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Abstract—Federated learning is a new learning paradigm for
extracting knowledge from distributed data. Due to its favorable
properties in preserving privacy and saving communication costs,
it has been extensively studied and widely applied to numerous
data analysis applications. However, most existing federated
learning approaches concentrate on the centralized setting, which
is vulnerable to a single-point failure. An alternative strategy for
addressing this issue is the decentralized communication topology.
In this article, we systematically investigate the challenges and
opportunities when renovating decentralized optimization for fed-
erated learning. In particular, we discussed them from the model,
data, and communication sides, respectively, which can deepen
our understanding about decentralized federated learning.

Index Terms—communication, computation, data distribution,
decentralization, federated learning, optimization.

INTRODUCTION

With the development of Internet-of-Things (IoT) devices
and intelligent hardware, various data are generated on these
devices every day. Extracting useful knowledge from these
distributed data with machine learning (ML) models to benefit
data owners becomes necessary and important. Federated
learning (FL) [10] provides a feasible way for this distributed
ML task with a promise of protecting private information
without consuming large communication costs. Due to this
favorable property, FL has been extensively studied and widely
applied to many applications, such as virtual keyboard input
suggestion [15] and smart healthcare [14], to name a few.

In FL, a commonly used approach to coordinate the col-
laboration between all participants is federated averaging
(FedAvg). In detail, the central server broadcasts the model
parameter to all participants, i.e., data owners. Each participant
updates the received model parameter for multiple iterations
by the stochastic gradient computed with its local data, and
then uploads the updated model parameter to the central
server. After receiving the updated model parameters from all
participants, the central server broadcasts the averaged model
parameters to start the next round. With this learning paradigm,
all participants can collaboratively learn an ML model without
communicating their raw data. As such, the private information
in raw data can be preserved to some extent. Meanwhile, since
the model is shared and its size is much smaller than the raw
data, the communication cost in FL is reduced significantly.

Along with such an extensive study of FL, federated op-
timization was born to further address the computation and
communication challenges in FedAvg. Similar to the early
phase of FL where focus is on the centralized setting, most
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of the work in this area concentrates on the parameter-server
communication topology, where all participants communicate
with the central server. For instance, [13] studied the re-
source and performance optimization in centralized federated
learning. This kind of centralized communication topology,
unfortunately, may lead to a single-point failure. In particular,
when the number of participants is large, communicating with
the central server will cause the communication bottleneck
on the central server. With the advance of communication
technology, such as 5G/6G, providing fast communication [7]
and cloud/edge computation through decentralized computa-
tion over IoT and edge devices [9], an alternative strategy is
to employ the decentralized communication strategy where all
participants perform the peer-to-peer (P2P) communication.
As such, the communication bottleneck will be alleviated.
Thus, the decentralized learning paradigm brings new oppor-
tunities to the FL development.

In fact, decentralized optimization has been extensively
studied in both ML and optimization communities for many
years. Numerous decentralized optimization approaches have
been developed for the conventional distributed ML model.
However, FL brings new challenges to the conventional decen-
tralized optimization. Just as shown in Figure 1, decentralized
optimization serves as the bridge between distributed data and
FL models. It should address the unique challenges in the
model and data, as well as the issues in itself. Even though
some efforts [4] have been devoted to facilitating decentralized
optimization for FL in the past few years, numerous challenges
are still untouched.

To advance the decentralized FL, in this article, we will
review the current development of decentralized federated op-
timization approaches and then discuss the new opportunities
in decentralized FL. Specifically, this article will focus on the
following aspects.

• On the model side, how to improve the FL model’s gen-
eralization performance with decentralized optimization
approaches was discussed, pointing out the directions for
new algorithmic designs.

• On the communication side, various communication
issues when applying decentralized optimization ap-
proaches to FL and potential techniques for addressing
them were systematically discussed.

• On the data side, we discussed the current challenges
and future directions when designing new decentralized
optimization approaches for FL.

Following this, we introduce the background of federated
learning and decentralized optimization. Then, we discuss the
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fundamental challenges and potential techniques in optimiza-
tion algorithms for decentralized FL. In addition, we introduce
challenging issues in communication of decentralized FL.
Finally, we discuss how to handle different kinds of data in
decentralized FL.

