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Abstract—The Mobile Edge Computing (MEC) paradigm
gives impetus to the vigorous advancement of Internet of Things
(IoT), through provisioning low-latency computing services at
network edges. The emerging digital twin technique has grown
in the community of IoT, and bridges the gap between phys-
ical objects and their digital representations in MEC, thereby
enabling real-time data analysis, simulating the dynamics of
systems, and optimizing network resource allocation. In this
paper, we consider query services for various IoT applications in
an MEC network, built upon digital twin data in the network,
with the aim to optimize the freshness of query results, measured
by the Age of Information (AoI) and query service delays
simultaneously. We first formulate a novel minimization problem
that explores a nontrivial trade-off between these two critical yet
conflicted optimization objectives, and show the NP-hardness of
the problem. We then propose an approximation algorithm for
the problem with a provable approximation ratio, at the expense
of a moderate computing resource violation. We finally evaluate
the performance of the proposed algorithm via simulations.
Simulation results demonstrate that the proposed algorithm is
promising, and outperforms the benchmarks, improving by no
less than 18.9% of the performance in comparison with that of
the baseline algorithms.

I. INTRODUCTION

The last decade has witnessed the unprecedented explo-
sion of Internet of Things (IoT) applications by culminating
the proliferation of IoT devices around us connected with the
Internet, thereby permeating the modern-day world and flour-
ishing the potential for brilliant living [17]. However, most
IoT devices have limited resources and energy for running
IoT applications on themselves, instead, they usually offload
their computing tasks to remote clouds for processing which
causes high service costs and service delays [6]. Moreover,
in traditional IoT architectures, IoT devices store data in
their backlogs for future diagnosis and improvements, which
however may lead to stale feedback, unverified updates, and
severe malfunctions [22].

Mobile Edge Computing (MEC) has been anticipated as a
promising paradigm of paramount significance to supply com-
puting resource (cloudlets) at network edges within the prox-
imity of users to mitigate their service delays [2], [10], [11].
The emerging digital twin technique creates digital avatars for
IoT devices in MEC networks catering to the massive data

continuously generated from IoT devices, through leveraging
integrated data and simulations to provide timely data analysis
and modeling [13]. The marriage of the MEC and digital twin
techniques drives new opportunities and challenges for IoT ser-
vice provisioning by real-time monitoring, accurate prediction,
and optimized decision-making, facilitating efficient network
management and resource allocations [8], [14].

In this study, we consider query services of IoT appli-
cations in an MEC network, built upon the digital twin data
of sensors for a finite time horizon, where sensors are scat-
tered at diverse geographical locations to provide continuous
sensory readings for time-varying environmental parameters.
Because physic sensors have limited resources, the network
service provider creates a digital twin for each sensor in a
cloudlet for processing its generated data and simulating its
behaviours [18]. To maintain the freshness of digital twin
states, it is desirable that a sensor can upload newly collected
data to its digital twin on time. However, the number of data
uploading of each sensor usually is constrained because of
the constrained energy and cost imposed on the sensor [1]. It
thus poses a great challenge for a digital twin to instruct its
sensor when performing data uploading to the digital twin, in
order to provide the Age of Information (AoI)-aware IoT query
services, where a common metric to measure the freshness of
data is AoI [26], i.e., the amount of time between the current
time and the data generation time.

The Quality of Services (QoS) of user queries based
on digital twin data usually are measured by two metrics:
the freshness of query results and query service delays [1],
[20], [22]. Meeting QoS requirements of user queries for
IoT applications in MEC poses the following challenges.
On one hand, the placement of IoT application instances to
cloudlets impacts both the freshness of query results and query
service delays, e.g., a long distance between the cloudlet of
an IoT application instance and a digital twin leads to a stale
query result and a high query service delay. How to deploy
IoT application instances of users to the MEC network to
optimize these two metrics subject to computing capacities on
cloudlets is challenging. On the other hand, it is challenging
to determine whether to use the current data of a digital twin



with a lower query service delay or wait for its next update
with a lower AoI. Also, to provide fresh data for queries, it
is challenging to determine when scheduling data uploading
of sensors and updating their digital twins over the finite
time horizon, considering limited energy and cost budgets on
sensors. In the rest of this paper, we will deal with AoI-aware
query services for IoT applications built upon digital twin data
in MEC, by addressing the aforementioned challenges.

The novelty of this study lies in exploring the power of
digital twin technology, and its application for a minimization
problem of jointly considering the freshness of query results
and query service delays for IoT applications in an MEC
network, with the aim to minimize the average weighted sum
of the AoI of query results and query service delays of all
queries for a given time horizon. An efficient approximation
algorithm for the problem of concern is devised. To the best of
our knowledge, we are the first to deal with digital twin state
updating and AoI-aware query services built upon digital twin
data in MEC networks.

The main contributions of this paper are as follows. We
formulate a novel minimization problem of jointly considering
the freshness of query results and query service delays for IoT
service queries in an MEC network, and show the NP-hardness
of the problem. We then develop an approximation algorithm
with a provable approximation ratio for the problem with
moderate resource violation. We finally evaluate the algorithm
performance via simulations. Simulation results demonstrate
that the proposed algorithm is promising, and outperforms
the comparison baseline algorithms, improving the algorithm
performance by no less than 18.9% in comparison with that
of baseline algorithms.

The rest of the paper is arranged as follows. The related
work on digital twins in MEC is surveyed in Section II.
Section III includes the system model and the problem defini-
tion. Section IV proposes an approximation algorithm for the
problem of concern. The algorithm performance is evaluated
in Section V. The conclusion is presented in Section VI.

