Reliable Videos Broadcast with Network Coding and Coordinated Multiple Access Points

Pouya Ostovari and Jie Wu

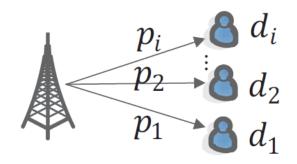
Computer & Information Sciences Temple University

0

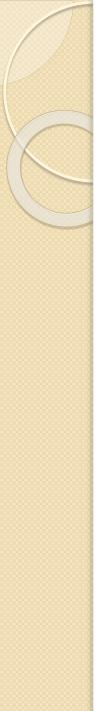
Center for Networked Computing http://www.cnc.temple.edu

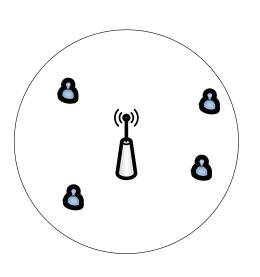
Agenda

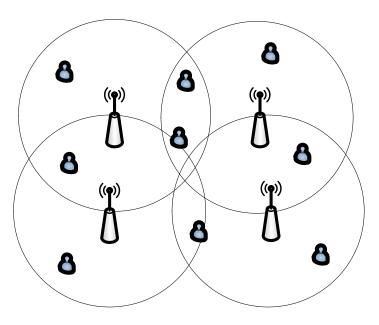
- Introduction
 - Motivation
- Robust video streaming
 - Formulation
 - Proposed method
- Evaluations
- Conclusions



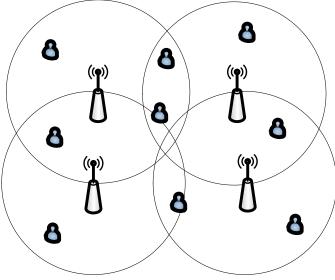
- Advances in technology
 - Smartphones and tablets
 - Internet is accessible everywhere
 - Video streaming is used widely and frequently

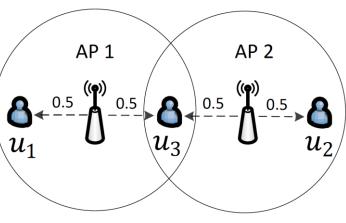

- Video streaming is a dominant form of traffic on the Internet
 You Tube
 - YouTube and Netflix:
 - Produce 20-30% of the web traffic on the Internet


- A challenge in multicasting
 - Different link conditions
 - Loss rate, noise

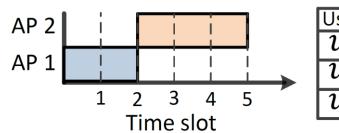


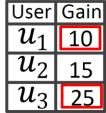
- Provide resilience
 - ARQ
 - Erasure codes
 - Hybrid-ARQ
 - Fountain codes (rateless codes)


- Existing research on reliable video multicast
 - Most of the existing methods: single access point (AP)
 - Few research: multiple access point

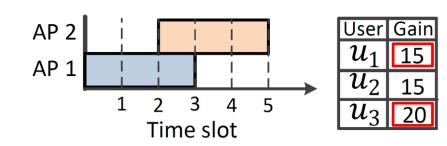


- Multiple access point
 - Users at cell boundaries might experience low packet delivery rates
 - Multiple APs help to serve each user with different APs and enhance the performance of the video streaming



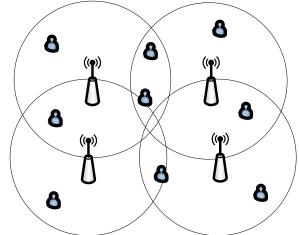


Motivation

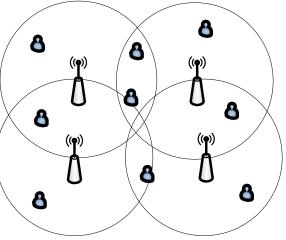


• Disjoint transmissions

• Concurrent transmissions



Setting


- Video servers forward a video stream to a set of neighboring APs
- APs and the video server are connected by wired links
 - They are not the bottleneck
- A set of wireless users
- Error-prone wireless links
- No feedback mechanism
 - Costly in multicast applications
- Each AP node has a circular coverage area.
 - The coverage area might overlap
 - Interference