BACKGROUND

Federated Optimization

Different from conventional distributed learning approaches
under the data-centre setting, FL faces more computation and
communication problems, such as unstable communication
conditions, and highly heterogeneous data distributions, to
name a few. A wide variety of federated optimization ap-
proaches have been proposed to address these challenging
issues in FL. For instance, to improve the computation com-
plexity, a line of research is to employ advanced gradient
estimators, such as the momentum, the variance-reduced gra-
dient [2], to update the model parameter in each participant.
As such, the convergence rate of the improved FedAvg is
even able to close to the full gradient descent approach. For
instance, [6] can achieve the same-order sublinear convergence
rate with the full-gradient descent approach for nonconvex
problems. As for the communication complexity, a lot of
efforts have been devoted to reducing the communication
cost in each communication round and the total number of
communication rounds. Moreover, other unique challenges in
FL, such as model personalization, communication security,
have also been extensively studied in the past few years.
However, all these approaches just focus on the centralized
setting, sharing the single-point failure issue.

Decentralized Optimization

Before the era of FL, decentralized optimization has already
been studied for several decades and has been applied to dif-
ferent domains, such as machine learning, automatic control,
etc. Different from the aforementioned federated optimization
approach where a central server coordinates all participants,
the decentralized optimization approach does not have such a
central server, where each participant directly communicates
with its neighboring participants. Based on this communication
paradigm, numerous decentralized optimization approaches
have been proposed.

Typically, according to the specific communication strategy,
decentralized optimization approaches can be categorized into
two classes. The first category employs the gossip communi-
cation strategy [8]. Specifically, each participant computes the
gradient based on its local dataset, which is used to update
its model parameter. Then, each participant communicates the
updated model parameter with its neighboring participants.
The second category employs the gradient tracking communi-
cation strategy [11]. In particular, each participant introduces
an additional variable to track the global gradient, which is
employed to update the local model parameter. As such, in
each iteration, the participant should communicate both the
model parameter and the tracked gradient. Compared with the
gossip-based approach, the tracked gradient is a better approx-
imation for the global gradient. As such, the gradient tracking

is preferable when the data distribution across participants is
heterogeneous.

Based on the aforementioned two communication strategies,
a wide variety of decentralized optimization approaches have
been proposed. For instance, the most straightforward decen-
tralized optimization approach employs the full gradient to up-
date local model parameters and then conducts communication
at every iteration. However, the full gradient descent approach
suffers from large computational cost in each iteration when
the number of samples is large. To handle the large-scale
data, a line of research is to employ the stochastic gradient to
update the model parameter in each participant. As such, the
computational cost is reduced significantly in each iteration.
In particular, [8] theoretically demonstrated that decentralized
stochastic gradient descent (DSGD) algorithm has almost the
same convergence rate with the centralized counterpart for
nonconvex optimization problems and the decentralized com-
munication topology only affects the high-order term of the
convergence rate of DSGD. Such a favorable convergence rate
of DSGD promotes the development of decentralized federated
learning in the past few years. Nevertheless, the stochastic
gradient introduces large variance so that the convergence rate
is inferior to the full-gradient-based decentralized optimization
approach. To address this drawback, multiple variance-reduced
approaches have been developed to accelerate the convergence
rate of decentralized stochastic gradient descent.

Integration of Decentralized Optimization and Federated
Learning

Most existing federated optimization approaches concen-
trate on the centralized setting, which suffers from the in-
trinsic problems of the centralized system. Thus, integrating
decentralized optimization with FL becomes inevitable and
promising. Formally, for decentralized FL, each participant
conducts the following steps in each communication round:

• It computes stochastic gradient based on its local dataset
and leverages it to update its model parameter. This local
updates is conducted for p iterations, where p > 1.

• When the local update is done, each participant communi-
cates its local model parameter or tracked gradient with
its neighboring participants according to the employed
communication strategy.

Obviously, this decentralized communication strategy avoids
communicating with the central server so that there are no
communication bottleneck and failure issues in the central
server as the centralized federated learning. However, this
integration introduces new challenges to decentralized opti-
mization. In particular, as the bridge between the upper-level
FL models and the lower-level distributed data, decentralized
optimization faces with a wide variety of challenges. Just as
shown in Figure 1, various FL models require to develop new
decentralized optimization approaches to achieve good gen-
eralization performance. The complicated data distributions
make conventional decentralized optimization approaches not
work. The decentralized communication under the FL setting
requires new algorithmic design to handle new communication
challenges. In the following, we will systematically discuss
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Fig. 1. The illustration of decentralized optimization for federated learning. The decentralized optimization unifies FL models, distributed data, and
communication together. In particular, the optimization algorithm on each device bridges the model and data by using the stochastic gradient, which is
computed on local data and model, to update local model parameters. Meanwhile, the optimization algorithms across devices can unify all models and data
in the entire system via the communication framework to learn a well-generalizing machine learning model.

these challenges and potential techniques to address them
from the perspective of the model, communication, and data,
which will help FL researchers and practitioners deepen their
understanding of decentralized FL.