II. RELATED WORK

Plenty of works have been conducted in recent years
to facilitate delay-sensitive IoT service provisioning in MEC
platforms [4], [6], [9], [17], [21]. For example, Gedawy et
al. [4] proposed heuristic algorithms to optimize the network
throughput, as well as the energy consumption of IoT ap-
plications. Goudarzi et al. [6] developed an IoT application
placement technique in MEC by the Memetic Algorithm (MA)
to minimize the execution time and energy consumption. Ma
et al. [17] considered truthfulness and budget-balance of IoT
services, by designing a truthful combinatorial double auction
mechanism. There are also extensive studies on optimizing
the Age of Information (AoI) of IoT services in MEC [1],
[23], [24], [27]. Corneo et al. [1] investigated the problem of
efficient dissemination of sensor updates to optimize the AoI
of IoT services. Wang et al. [23] devised an offline scheduling
algorithm and an online learning algorithm for minimizing the
average age of critical information. Zhang et al. [27] explored

the trade-off between the AoI and service delay, and proposed
an efficient algorithm to minimize the average service delay
while meeting AoI requirements.

Recent emerging digital twin techniques empower MEC
platforms to enable efficient services for various IoT applica-
tions [7], [8], [12]–[14], [18]. Li et al. [7], [8] estimated the
reliability of virtual network functions by digital twins, and
devised efficient algorithms to provide IoT services enabled by
service function chains. Lin et al. [13] proposed an incentive-
based congestion control scheme to meet the dynamic de-
mands of digital twin services by Lyapunov optimization. Lu
et al. [14] designed a federated learning algorithm based on
the blockchain technique to improve security and data privacy
in digital twin-assisted MEC networks. Sun et al. [20] utilized
digital twins to minimize the offloading latency by Lyapunov
optimization, considering user mobility and service migration.

In contrast to the aforementioned works, in this paper we
study IoT service provisioning in MEC, empowered by digital
twin technology. We focus on AoI-aware query services with
the aim to minimize the average weighted sum of AoI of query
results and query service delays for a given time horizon, by
exploring the finest trade-off between the freshness of query
results and query service delays.

III. PRELIMINARIES

A. System model

Consider an MEC network modelled by an undirected
graph G = (V,E), with V the set of Access Points (APs) and
E the set of links connecting APs. Each AP is co-located with
a cloudlet by an optical fiber cable, and the communication
delay between them is negligible [16]. We adopt notation
v ∈ V to represent either an AP or its co-located cloudlet
for simplicity. Let Cv be the computing capacity of cloudlet
v ∈ V . Each link e ∈ E is associated with a transmission
delay de to transmit a unit of data along the link [25].

Let S be a set of sensors deployed across diverse geo-
graphical locations. We assume that each sensor s ∈ S has a
digital twin DT (s) deployed in a cloudlet. Each digital twin
DT (s) needs to synchronize with its sensor s often to maintain
its state consistency as follows. Sensor s sends its collected
data to its nearest AP vs, assuming that its DT (s) has been
placed in the cloudlet co-located with AP vs.

B. User queries on digital twin data of sensors

We assume the MEC network runs in a discrete-time
fashion, and a given monitoring time horizon is slotted into
equal time slots. Denote by T = {1, 2, . . . , |T|} the set of time
slots. There is a set U of users with different IoT applications
requesting data from digital twins of sensors. Assume each
user u ∈ U deploys an instance for his IoT application in a
cloudlet that demands the amount cu of computing resource
at the beginning of time horizon T, and user u issues queries
(as his IoT application) for processing data from digital twins
of different sensors at the beginning of different time slots.
Denote by Tu ⊆ T the set of time slots in which user u
will issue his queries of data retrieving and processing, i.e.,



at the beginning of each time slot t ∈ Tu ⊆ T, the deployed
IoT application of user u requests the data from the digital
twin of a sensor su,t. For example, given T = {1, 2, 3}, the
IoT application of user u requests data from digital twins of
sensors s1 and s2 at the beginning of time slots 1 and 3,
respectively, with Tu = {1, 3}.

C. Updating digital twins of sensors

Given the limited energy budget on each sensor s ∈ S,
we assume that sensor s can deliver at most Ks updates to
its digital twin DT (s) within the time horizon T, and assume
the number of updates of any sensor is not greater than the
number of time slots of the given monitoring time horizon,
i.e., Ks ≤ |T|, ∀s ∈ S. For example, given T = {1, 2, 3} and
Ks = 2, sensor s can send its updates at the beginning of time
slots 1 and 3, respectively.

The data uploading rate µs from sensor s to its allocated
AP vs can be calculated by the Shannon-Hartley theorem [5],
i.e., µs = Bs · log2(1 + Ps/(dist

α
s · η2)), where Bs is the

bandwidth of AP vs, Ps is the transmission power of sensor
s, dists is the distance between sensor s and AP vs, η2 is the
noise power, and α is the path loss factor with α = 2 or 4
for a short or long distance [2]. Denote by ρs the volume of
data per update of sensor s. Let ρs/µs be the data uploading
delay from s to cloudlet vs in which its digital twin DT (s) is
located. Denote by fs the processing rate of DT (s) in cloudlet
vs, therefore, the processing delay of DT (s) is ρs/fs.

We define the update delay tupdates of digital twin DT (s),
which consists of the data uploading delay from sensor s to
cloudlet vs plus the processing delay of DT (s) in vs, i.e.,

tupdates = ρs/µs + ρs/fs. (1)

Suppose the current time slot is t. The current data of
digital twin DT (s) (or the received result of a user) is based
on the received update from sensor s generated at time slot
t0 with t0 ≤ t, the Age of Information (AoI) of this generated
data is defined as (t−t0) [26]. It can be seen that tupdates is the
minimum AoI of data at DT (s). We assume that each DT (s)
with s ∈ S has generated initial data with AoI of tupdates at
the beginning of time horizon T. The AoI of data at DT (s)
will linearly increase until receiving an update from sensor
s. Assuming sensor s sends its first update to DT (s) at time
slot t, DT (s) will generate the data that will be available for
IoT applications at time (t+ tupdates ), and the AoI of data at
DT (s) decreases to tupdates at time (t+ tupdates ). The AoI of
data of DT (s) then linearly increases again until receiving the
next update from s. This procedure continues until T ends.