Setting

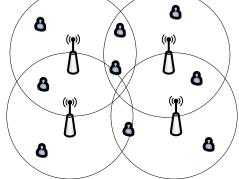
- Objective
 - Maximize the expected number of packets that are received by the users
- Constraint
 - Providing a fair video multicast
- Approach
 - Allowing systematic overlapped transmission of the AP nodes
 - Using random linear network coding

Network Coding

- Random linear network coding
 - Linear combinations of the packets
 - Gaussian elimination

$$q_1 = \alpha_{1,1}p_1 + \alpha_{1,2}p_2 + \alpha_{1,3}p_3$$

$$q_2 = \alpha_{2,1}p_1 + \alpha_{2,2}p_2 + \alpha_{2,3}p_3$$


$$q_{\rm n} = \alpha_{n,1} p_1 + \alpha_{n,2} p_2 + \alpha_{n,3} p_3$$

- Applications of network coding
 - Reliable transmissions
 - Throughput/capacity enhancement
 - Distributed storage systems/ Content distribution/ Layered multicast

Scheduling Algorithm

• Number of possible scheduling in the case of mAPs: $2^m - 1$

- Two-phase scheduling algorithm
 - **Phase 1:** finding the optimal scheduling in the case of disjoint transmissions
 - **Phase 2:** using the result of phase 1 as an initial solution, and trying to enhance the utility by allowing some concurrent transmission

Phase 1: Disjoint Transmissions Scheduling

- Linear programming formulation
 - Without fairness constraint

$$\max \sum_{i \in U} r_i$$

s.t
$$\sum_{j \in B} x_j \le 1$$

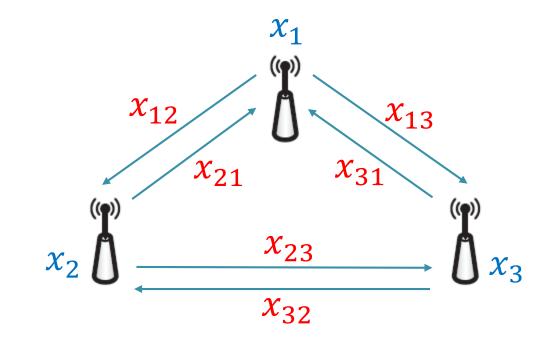
$$r_i = \sum_{j \in C(i)} b \cdot x_j (1 - \epsilon_{ji}), \quad \forall i \in U$$

Phase 1: Disjoint Transmissions Scheduling

- Linear programming formulation
 - Considering fairness

$$\max y \qquad (1)$$

$$s.t \quad \sum_{j \in B} x_j \le 1 \qquad (2)$$


$$r_i = \sum_{j \in C(i)} b \cdot x_j (1 - \epsilon_{ji}), \ \forall i \in U \qquad (3)$$

$$y \le r_i, \quad \forall i \in U \qquad (4)$$

- Using the output of phase 1 as the input of the optimization
- Only permitting 2 interfering APs to concurrently transmit
- Increase time x_j that node AP j is scheduled
 - Adding extra x_{kj} portion of time to AP j
 - \mathcal{X}_{kj} is the fraction of time that is borrowed from AP node k

• Time borrowing

- Linear programming formulation
 - Without fairness constraint

$$\max \sum_{i \in U} s_i$$

$$s.t \quad \sum_{k \in B} z_{jk} \le x_j \quad \forall j \in B$$

$$s_i \le r_i + \sum_{\substack{k \notin C(i) \\ i \in C(j)}} \sum_{\substack{j \in B \\ i \in C(j)}} b \cdot z_{jk} (1 - \epsilon_{ki})$$

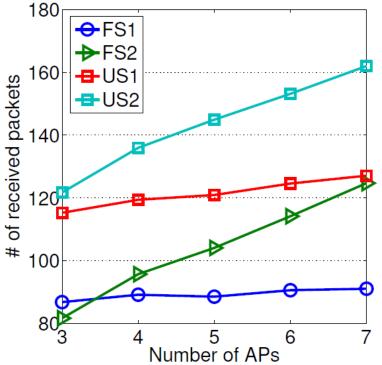
$$- \sum_{\substack{j \in C(i) \\ j \neq k}} \sum_{\substack{k \in C(i) \\ j \neq k}} b \cdot z_{jk} (1 - \epsilon_{ji}), \quad \forall i \in U$$

