, we get
ηcF (f)

2as
−F (f)R(f)

2as
−(1+

ηd

as
)F (f)p(f)+∆F (f)(ηcf−fR)

−2ηd∆F (f)
∑

l
lF (l)p(l) + ζ2∂g

′/∂R(f) = 0. (34)

Through solving Eq. (34), we obtain the optimal R∗(f):

R∗(f)=
as(ηc−bs+ ζ2)

2as+ηd
(1− f

f
)+

2asfp̂

Nf
+bs−2as∆f(R−bs),

where ζ2 can be derived by solving g′(R(f))=0.
(iv) Case 4: ζ1 ̸=0, ζ2 ̸=0. When the solutions in the above

cases cannot satisfy Eq. (25), we need to solve the equations:
∂ϕ

∂R(f)
+

∂g

∂R(f)
+

∂g′

∂R(f)
=0; g(R(f))=0; g′(R(f))=0. (35)

It is perplexing to obtain the closed-form R∗(f) by solving
Eq. (35), and we can adopt some mathematical approximating
methods (e.g., the bisection, Newton’s method, and so on) to
acquire an approximation of R∗(f).

C. The Detailed Algorithm Design

Based on the above idea, we propose the AoI-Aware Incen-
tive (AIAI) mechanism, as illustrated in Algorithm 1. First,
the leader (i.e., the platform) gives its strategy according to
Eq. (29) (Step 1). Then, each follower (i.e., worker) determines
its strategy based on the strategy of the platform (Steps 2-3).
Next, the AoI of data can be calculated for multiple workers
according to Theorem 1, and the platform needs to check
whether the AoI of data is not larger than ε (Steps 4-16). In
steps 5-7, if there is

∑N
i=1 pi ≤ p̂, we can directly obtain the

maximum utilities of the platform and each worker according

to Eqs. (31) and (32). Otherwise, the strategy of the platform
will be adjusted according to diverse cases and the data update
frequency of each worker will be updated accordingly (Steps
8-16). Moreover, the computation complexity is O(N).

D. The Equilibrium Analysis

We analyze the Bayesian sub-game equilibrium and the
Stackelberg game equilibrium in this subsection.

Lemma 1. The follower game exists at least one pure BNE.
Proof. The work in [38] has pointed out that, if the Bayesian
sub-game satisfies the (Milgrom-Shannon) Single Crossing
Property of Incremental Returns (SCP-IR), the Bayesian sub-
game has at least one pure BNE. Based on Eq. (20), we have

∂2ωi(pi, P−i,R)/∂pi∂P−i = υf > 0, (36)
∂2ωi(pi, P−i,R)/∂p2i = −2as < 0. (37)

Therefore, the follower game in Stage II meets the SCP-IR
and there exists at least one pure BNE.
Lemma 2. [39] For the Bayesian sub-game, there exists at
most one equilibrium if the following condition is satisfied:∣∣∣∣∂2ωi(pi, P−i,R)

∂pi∂P−i

/
∂2ωi(pi, P−i,R)

∂p2i

∣∣∣∣ < 1,∀i ∈ N . (38)

According to Lemmas 1 and 2, when the condition υfmax−
2as<0 is satisfied, the uniqueness of the BNE of the follower
Bayesian sub-game can be guaranteed. Based on this, we prove
the existence of the unique Stackelberg equilibrium.
Theorem 3. The optimal incentive strategy (R∗(f), p∗(f))
determined by the AIAI mechanism constitutes the unique
Stackelberg equilibrium while satisfying AoI constraints.
Proof. In the whole two-stage Stackelberg game, each stage
can derive its optimal closed-form solution: the unit-reward
strategy of the platform and the data update frequency strate-
gies of workers. As the role of the leader in Stage I, the plat-
form can uniquely determine R∗(f) according to Section IV-B.
It is worth mentioning that the value of R∗(f) is calculated just
by the known distribution and some public parameters. That
is, R∗(f) is only associated with the constant input without
knowing workers’ strategies and social structure information,
and the platform cannot gain a larger utility if it uses other
strategies. When R∗(f) is determined, workers can pick their
optimal strategies based on Eq. (30), and these strategies
constitute the unique Bayesian sub-game equilibrium. In a
word, each stage has a unique equilibrium under the optimal
incentive strategy (R∗(f), p∗(f)), and no one can improve its
own utility by deviating from the optimal strategy during the
process. At last, Eq. (7) guarantees that the AoI values of all
workers’ data are not larger than the given threshold. Thus, we
can conclude that the two-stage game of AIAI has the unique
Stackelberg equilibrium while meeting AoI constraints.