D. QoS Model

We introduce a novel metric to measure the Quality of
Service (QoS) of query services built upon digital twin data
of sensors, which is the weighted sum of the AoI of query
results and query service delays, i.e., the duration between the
query issuing time and query result receiving time.

Recall that the IoT application of user u ∈ U requests
data from DT (su,t) of sensor su,t at the beginning of each

time slot t ∈ Tu ⊆ T. In the following, we omit the subscripts
of su,t for notation simplicity, i.e., replace su,t with s. Recall
that cloudlet vs hosts DT (s) of sensor s. We assume cloudlet
vu hosts the IoT application instance of user u. Denote by
ds,u the transmission delay of transmitting a unit of data
along the shortest path from cloudlet vs to cloudlet vu [25].
Denote by λs the size of provided data at DT (s), and the
transmission delay of transmitting the data from DT (s) to
the IoT application instance of u is λs · ds,u. Let fu be the
processing rate of the IoT application instance of u. Then the
processing delay of the IoT application of u in vu is λs/fu.

At the beginning of time slot t ∈ Tu, the user u needs
to determine whether to retrieve the current data at DT (s),
or wait for its next update. If the user prefers a lower query
service delay to a fresh AoI, the user can retrieve the data
of DT (s) immediately; otherwise, the user can wait for a
fresher AoI until the next update of DT (s), at the expense
of more query service delays. Note that the volume of a query
result usually is small compared with query data, and the
transmission delay of the query result between the cloudlet
processing the IoT application and the user thus can be
negligible [20].

Assume that the IoT application of user u has been
deployed in cloudlet vu and user u issues a query for the data
of digital twin DT (s) of sensor s at time slot t. We analyze
the freshness of the query result and query service delay of
this query by distinguishing two cases as follows.

Case (i): User u retrieves the current data at DT (s). Let
t0 be the updating time of sensor s to generate the current data
of DT (s). The AoI of query result of user u is λs · ds,u +
λs/fu + t − t0, where λs · ds,u is the transmission delay of
transmitting the data from DT (s) in cloudlet vs to cloudlet vu
hosting the IoT application of user u, λs/fu is the processing
delay of the IoT application in cloudlet vu, and (t− t0) is the
AoI of the generated data at DT (s). The query service delay
of user u is λs · ds,u + λs/fu.

Case (ii): User u will retrieve the newly generated data of
DT (s) through waiting for its next update. Because the least
AoI of the generated data at DT (s) is tupdates by Eq. (1), the
AoI of query result is λs ·ds,u+λs/fu+ tupdates . Suppose t is
the current time slot. Let t′ be the time slot of sending the next
update of DT (s). The IoT application of u needs to wait for
(t′+tupdates −t) time for the next update of DT (s). The query
service delay of user u then is λs ·ds,u+λs/fu+t′+tupdates −t.

In summary, if user u ∈ U issues a query at time slot
t ∈ Tu ⊆ T, then the AoI WAoI(u, t) of the query result is

WAoI(u, t)=

{
λs ·ds,u+λs/fu+t−t0, Case (i)

λs · ds,u+λs/fu+tupdates , Case (ii)
(2)

and the query service delay Wdelay(u, t) is

Wdelay(u, t)=

{
λs ·ds,u+λs/fu, Case (i)

λs ·ds,u+λs/fu+t′+tupdates −t, Case (ii)
(3)

Let β be a constant with 0 ≤ β ≤ 1, and we define the
weighted sum W (u, t) of the AoI of query result and query



service delay of a query issued by user u at time t as follows.

W (u, t) = β ·WAoI(u, t) + (1− β) ·Wdelay(u, t). (4)

E. Problem definition

Definition 1: Given an MEC network G = (V,E), a set
S of sensors, a positive integer Ks for each sensor s ∈ S, a
set U of users issuing queries for IoT applications on sensors,
and a finite time horizon T, assuming the digital twins of
sensors have already been deployed in cloudlets V of G, a
user u ∈ U may retrieve data from digital twins of sensors in
S at the beginning of time slots in Tu ⊆ T. The minimization
problem of joint freshness of query results and query service
delays of all queries is to minimize the average weighted sum
of the AoI of query results and query service delays of all
queries for the given time horizon T, i.e.,

Minimize
∑

u∈U

∑
t∈Tu

W (u, t)/
∑

u∈U
|Tu|, (5)

by deploying IoT application instances of users in U to
cloudlets in G, subject to computing capacities on cloudlets.

F. NP-hardness of the defined problem

Theorem 1: The minimization problem of joint freshness
of query results and query service delays of all queries is NP-
hard.

The detailed proof is omitted, due to space limitation.

IV. APPROXIMATION ALGORITHM

In this section, we deal with the minimization problem
of joint freshness of query results and query service delays of
all queries in an MEC network, via devising an approximate
solution for it as follows. We first decompose the problem into
two sub-problems: the update scheduling problem and the IoT
application placement problem. We then devise an approxi-
mation algorithm for the problem of concern by proposing an
optimal solution to the first sub-problem and an approximation
algorithm for the second sub-problem, respectively.