DECENTRALIZED OPTIMIZATION MEETS MODELS

The goal of FL is to learn a well-performing ML model
for the real-world application. To deal with different kinds
of applications, numerous FL models have been developed.
How to ensure the decentralized optimization approach to learn
a well-generalized ML model is important and challenging.
In what follows, we systematically discuss the fundamental
challenges and potential techniques for addressing them.

How to Achieve Good Generalization Performance?

The ultimate goal of an ML model is to have good
generalization performance. To improve the generalization
performance, a lot of efforts have been devoted to the de-
sign of ML models. In recent years, the over-parameterized
deep neural network has demonstrated superior generalization
performance. As such, it has been applied to various FL
applications. In turn, it also introduces new challenges to
decentralized federated optimization. Specifically, the over-
parameterized deep neural network has many local minima
where different local minima have different generalization
performance. Thus, it is of importance to find the local minima
that have good generalization performance.

Existing federated optimization approaches, including both
centralized and decentralized ones, mainly concentrate on the
convergence performance. That is how fast an optimization
algorithm converges to the local minima. In fact, other than

the convergence speed, a decentralized optimization approach
should also have the capability to find the local minima with
good generalization performance. Thus, both convergence and
generalization performance are of importance when designing
decentralized optimization approaches for FL. In what follows,
we list the essential aspects that need to investigate for the
development of decentralized optimization approaches.

• Adaptation of existing approaches: In recent years,
a few new optimization approaches under the single-
machine setting have been proposed to pursue the so-
lution that has good generalization performance. For
instance, [3] developed a sharpness-aware optimization
approach to find the flat minima, since [5] empirically
demonstrated that the flat minima enjoy better gener-
alization performance than sharp minima. A straight-
forward strategy to empower decentralized optimization
approaches with the capability of finding well-generalized
solutions is to adapt existing single-machine approaches,
e.g., the sharpness-aware approach, to the decentralized
FL. However, this naive strategy may not work for
decentralized FL. For instance, the sharpness-aware op-
timization approach has more computational cost due
to the maximization and minimization steps in each
iteration. Then, the limited computation capability of the
participants, e.g., mobile devices, restricts its adaptation
to decentralized FL. Moreover, the heterogeneous data
distribution across participants also introduces new chal-
lenges when coordinating the maximization and mini-
mization steps in each iteration. Thus, adapting existing
approaches to decentralized FL requires new efforts to
address the computation and communication issues.
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• Co-design of FL models and decentralized opti-
mization approaches: Other than adapting existing ap-
proaches to decentralized FL, another promising strategy
is to co-design the FL model and the decentralized
optimization approach to pursue the well-generalized
solution. On the one hand, when designing a FL model
with good generalization performance, the model that is
easy to be parallelized should be preferable. Especially,
it should avoid employing the global information, e.g.,
the rank across all samples, since it is difficult for
decentralized optimization approaches to get the global
information. On the other hand, developing new decen-
tralized optimization approaches for optimizing the well-
generalized FL models should be computation-efficient
and communication-efficient. For instance, when the FL
model requires the global information, it is necessary to
employ some strategies to approximate it to avoid the
frequent communication across participants.

How to Handle Big Models?

To pursue the well-generalized ML model, a surge of
interest focuses on developing big models. Specifically, the big
model has a huge number of model parameters and it is trained
with the huge volume of training data. For instance, GPT-3 [1]
has 175 billion model parameters and it is trained with 45TB
training data. With such large model size and training data,
big models enjoy superior generalization performance. For
instance, GPT-3 can achieve great generalization performance
for few-shot and zero-shot learning. Thus, adapting big models
for FL can benefit a wide variety of real-world applications.

However, the big model incurs new challenges for decen-
tralized FL due to its large model size and the huge volume of
training data. Directly deploying big models to decentralized
FL seems infeasible since the computation capability of the
participants is limited. Moreover, training big models with
decentralized FL requires a huge number of participants to
get enough training data. Such kinds of large-scale distributed
data is more likely to be heterogeneous. Without a central
server, it is difficult for a decentralized FL system to get the
global information to address the heterogeneous issue. Thus,
it is difficult to train big models with decentralized FL.