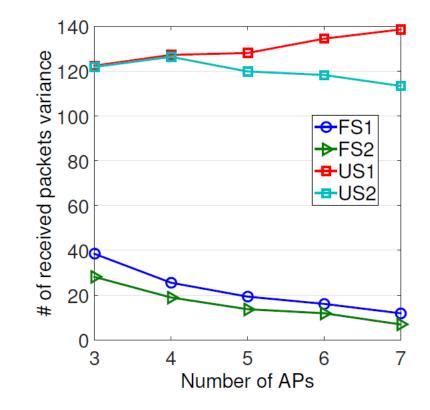
- Linear programming formulation
 - Considering fairness

 $\max y \tag{8}$

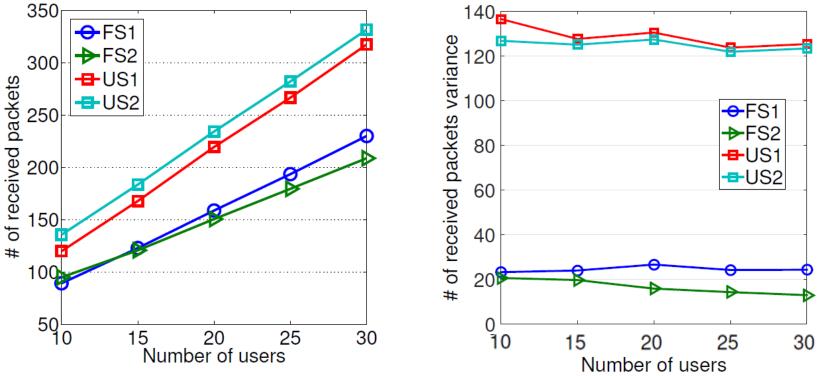
$$s.t \quad \sum_{j \in B} z_{kj} \le x_k \quad \forall k \in B \tag{9}$$

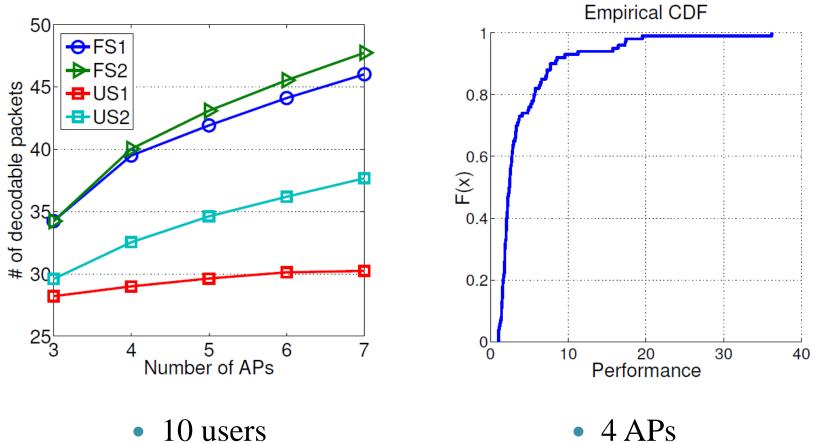
$$s_i \le r_i + \sum_{k \notin C(i)} \sum_{\substack{j \in B\\i \in C(j)}} b \cdot z_{kj} (1 - \epsilon_{ji})$$


$$-\sum_{\substack{j \in C(i) \\ j \neq k}} \sum_{\substack{k \in C(i) \\ j \neq k}} b \cdot z_{kj} (1 - \epsilon_{ki}), \quad \forall i \in U$$
(10)
$$y \leq s_i, \quad \forall i \in U$$
(11)



- Simulator in Matlab environment
- Random distribution of the nodes in a 20×20 M square area
- 1000 random topologies
- Successful delivery probability: Rayleigh fading model
- Comparing with non-overlapped transmissions


• 10 users



• 4 APs

Conclusion

- Using multiple APs to enhance transmission reliability
- Concurrent transmissions instead of disjoint transmissions
 - Increasing reliability
 - Providing fairness
- Reliable transmissions with network coding

Thank you