V. PERFORMANCE EVALUATIONS

A. Evaluation Methodology

Simulation Settings: We perform our simulations on the
real-world data of Chicago Taxi Trips [40]. Each trace records
the taxi ID, timestamp, trip seconds, trip miles, pickup/dropoff



5 6 7 8 9 10

5

6

7

8

9

10

11
A

o
I
 o

f 
 w

o
r
k

e
r
-1

AoI of worker-2

 0.8

 0.7

 0.6

 0.4

ε = 7

ε = 7

(a) worker-1’s AoI vs. worker-2’s AoI

0.12 0.18 0.24 0.30 0.36 0.42 0.48
1

4

7

10

13

16

A
v

er
a

g
e 

A
o

I

Data update frequency of worker-1

 Total AoI

 AoI of worker-1

 AoI of worker-2

ε = 7

min AoI

(b) total AoI and each worker’s AoI
Fig. 3. AoI of two competitive workers

60 80 100 120 140 160
14

16

18

20

22

24

U
ti

li
ty

 o
f 

th
e
 p

la
tf

o
r
m

Strategy of the platform

 d = 5

 d = 7

 d = 9

 d = 10

(140, 23.8)

(126.7, 21.3)

(114, 19.2)

(105.8, 18.4)

×103

Optimal Strategy

(a) quadratic parameter d

60 80 100 120 140
10

15

20

25

30

35

U
ti

li
ty

 o
f 

th
e
 p

la
tf

o
r
m

Strategy of the platform

 \eta=7

 \eta=8

 \eta=9

 \eta=10

(113, 36.3)

(106, 30.7)

(100, 25.4)

(91, 20.4)

×103

(b) conversion parameter η
Fig. 4. Strategy of the platform vs. Utility

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

12

U
ti

li
ty

 o
f 

 t
h

e
 w

o
r
k

e
r

Strategy of the worker

 a = 12

 a = 10

 a = 8

 a = 6

×10

(1.6, 9.4)
(1.4, 8.7)

(1.2, 8.1)

(1.01, 7.4)

Optimal Strategy

(a) quadratic parameter a

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

U
ti

li
ty

 o
f 

 t
h

e
 w

o
r
k

e
r

Strategy of the worker

 s = 15

 s = 12

 s = 9

 s = 6

×10

(1.02, 7.4)

(0.81, 6.3)

(0.46, 3.1)

(0.67, 5.4)

(b) conversion parameter s
Fig. 5. Strategy of a worker vs. Utility

80 90 100 110 120 130

24

30

36

42

48

  v = 0.05  v = 0.1  v = 0.15  v = 0.2
×103

U
ti

li
ty

 o
f 

th
e
 p

la
tf

o
r
m

Strategy of the platform

(a) utility of the platform

0.4 0.8 1.2 1.6 2 2.4
2

4

6

8

10

12  v = 0.05 

 v = 0.1 

 v = 0.15 

 v = 0.2

×10

U
ti

li
ty

 o
f 

th
e
 w

o
r
k

e
r

Strategy of the worker

(b) utility of the worker
Fig. 6. Influence of social network effects

areas, etc. We select a data set of 27055 taxi records. In
our simulations, we select some taxi drivers as MCS workers
and treat the taxi-hailing requests as sensing tasks. First, we
choose 15 PoIs and find 300 taxis from the trace. Then, we
choose N taxis as workers, where N ranges from [50, 300].
We also simulate the social network based on a real data
trace from SNAP (Gowalla) [41], which is a location-based
social friendship network built by mobile phone users. We
randomly pick N nodes from the network and the social
network effect coefficient υ is produced from [0.01, 0.2]. The
conversion parameters s and η change from [6, 20] and [7, 10],
respectively. Meanwhile, the quadratic parameters a and d are
set in the range [5, 15] and [5, 10], respectively. Moreover, the
default values are a=5, b=1, c=40, d=5, s=6, and η=10.

Compared Algorithms: Since AIAI combines the Stackel-
berg game and AoI to keep data freshness and solve the
incentive problem with incomplete information, we compare
AIAI with some existing state-of-the-art studies with incentive
mechanism designs [12], [13]. However, the models and
problems in these works are different from ours so we cannot
compare them directly. Thus, we tailor the basic idea in these
algorithms and carefully design three incentive mechanisms
for comparison: Auction-based algorithm [13], Contract-based
algorithm [12], and AIAI-NS. Here, the auction-based scheme
is based on game theory, the contract-based algorithm utilizes
the technique of contract theory, and the AIAI-NS mechanism
means that we do not consider social network effects.

B. Evaluation Results

For the evaluation, we use the following main metrics: AoI,
strategy, and utility. To be more precise, we use PU, WU, PS,
and WS to denote the platform’s utility, a worker’s utility, the
platform’s strategy, and the worker’s strategy, respectively.

1) Evaluation of AoI: We measure AoI for the M/M/1
FCFS queue system with µ = 1. For simplicity, we set that
there are only two workers competing for the data update with
a fixed total load ρ1+ρ2= ρ̂ and β1=β2. From Fig. 3(a), we

can see that the average AoI of worker-1 decreases with the
increase of worker-2’s AoI. If we set the threshold ε = 7,
workers can meet the AoI constraint only when ρ̂ = 0.6 or
0.7. As shown in Fig. 3(b), the sum of AoI decreases firstly
and increases later, and the total AoI can reach a minimum
value. The general result for such systems is that the multi-
user AoI optimization problem depends on both the total load
ρ̂ and the allocation of data update frequency among workers.