How to apply the promising big model to decentralized FL
requires new efforts in the design of learning paradigms and
corresponding decentralized optimization approaches. In what
follows, we discuss several prominent aspects to address this
unique challenge.

• Zeroth-order approaches: Since it is infeasible to train
a big model under the decentralized FL setting due to
the huge model and data size, a potential strategy for
leveraging big models is to employ the pre-trained big
models as a service provider. In particular, rather than
training a big model from scratch, we can directly utilize
the pre-trained big model to benefit the small model
training. For instance, as shown in [12], the big language
model GPT-3 can generate an augmented sample for the
input sample, which can be utilized for prompt tuning.
Therefore, we can put the big model on each participant.

Then, the participant can leverage the model output from
the local input data to optimize the parameter of the
prompt learning part. Since the model parameters of big
models are typically not accessible, we need to develop
the zeroth-order decentralized optimization approach for
this kind of task. Currently, there are very few works
about zeroth-order decentralized optimization approaches
for FL. Thus, the systematic investigation about the
computation and communication complexities of zeroth-
order approaches is of immense importance and necessity.

• Low-dimensional approaches: Since the big model has
a large number of model parameters, a potential strategy
to train or fine-tune this kind of big models is to optimize
model parameters in the low-dimensional space. For
instance, one can employ the sketching method to project
model parameters in a low-dimensional subspace and
then perform optimization in such a subspace. However,
this strategy causes new challenges for decentralized FL.
For instance, how fast the low-dimensional approach
will converge is not clear. Hence, new efforts should be
devoted to the systematic investigation on the algorithmic
design and theoretical analysis about the low-dimensional
decentralized federated optimization approaches.

How to Deal with Inductive Biases?

Although the big model is promising in improving general-
ization performance, it requires powerful computation capabil-
ity and a large volume of training data. For some real-world FL
applications, it is difficult to obtain large-scale training data.
For instance, the healthcare data is typically not large enough
to train a big model. To address this issue, an alternative strat-
egy is to incorporate the inductive bias to regularize the model
to have the desired performance. Specifically, an important
kind of inductive bias is to make a FL model to capture the
intrinsic structure in the data. For instance, the convolutional
neural network should be invariant to the translation and
rotation of input samples. A high-dimensional model should
be aware of the low-dimensional subspace. Moreover, another
important inductive bias is to make a FL model to capture the
domain knowledge in specific applications. For instance, the
graph neural network for molecular graphs should be aware
of the valid subgraph structure.

To incorporate inductive biases into FL models, some mod-
els use constraint to deal with them. For instance, the low-rank
matrix completion model has a trace-norm constraint to pursue
a low-rank solution. Most existing decentralized optimization
approaches concentrate on the unconstrained problem. How
to solve the constraint problem under the decentralized and
periodical communication condition is still under explored,
which requires systematic investigation as follows.

• Convex constraint: The convex constraint is widely used
in ML models to deal with inductive biases, such as
the low-rank constraint. To solve the FL model with
convex constraint, a critical challenge is the computa-
tion complexity when dealing with the constraint. The
possible strategy includes the projection gradient de-
scent and conditional gradient descent. However, how
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these approaches converge under the decentralized FL
setting is still unclear. Thus, it is necessary to adapt
those algorithms to decentralized FL and investigate their
computation and communication complexities.

• Non-convex constraint: Compared with the convex con-
straint, non-convex constraint is much more difficult to
solve since the convex combination of the solutions
may not satisfy the constraint. Thus, it requires new
algorithmic design to deal with the non-convex constraint.
Especially, it would be better if the new algorithm does
not require the global information since it is difficult
to get it under the decentralized FL setting. Moreover,
more efforts should be devoted to the investigation of
the computation and communication complexities of this
kind of decentralized federated optimization approaches.

More Challenges

Other than the generalization issue, there are some other
challenges in decentralized FL, e.g., the fairness issue. In
particular, even though machine learning has achieved re-
markable success in many real-world applications, it has been
observed that the prediction result could have discrimination
for minority groups. To address this issue, new decentral-
ized optimization algorithms should be explored to learn a
fair machine learning model. More specifically, some efforts
have been made to developing new machine learning models,
which are able to guarantee individual and group fairness.
Those fair machine learning models cause new challenges for
decentralized optimization. For instance, some of those new
models belong to the min-max optimization problem, rather
than the traditional minimization problem. How to facilitate
them to decentralized FL is under-explored. Especially, how
the communication period affects the convergence rate is still
unclear. Therefore, more endeavor is needed to establish the
foundations of decentralized federated optimization for these
emerging machine learning models.