The optimization objective (5) is equivalent to minimizing
the total weighted sum of the AoI of query results and query
service delays of all queries over the time horizon, i.e.,

Minimize
∑

u∈U

∑
t∈Tu

W (u, t). (6)

Considering a query issued by user u at time slot t for
the data at DT (s), let t0 be the updating time of sensor s to
generate the data at DT (s) at time slot t with t0 ≤ t, and
we distinguish it into two cases: Case (i): There is no further
update of sensor s before the time horizon ends; and Case (ii):
The next update of sensor s is sent at time t′ with t0 < t′ and
t < t′ + tupdates .

To approach optimization objective (6), we define two
functions W1(u, t) and W2(u, t) as follows.

W1(u, t)=


β · (t− t0), if there is no further update

min{β ·(t− t0), tupdates +(1−β)·(t′−t)},
if the next update is at time t′

(7)

and

W2(u, t) = λs · ds,u + λs/fu. (8)

We claim that (1) the value of W1(u, t) is determined
by the update scheduling of sensor s, and shows whether to
retrieve current data at DT (s) or wait for its next update; and
(2) the value of W2(u, t) is determined by the IoT application
placement of user u. We will rigorously show this claim
in Lemma 2. We now define two sub-problems: the update
scheduling problem and the IoT application placement prob-
lem, which correspond to the two aforementioned functions
W1(u, t) in Eq. (7) and W2(u, t) in Eq. (8), respectively.

Definition 2: Given an MEC network G = (V,E), a set
S of sensors, a positive integer Ks for each sensor s ∈ S, a set
U of users with queries for IoT applications on sensors, and a
finite time horizon T, assuming digital twins of sensors have
already been deployed in cloudlets V of G, a user u ∈ U may
retrieve data from digital twins of sensors in S at the beginning
of time slots in Tu ⊆ T. The update scheduling problem in G
is to

Minimize
∑

u∈U

∑
t∈Tu

W1(u, t), (9)

where W1(u, t) is defined in Eq. (7), by scheduling the Ks

updates for each sensor s ∈ S over the time horizon T.
Definition 3: Given an MEC network G = (V,E), a set

S of sensors, a positive integer Ks for each s ∈ S, a set
U of users with IoT application queries, and a finite time
horizon T, assuming digital twins of sensors have already been
deployed in cloudlets V of G, a user u ∈ U may retrieve data
from digital twins of sensors at the beginning of time slots in
Tu ⊆ T. The IoT application placement problem in G is to

Minimize
∑

u∈U

∑
t∈Tu

W2(u, t), (10)

where W2(u, t) is defined in Eq. (8), by deploying IoT
applications of users in U on cloudlets, subject to computing
capacities on cloudlets in G.

We claim that the optimal value of optimization objec-
tive (6) is the sum of the optimal values of optimization objec-
tives of the update scheduling problem and the IoT application
placement problem, which will be shown in Lemma 4. Thus,
minimizing the optimization objective (5) of the original prob-
lem is equivalent to minimizing the optimization objectives of
the two sub-problems independently.

A. An optimal algorithm for the update scheduling problem

We here propose an optimal solution to the update
scheduling problem. Because the update scheduling of sensor
s does not affect that of another sensor s′, we first focus on the
update scheduling of sensor s by proposing an optimal solution
for it. We then extend this result to propose an optimal solution
to the update scheduling problem for all sensors.

Denote by Qs the set of queries of users in U to request
data of digital twin DT (s) of sensor s over time horizon T.
Let uq ∈ U be the user who issues a query q ∈ Qs at time
slot tq with 1 ≤ tq ≤ |T|. We define four subsets of queries
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Fig. 1. An illustrative example of the auxiliary network G′
s = (N ′

s, E
′
s) for

sensor s, which can send Ks (=3) updates over time horizon T = {1, 2, 3, 4}.

of Qs as follows. (1) Qs(0, t1) ⊆ Qs is the set of queries
issued earlier than (t1 + tupdates ), where tupdates is the update
delay of DT (s) by Eq. (1), i.e., 1 ≤ tq < t1 + tupdates with
1 ≤ t1 ≤ |T|; (2) Qs(t1, t2) ⊆ Qs is the set of queries issued
no earlier than (t1 + tupdates ) but earlier than (t2 + tupdates ),
i.e., t1 + tupdates ≤ tq<t2 + tupdates with 1≤ t1<t2≤|T|; (3)
Qs(t2, |T| + 1) ⊆ Qs is the set of queries issued no earlier
than (t2+tupdates ), i.e., t2+tupdates ≤ tq≤|T| with 1≤ t2≤|T|;
(4) Let Qs(0, |T|+ 1) = Qs.

Because the total queries of all users over the time
horizon are the total queries requesting data of the digi-
tal twins of all sensors over the time horizon, we have∑

s∈S
∑

q∈Qs
W1(uq, tq) =

∑
u∈U

∑
t∈Tu

W1(u, t).

To determine whether to use the current data at DT (s)
or wait for its next update, we construct an auxiliary graph
G′

s = (N ′
s, E

′
s) with edge weight w : E′

s 7→ R≥0 for sensor
s ∈ S as follows. The set N ′

s = {S,D} ∪ {ni,j | 1 ≤ i ≤
Ks, 1 ≤ j ≤ |T|} of nodes and the set E′

s = {(S, n1,j) | 1 ≤
j ≤ |T|}∪ {(nKs,j , D) | 1 ≤ j ≤ |T|}∪ {(ni,j , ni+1,j′) | 1 ≤
i ≤ Ks − 1, 1 ≤ j < j′ ≤ |T|} of edges. Especially, we add
virtual nodes S and D as the source and destination nodes,
respectively. We also add nodes ni,j with 1 ≤ i ≤ Ks and
1 ≤ j ≤ |T|, i.e., the nodes are in a Ks-layer structure with |T|
nodes in each layer. We then add edges (S, n1,j) for each node
n1,j with 1 ≤ j ≤ |T| at the first layer, and edges (nKs,j , D)
for node nKs,j with 1 ≤ j ≤ |T| at the Ksth layer (the last
layer). We add edges (ni,j , ni+1,j′) with 1 ≤ i ≤ Ks − 1 and
1 ≤ j < j′ ≤ |T|, i.e., for each ni,j at the ith layer, we add
an edge (ni,j , ni+1,j′) for each ni+1,j′ at the (i+ 1)th layer.
The shortest path from source S to destination D will show
the optimal update scheduling of sensor s.