2) Evaluation of Stackelberg Game: We first verify the
existence of the Stackelberg equilibrium for the platform
and workers. In Fig. 4, we change PS and evaluate PU
under different parameters (i.e., the quadratic parameter d
and conversion parameter η). Similarly, we randomly select
a worker and measure its utility by changing the parameters a
and s, as illustrated in Fig. 5. We observe that both of PU and
WU can find a maximum point, and a larger η will harvest the
larger PU. Besides, WU will have an increase when applying
a smaller a or s, since the cost of the worker becomes smaller.
Then, we evaluate the impact of the social network effects, as
shown in Fig. 6. When we enlarge the social network effect
coefficient υ, both of the worker and the platform can possess
higher utilities. Meanwhile, the optimal strategies of workers
become higher along with the increase of υ. This is because
workers can obtain more social benefits from their neighbors
and are willing to collect data with a high frequency.

Next, we investigate the effect of the number of workers
by changing the strategy of the platform from 80 to 180 and
adjusting the conversion parameter s in the range [6, 16]. In
Fig. 7(a), the platform can also determine its optimal strategy
under diverse N , which is consistent with Fig. 4. Moreover,
Fig. 7(b) shows that increasing N and applying a lower s can
improve the profit of the platform. As presented in Fig. 8,
we observe the influence of PS on any worker’s strategy and
utility. When the platform invests more money to incentivize
workers, each worker will upload data as frequently as possible
so as to acquire more rewards. In addition, a smaller a will
result in a high WU which is also reflected in Fig. 5(a).
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Fig. 9. PU and total SU under different incentive mechanisms and varied parameters

Finally, Fig. 9 evaluates the utilities of the platform and
all workers under different incentive mechanisms and varied
parameters based on the auction theory, contract theory, and
game theory. After increasing p̂, PU and total WU will have a
growth since more workers have chances to participate in the
system. Importantly, PU and total WU of AIAI are higher than
the compared algorithms. The reason is that the auction-based
algorithm and the contract-based algorithm only guarantee
the non-negativity of workers’ utilities and cannot achieve
utility maximization. The WU of the contract-based algorithm
grows more slowly than others. This is because the number of
contracts is limited and it cannot optimize all workers’ utilities
compared with AIAI. Besides, we can also note that AIAI
performs better than AIAI-NS, which indicates that social
network effects can bring in extra benefits for MCS systems.

VI. RELATED WORKS

Incentive Mechanism: Many remarkable incentive mecha-
nisms have been designed for various MCS systems [12]–[14],
[24]–[26]. Diverse tools have been leveraged in previous stud-
ies, such as game theory [25], auction mechanism [13], [24],
contract theory [12], and deep learning [14], [32]. For example,
[24] proposed a reverse auction-based incentive mechanism
to select reliable workers. [32] formulated a multi-leader
multi-follower Stackelberg game to deal with the Markov
decision process. However, many of them did not take the
social network into account, so they cannot be applied to our
system. A handful of works integrate the social network effects
into incentive mechanism designs [31], [33], [42]–[44]. For
instance, the authors in [31] combined the user diversity and
social effects into the reward mechanism design. [33] played
a Stackelberg game among service providers and users with
complete information on the social network effects. Neverthe-
less, most of these researches ignore the importance of data
freshness, especially for time-sensitive MCS applications.

Age of Information: AoI has attracted increasing attention
as an information freshness performance metric. There have

been plenty of works that focus on addressing various AoI
optimization problems [19], [27]–[30]. For example, [27] de-
veloped a model-based search structure to maximize collected
data while minimizing users’ AoI. Only a few researchers have
studied the AoI demand with the pricing issue [16]–[19]. For
instance, [16] built a dynamic task pricing model by harnessing
the AoI timeliness metric in modeling requesters’ waiting time
costs. [19] derived a long-term decomposition mechanism to
maximize the social welfare and ensure the platform freshness
conditions. Nevertheless, none of the existing works take
the AoI constraint and workers’ social benefits into account
together, which involves a complex incomplete information
game due to the uncertainty of social network effects.

VII. CONCLUSION

In this paper, we investigate the MCS incentive mechanism
design issue with AoI guarantee and social benefits. We first
model it as a two-stage Stackelberg game, embedded with
an incomplete information Bayesian sub-game. Moreover, we
derive the optimal strategies of this game, including the opti-
mal reward paid by the platform and the optimal data update
frequency for each worker. We also prove that these optimal
strategies form a unique Stackelberg equilibrium. Based on the
optimal strategies, we propose the AIAI mechanism, whereby
all of the platform and workers can obtain their optimal
utilities. Meanwhile, the system can ensure that the AoI values
of all data are not larger than a given threshold. Extensive
simulations on real-world traces validate its great performance.
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