Moreover, in decentralized FL, each participant might op-
timize multiple tasks simultaneously, i.e., the multi-objective
optimization problem. How to solve the multi-objective op-
timization problem under the decentralized FL setting is still
unexplored. Especially, the intrinsic properties in decentralized
FL bring unique challenges. For instance, different participants
pay different attention to those objectives. How to differentiate
the tasks should be considered when designing new decentral-
ized optimization approaches for this kind of FL applications.
Meanwhile, different tasks might have different inductive
biases. How to deal with those inductive biases simultaneously
should also be investigated under the decentralized FL setting.

DECENTRALIZED OPTIMIZATION MEETS COMMUNICATION

In FL, different participants have different communication
conditions, such as limited communication budget, large com-
munication latency, to name a few. Adapting decentralized
optimization approaches to these complicated communication
conditions is of importance and necessity.

Limited Communication Budget

For decentralized optimization, each participant should
communicate its local model parameters or gradients with
its neighboring participants. When the size of FL models
is large, the communication cost will be high, which can
degenerate the empirical convergence speed. Thus, a core
research question is to reduce the communication complexity.
In fact, numerous efforts have been made to improve the
communication complexity of the centralized FL. However,
they are not applicable to the decentralized setting, espe-
cially how those techniques affect the convergence rate of
decentralized optimization approaches is not clear. To address
the communication complexity issues, the following aspects
should be investigated.

• Reducing communication rounds: To improve the com-
munication complexity, a promising strategy is to reduce
the number of communication rounds. However, the peri-
odic communication incurs new challenges for decentral-
ized optimization with the gradient tracking technique.
In particular, the tracked gradient in conventional decen-
tralized optimization approaches is computed based on
the local gradients in two consecutive iterations. With
the periodic communication, it is unclear whether the
gradients in two consecutive iterations or communication
rounds should be used. Thus, it is necessary to investigate
different algorithmic designs and how they affect the
converge rate and communication complexity.

• Reducing communication cost: Another commonly em-
ployed strategy is to compress the communicated vari-
ables. As such, the communication cost in each commu-
nication round is reduced significantly. How to apply the
compression techniques to the decentralized communica-
tion approach in the presence of periodic communication
is still under-explored. Thus, it is promising to investigate
how to combine the compression technique and periodic
communication strategy to reduce the communication
complexity of decentralized optimization approaches.

Large Communication Latency

Since different participants possess different computation
and communication capabilities, there usually exists large
communication latency in a FL system, which can slow down
the empirical convergence speed of decentralized optimization
approaches. Even though some methods have been proposed
for the centralized FL, they are not applicable to the decen-
tralized FL due to the decentralized communication strategy.
Thus, it is necessary to develop new decentralized optimization
approaches to deal with the large latency issue in FL.

A promising direction to address this challenge is the
asynchronous communication strategy, where each participant
overlaps its computation and communication. As such, the
empirical convergence speed will be improved. However, there
exist new challenges when employing the asynchronous com-
munication strategy for decentralized optimization. Especially
when employing the gradient tracking technique, both model
parameters and tracked gradients should be communicated.
As such, there exists asynchrony between computation and
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communication, as well as two communication procedures for
model parameters and gradients. Thus, it is challenging and
important to investigate how the asynchronous decentralized
optimization approaches for FL converge and how large com-
munication latency it can admit.

Hybrid Communication Topologies

In some real-world FL applications, both the centralized
and decentralized communication topologies are utilized to
leverage their advantages. In particular, the decentralized com-
munication in a P2P structure can alleviate the single-point
failure issue in the centralized one. In turn, the centralized
communication is able to benefit the convergence speed.
Thus, it is necessary to develop new federated optimization
approaches for the hybrid communication topology. Key issues
in topology design are to decide the number of communicating
neighbors and to choose these neighbors.

On the one hand, under the FL setting, the new decentral-
ized optimization approach for improving the generalization
performance should be developed, and its convergence rate
requires to study. In particular, how the spectral gap affects the
convergence rate needs to investigate. On the other hand, the
communication-efficient decentralized optimization approach
under the FL setting should be studied, and the convergence
rate should be established.