The weight assignment of edges in E′
s is given as follows.

For each edge (S, n1,j) ∈ E′
s with 1 ≤ j ≤ |T|, its weight is

w(S, n1,j) =
∑

q∈Qs(0,j)
W1(uq, tq), with W1(uq, tq) defined

in Eq. (7). If edge (S, n1,j) is included in a shortest path in G′
s

from S to D, it implies that the first update of sensor s is sent
at the beginning of time slot j. For each edge (ni,j , ni+1,j′) ∈
E′

s with 1 ≤ i ≤ Ks − 1 and 1 ≤ j < j′ ≤ |T|, its weight is
w(ni,j , ni+1,j′) =

∑
q∈Qs(j,j′)

W1(uq, tq). Similarly, if edge
(ni,j , ni+1,j′) is included in a shortest path in G′

s from S
to D, the ith and (i + 1)th updates are sent by sensor s at
the beginning of time slot j and j′, respectively. For each

Algorithm 1 An optimal algorithm for the update scheduling
problem
Input: An MEC network G = (V,E), a set S of sensors, a positive integer

Ks for each s ∈ S, a set U of users, and a finite time horizon T.
Output: Minimize

∑
u∈U

∑
t∈Tu

W1(u, t) by scheduling the updates of
sensors in S over the time horizon |T|.

1: A1 ← ∅; /* the solution */
2: for each sensor s ∈ S do
3: Construct an auxiliary graph G′

s = (N ′
s, E

′
s) for sensor s, and find

the shortest path P ∗
s in G′

s from source S to destination D, which
delivers the optimal solution A1,s for updating scheduling of sensors;

4: A1 ← A1 ∪ {A1,s};
5: end for
6: return Solution A1 to the problem.

edge (nKs,j , D) ∈ E′
s with 1 ≤ j ≤ |T|, its weight is

w(nKs,j , D) =
∑

q∈Qs(j,|T|+1) W1(uq, tq). If edge (nKs,j , D)
is included in a shortest path in G′

s from S to D, the Ksth
update is sent by sensor s at the beginning of time slot j.

We claim that the shortest path P ∗
s from S to D in G′

s

corresponds to the optimal solution to the update scheduling
problem for sensor s, i.e.,

∑
e∈P∗

s
w(e) is the minimum

value of
∑

q∈Qs
W1(uq, tq), which will be shown later in

Lemma 3. Hence, we first construct an auxiliary graph G′
s

for each sensor s ∈ S, and find the shortest path P ∗
s in

each G′
s, and

∑
s∈S

∑
e∈P∗

s
w(e) is the minimum value of∑

u∈U

∑
t∈Tu

W1(u, t). The found P ∗
s , ∀s ∈ S, thus is

an optimal solution to the update scheduling problem. An
illustrative construction of auxiliary graph G′

s is given in
Fig. 1, where sensor s can have Ks (=3) updates over the
time horizon T = {1, 2, 3, 4}. P ∗

s = {(S, n1,1), (n1,1, n2,3),
(n2,3, n3,4), (n3,4, D)} is the shortest path in G′

s from S to
D, which implies that the Ks (=3) updates of sensor s will
be sent to its DT (s) at the beginning of time slot 1, 3, and 4,
respectively. The algorithm for the update scheduling problem
is detailed in Algorithm 1.

B. An approximation algorithm for the IoT application place-
ment problem

We now deal with the IoT application placement problem.
We first formulate an Integer Linear Programming (ILP)
solution for the problem. We then propose an approxima-
tion algorithm with a provable approximation ratio for the
problem, through reducing the problem to the minimum-cost
Generalized Assignment Problem (GAP) [19]. An approximate
solution to the minimum-cost GAP will in turn return an ap-
proximate solution to the IoT application placement problem.

Let xu,v be a binary variable with xu,v = 1, indicating
the IoT application instance of user u ∈ U is deployed in
cloudlet v ∈ V , and xu,v = 0 otherwise. Let W ′

2(u, t, v) be
the value of W2(u, t) by Eq. (8) for the query of user u issuing
at time t if the IoT application instance of user u is deployed
in cloudlet v ∈ V . An ILP solution for the IoT application
placement problem is provided as follows.

Minimize
∑

u∈U

∑
t∈Tu

W2(u, t) (11)

subject to:

W2(u, t)=
∑

v∈V
(W ′

2(u, t, v)·xu,v), ∀u∈U, ∀t∈Tu (12)



Algorithm 2 An approximation algorithm for the IoT appli-
cation placement problem
Input: An MEC network G = (V,E), a set S of sensors, a positive integer

Ks for each s ∈ S, a set U of users, and a finite time horizon T.
Output: Minimize

∑
u∈U

∑
t∈Tu

W2(u, t) by deploying the IoT applica-
tion instances of users in U on cloudlets in V .

1: A2 ← ∅; /* the solution */
2: Find the shortest paths between each pair of cloudlets;
3: Solve the relaxed LP by ILP (11);
4: Obtain the optimal solution ÕPT to the LP, where x̃u,v ∈ [0, 1] is the

value of each xu,v ;
5: Build a bipartite graph B = (R,V; E) by [19].
6: Identify a minimum-cost matching M in B, where all nodes in R are

matched, via Hungarian algorithm;
7: for each edge (Ru, γv,i) ∈M do
8: A solution A2,u for user u is obtained, by deploying the IoT

application instance of user u in cloudlet v;
9: A2 ← A2 ∪ {A2,u};

10: end for
11: return Solution A2 to the problem.∑

u∈U
cu · xu,v ≤ Cv, ∀v ∈ V, (13)∑

v∈V
xu,v = 1, ∀u ∈ U (14)

xu,v ∈ {0, 1}, ∀u ∈ U, ∀v ∈ V. (15)

Constraint (12) holds by the definition of W ′
2(u, t, v), and

Constraint (13) means the computing capacity constraint on
each cloudlet. Constraint (14) ensures that each user deploys
an IoT application instance in a cloudlet.

We now reduce the IoT application placement problem to
a minimum-cost GAP. Each IoT application instance of user
u ∈ U is regarded as an item u with size cu, while each
cloudlet v ∈ V is regarded as a bin v possessing capacity Cv .
Packing item u to bin v introduces a cost

∑
t∈Tu

W ′
2(u, t, v).

By adopting the approximation technique [19] for the mini-
mum cost GAP, we devise an approximation algorithm for the
IoT application placement problem as follows.

We first obtain an optimal fractional solution ÕPT for the
Linear Programming (LP) based on ILP (11). Let x̃u,v ∈ [0, 1]

be the fractional value of xu,v by ÕPT . We build a bipartite
graph B = (R,V; E) by [19]. Especially, R and V are two sets
of nodes, while E is the set of edges connecting nodes in R and
V . Let R = {Ru | u ∈ U}, where Ru is a node corresponding
to the IoT application instance of user u ∈ U , while V =
{γv,i | v ∈ V, 1 ≤ i ≤ ηv}, where ηv = ⌈

∑
Ru∈R x̃u,v⌉ for

each cloudlet v ∈ V .
Then we show how to construct the edge set E . Con-

sidering each cloudlet v ∈ V iteratively, each node in
{γv,i | 1 ≤ i ≤ ηv} is regarded as a bin possessing capacity
1. Each node Ru ∈ R with x̃u,v > 0 is regarded as an item
possessing size x̃u,v . Sort nodes (items) in R in non-increasing
order of cu with u ∈ U , and let R1≥R2≥ . . .≥R|U | be the
sorted items for notation simplicity. We now pack items into
bins. The sorted items in R are packed into the first bin γv,1
one by one until it causes the capacity violation of γv,1 by
packing Ru. Then we partition Ru into two disjoint parts: R1

u

and R2
u, such that packing part R1

u into bin γv,1 makes γv,1
have no residual capacity. We pack part R2

u into the next bin
γv,2. Such procedure continues until we have packed all items

Algorithm 3 An approximation algorithm for the minimiza-
tion problem of joint freshness of query results and query
service delays of all queries
Input: An MEC network G = (V,E), a set S of sensors, a positive integer

Ks for each s ∈ S, a set U of users, and a finite time horizon T.
Output: Minimize

∑
u∈U

∑
t∈Tu

W (u, t)/
∑

u∈U |Tu|, i.e., the average
weighted sum of the AoI of query results and query service delays of all
queries over T.

1: Formulate an updating scheduling problem and solve it to obtain solution
A1 by Algorithm 1.

2: Formulate an IoT application placement problem and solve it to obtain
solution A2 by Algorithm 2;

3: A solutionA to the problem of concern is obtained by adopting the update
scheduling of sensors in A1 and the IoT application placement of users
in A2;

4: return Solution A to the problem.

in R. If we (partially) pack Ru into bin γv,i, we add edge
(Ru, γv,i) with cost

∑
t∈Tu

W ′
2(u, t, v) to set E .

Finally we identify a minimum-cost maximum matching
M in the bipartite graph B, which exactly matches all nodes in
R. For each edge (Ru, γv,i) ∈ M , the IoT application instance
of user u will be deployed in cloudlet v. The algorithm is
detailed in Algorithm 2.

C. An approximation algorithm for the minimization problem
of joint freshness of query results and query service delays of
all queries

We now devise an approximate algorithm for the min-
imization problem of joint freshness of query results and
query service delays of all queries. The algorithm proceeds
as follows. Given an instance of the problem, we decompose
the problem into two sub-problems - the update scheduling
problem and the IoT application placement problem. We
first obtain an optimal solution A1 to the update scheduling
problem by Algorithm 1. We then obtain an approximation
solution A2 to the IoT application placement problem by
Algorithm 2. We finally propose an approximation algo-
rithm for the problem of concern, via adopting the update
scheduling of sensors in A1 and the IoT application placement
of users in A2. The algorithm is detailed in Algorithm 3.

D. Algorithm analysis

Lemma 1: Let W ∗(u, t) be the value of W (u, t) by
Eq. (4) in optimal solution to the problem of concern. Given
a query of user u at time slot t for DT (s), and the update
sending time t0 of sensor s to generate the current data
at DT (s), we consider two cases: (1) There is no further
update of sensor s before time horizon T ends. User u then
can only retrieve the current data of DT (s), and we have
W ∗(u, t) = λs·ds,u+λs/fu+β·(t−t0); (2) Assuming the next
update of s is scheduled at time slot t′, we have W ∗(u, t) =
λs ·ds,u+λs/fu+min{β ·(t−t0), t

update
s +(1−β) ·(t′−t)},

and user u prefers to retrieve the current data of DT (s) to
minimize W (u, t), if t < tupdates +(1−β)·t′+β ·t0; otherwise,
user u prefers to wait for the next update of DT (s).