DECENTRALIZED OPTIMIZATION MEETS DATA

In FL, the training data is much more complicated than
the data-centre setting. For instance, the data might be highly
heterogeneous across all participants. Moreover, in some ap-
plications, such as autonomous driving, the data are sequen-
tially generated. All these scenarios bring new challenges for
decentralized federated optimization.

Heterogeneous Data

When different participants have different data distributions,
the stochastic gradient at each participant is significantly
different from the global gradient. As such, the local model
parameters at different participants will converge to different
stationary points. Thus, it is of importance to alleviate the het-
erogeneous data distribution issue to guarantee convergence.
However, there does not exist a central server to get the
global information. Thus, alleviating the heterogeneous issue
for decentralized FL requires new algorithmic designs.

In traditional decentralized optimization, a commonly used
approach to address the aforementioned issue is the gradient
tracking technique. In particular, the gradient tracking tech-
nique requires to communicate both model parameters and
gradients. As such, the gradient at each participant is able to
track the global gradient. The effect from the heterogeneous
data distribution can be alleviated to some extent. However,
under the FL setting, the communication is performed peri-
odically. Thus, whether the gradient tracking technique can
effectively track the global gradient is unclear. Therefore, it
is necessary to investigate how these two strategies affect
the heterogeneity term in the convergence rate. Moreover,

unlike the centralized FL where it is easy to obtain the
global information to alleviate the heterogeneous issue, new
strategies, such as combining centralized and decentralized
communication, should be investigated to address this issue.

Sequential Data

Most existing decentralized FL models concentrate on the
independent data, where different samples are independent of
each other. However, in some real-world applications, there
exists dependence between different samples. For instance, in
autonomous driving, the car interacts with the environment,
and then the data is sequentially generated. As such, there
exists dependence among this kind of sequential data. In fact,
this kind of application belongs to multi-agent reinforcement
learning when there are multiple self-driving cars. Typically,
since the self-driving car need to interact with its surrounding
cars, it is appropriate to formulate this application as a
decentralized FL task.

Traditional decentralized optimization approaches for FL
just focus on the standard gradient, ignoring the dependence
in the data. Thus, it is necessary to develop new decentralized
optimization approaches for the federated sequential decision
task. In particular, a potential direction is to study the de-
centralized stochastic gradient descent (SGD) with periodic
communication for Markov process. Specifically, in the se-
quential decision task, it is typically assumed that the decision
procedure follows the Markov process. As such, we should
investigate how the decentralized Markov SGD converges
under the periodic communication strategy. Moreover, the
communication complexity should also be investigated. In par-
ticular, how the communication period affects the convergence
rate should be investigated to benefit the FL practitioners.

Multi-modal Data

The multi-modal data is very common in real-world FL
applications. Different modalities might be distributed in dif-
ferent participants. For instance, the healthcare data could
include different types of diagnosis records, and these records
sometimes are distributed in different hospitals since a patient
may take CT scan in one hospital and get diagnosis in another
hospital. To make predictions for these kinds of patients, we
need to unify the features from all hospitals. To address such
kinds of multi-modal data, the centralized FL developed the
vertical FL paradigm to coordinate the feature learning across
all participants. However, under the decentralized FL setting,
the data owners of different modalities might not be connected
directly, and there is no central server to coordinate the
collaboration among data owners. Thus, the existing vertical
FL paradigm does not work for the decentralized setting.
New learning paradigms should be investigated to address
the dependence among different data owners when making
predictions. A potential solution to address this inter-device
dependence issue is to employ the hybrid communication
topology where the global communication is conducted but
infrequently. As such, each local device could leverage the
outdated multi-modal data to do prediction. Correspondingly,
new decentralized optimization approaches for this kind of FL
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application should be developed to address the dependence
among multi-modal data, e.g., how large the outdated period
can be admitted without hampering the convergence rate.

CONCLUSIONS

In this article, we provide a comprehensive discussion about
decentralized optimization approaches for federated learning.
In particular, the integration of decentralized optimization and
federated learning brings new challenges and opportunities.
The decentralized optimization is able to address the intrinsic
problems of the conventional federated learning system. In
turn, federated learning provides new opportunities to boost
the development of decentralized optimization. We system-
atically investigate these challenges and opportunities from
different perspectives, including the model, data, and com-
munication, which points out the potential research directions
and can help readers deepen their understanding about decen-
tralized federated learning.
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