Due to limited space, the proof of Lemma 1 is omitted.
Lemma 2: Given a query of user u at time slot t for data

at DT (s), the update sending time t0 of sensor s to generate
the current data at DT (s), and the next update sending time t′



of sensor s if available, (1) the value of W1(u, t) by Eq. (7) is
determined by the update scheduling of sensor s, and shows
whether to retrieve current data at DT (s) or wait for its next
update; and (2) the value of W2(u, t) by Eq. (8) is determined
by the IoT application instance placement of user u.

Proof (1) Recall that tupdates is a constant, i.e., the update
delay of DT (s) by Eq. (1), and β is a constant in Eq. (4). Then
W1(u, t) is determined by the update scheduling of sensor s
(i.e., determining values of t0 and t′). By Lemma 1, the min{·}
operation in Eq. (7) for W1(u, t) shows whether to retrieve the
current data at DT (s) or wait for its next update.

(2) Recall that ds,u is the transmission delay of transmit-
ting a unit of data through the shortest path between cloudlets
vs and vu, where vs holds DT (s), and vu holds the IoT
application instance of user u, while λs is the size of the
generated data at DT (s), and fu is the processing rate of the
IoT application instance of u. As fu and λs are constants, the
value of W2(u, t) is only determined by the IoT application
placement of user u (i.e., determining the value of ds,u). ■

Lemma 3: Given a sensor s with Ks updates to be
sent over the time horizon T, and the constructed auxiliary
graph G′

s = (N ′
s, E

′
s), the shortest path P ∗

s from source
S to destination D in G′

s corresponds to a feasible update
scheduling of sensor s over time horizon T with the minimum
value of

∑
q∈Qs

W1(uq, tq) with W1(uq, tq) defined in Eq. (7).
Due to limited space, the proof of Lemma 3 is omitted.
Theorem 2: Given an MEC network G = (V,E), a set

S of sensors, a positive integer Ks for each sensor s ∈ S, a
set U of users with IoT application queries, and a finite time
horizon T, assuming that the digital twins of sensors have
already been deployed in cloudlets V of G, a user u ∈ U
may retrieve data from digital twins of sensors in S at the
beginning of time slot t ∈ Tu ⊆ T. Algorithm 1 delivers
an optimal solution to the update scheduling problem, which
takes O(|U | · |T| + |S| · K2

max · |T|2) time, with Kmax =
max{Ks | s ∈ S}.

Proof By Lemma 3, Algorithm 1 delivers the optimal
update scheduling of each s ∈ S, and the update scheduling of
sensor s does not affect that of another sensor s′. Therefore,
Algorithm 1 delivers an optimal solution to the update
scheduling problem, and its time complexity is analyzed as
follows. For each s ∈ S, we construct an auxiliary graph
G′

s = (N ′
s, E

′
s), where the cardinality of set N ′

s is O(Ks · |T|).
Finding a shortest path in G′

s from S to D takes O(K2
s · |T|2)

time. There are at most |U | · |T| queries to be dealt with. Thus,
Algorithm 1 takes O(|U | · |T|+ |S| ·K2

max · |T|2) time. ■

Theorem 3: Given an MEC network G = (V,E), a set
S of sensors, a positive integer Ks for each sensor s ∈ S,
a set U of users, and a finite time horizon T, assuming that
the digital twins of sensors have already been deployed in
cloudlets V of G, a user u ∈ U may retrieve data from digital
twins of sensors in S at the beginning of time slot t ∈ Tu ⊆ T.
There is an approximation algorithm Algorithm 2 for the
IoT application placement problem. The solution value by

Algorithm 2 is no more than that of the optimal solution,
and the amount of computing resource consumed in each
cloudlet v ∈ V is no more than twice its computing capacity.
Algorithm 2 takes O(|U |3 · |V |3) time.

Proof Because we reduce the IoT application placement prob-
lem to the minimum-cost GAP, and adopt the approximation
technique in [19] to devise algorithm Algorithm 2 for the
problem, readers can refer to [19] for more details, which are
omitted here due to space limitation. ■

Lemma 4: Let OPT be the optimal solution to the prob-
lem of concern. Let OPT1 and OPT2 be the optimal solutions
to the update scheduling problem and IoT application place-
ment problem, respectively. We have OPT = OPT1+OPT2∑

u∈U |Tu| .
Due to limited space, the proof of Lemma 4 is omitted.
Theorem 4: Given an MEC network G = (V,E), a set

S of sensors, a positive integer Ks for each sensor s ∈ S,
a set U of users with IoT application queries, and a finite
time horizon T, assuming that digital twins of sensors have
already been deployed in cloudlets V of G, a user u ∈ U may
retrieve data from digital twins of sensors at the beginning
of time slot t ∈ Tu ⊆ T. There is an approximation
algorithm Algorithm 3 for the minimization problem of
joint freshness of query results and query service delays
of all queries. The solution value by Algorithm 3 is no
more than that of the optimal solution, and the amount of
computing resource consumed in each cloudlet v ∈ V is
no more than twice its computing capacity. Algorithm 3
takes O(|U | · |T| + |S| ·K2

max · |T|2 + |U |3 · |V |3) time with
Kmax = max{Ks | s ∈ S}.

Proof Let OPT be the optimal solution to the problem of
concern. Denoted by OPT1 and OPT2 the optimal solu-
tions to the update scheduling problem and IoT application
placement problem, respectively. Let A, A1, and A2 be
the solution values by Algorithm 3, Algorithm 1, and
Algorithm 2, respectively. We have A1 = OPT1 by Theo-
rem 2, A2 ≤ OPT2 by Theorem 3, and OPT = OPT1+OPT2∑

u∈U |Tu|
by Lemma 4. From Lemma 1, Eq. (7) and (8), we have
A = A1+A2∑

u∈U |Tu| ≤ OPT1+OPT2∑
u∈U |Tu| = OPT with the computing

resource consumed of each cloudlet no more than twice its
computing capacity, by Theorem 3.

Algorithm 3 takes the time O(|U | · |T|+ |S| ·K2
max ·

|T|2 + |U |3 · |V |3), by time complexities of Algorithm 1
and Algorithm 2 in Theorem 2 and 3, respectively. ■

V. PERFORMANCE EVALUATION

A. Experimental environment settings

We consider an MEC network G = (V,E) consisting of
from 50 to 250 APs, with each co-located with a cloudlet.
We leverage GT-ITM [3] to construct the topologies of MEC
networks. The bandwidth of each AP ranges from 5 MHz to
20 MHz [20], and the capacity on each cloudlet ranges from
10, 000 MHz to 20, 000 MHz [25]. The transmission delay of
a unit of data (one MB) along a link ranges from 0.2 ms to
1 ms [25]. There are 500 sensors, and each sensor is in the
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Fig. 2. Performance of different algorithms by varying the network size.

proximity of a random AP with a distance from 10 m to 50
m. The number of updates Ks of a sensor s ranges from 10
to 30. The transmission power Ps of a sensor s ranges from
0.1 Watt to 0.5 Watt [2], while the path loss factor α and
the noise power η2 are set as 4 [2] and 1 × 10−10 Watt [9],
respectively. There are 1, 000 users, while the computing
resource demanded by an IoT application instance or a digital
twin is set within [300, 600] MHz [15]. The number of CPU
cycles needed for 1-bit task calculation is set within [200, 400]
cycles/bit [13]. There are 100 time slots, with each lasting 50
ms. At the beginning of each time slot, each user issues a query
querying for a random sensor. The data size of the update of
a sensor ranges from 1 MB to 5 MB [23], and the size of the
data generated at a digital twin is set within [2, 10] MB. The
parameter β in Eq. (4) is set as 0.5. The value in each figure
represents the mean of the results based on 30 MEC instances
of the same size. We obtain the actual running time of each
algorithm by a desktop with a 3.60GHz Intel 8-Core i7 CPU
and 16GB RAM. Unless otherwise specified, these parameters
will be adopted by default.

We refer to Algorithm 3 as Alg.3 proposed for the
minimization problem of joint freshness of query results
and query service delays of all queries, and evaluate its
performance against three benchmarks: (1) Wait: each user
deploys his IoT application instance in a cloudlet such that
the average transmission delay from the requested digital twin
to the IoT application instance per query is minimized. Each
sensor delivers its updates evenly over the time horizon, and
each query waits for the next update of the digital twin; (2)
NoWait: similar to Wait, but queries retrieve current data
at digital twins; and (3) Random: IoT application instances
are deployed in cloudlets randomly. Sensors randomly send
updates to digital twins, while queries can either retrieve the
current data of digital twins or wait for their updates, and such
actions are randomly chosen.

B. Algorithm performance evaluation

We first evaluated the performance of algorithm Alg.3 for
the problem against algorithms Wait, NoWait and Random, by
varying the network size from 50 to 250, where the utilization
ratio of a cloudlet v is the ratio of the amount of computing
resource consumed to its computing capacity, in order to
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Fig. 3. Impact of the number of updates of sensors on performance of Alg.3.

characterize the capacity violations by an algorithm. Fig. 2
plots the performance (the optimization objective (5)) and
running times by different algorithms, as well as showing the
utilization ratios of cloudlets by algorithm Alg.3. Shown in
Fig. 2(a), when the network size is 250, Alg.3 outperforms
Wait, NoWait and Random by 18.9%, 23.8% and 36.9%,
respectively. It can be seen from Fig. 2(b) that algorithm
Random takes the least running time, because it randomly
makes decisions. Meanwhile, Alg.3 takes the longest running
time, because of finding the shortest path in the auxiliary graph
for each sensor and adopting the approximation algorithm
from [19]. Fig. 2(c) shows that the computing capacity of each
cloudlet is violated by no more than 4.1% by algorithm Alg.3.
Therefore, Fig. 2 demonstrates Alg.3 is promising, compared
with Wait, NoWait and Random. The rationale behind this is
that Alg.3 efficiently optimizes the joint freshness of query
results and query service delays of all queries.

We then investigated the impact of the number of updates
of each sensor on the performance of Alg.3. Fig. 3 shows the
performance and running times of Alg.3 with the number of
updates of each sensor from 10 to 30. From Fig. 3(a), when
the network size is 250, the performance of Alg.3 with 30
updates is 40.5% higher than that of itself with 10 updates.
The justification is that digital twins can obtain much fresher
data through more updates from their sensors. In Fig. 3(b),
algorithm Alg.3 with 30 updates takes the most time because
a larger number of updates from a sensor leads to a larger
constructed auxiliary graph, as shown in Section IV-A.

We finally studied the impact of parameter β on the
performance of Alg.3, where β is a coefficient associated
with the AoI in Eq. (4). Fig. 4 plots the performance curves
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Fig. 4. Impact of the parameter β on performance of Alg.3.

of Alg.3. When the network size is 250, the performance of
Alg.3 with β = 0.9 is 28.2% higher than its performance with
β = 0.1, as shown in Fig. 4(a). A larger value of β represents
that a larger weight is assigned to the average AoI of queries,
and a less weight (1 − β) is assigned to the average query
service delay. It can also be seen from Fig. 4(b) that the impact
of the value of β on the running time of Alg.3 is negligible.

VI. CONCLUSION

In this paper, we studied AoI-aware query services of
IoT applications in MEC, empowered by the digital twin
technology. We formulated a novel minimization problem of
joint considerations of the freshness of query results and
query service delays for IoT service queries, with the aim to
minimize the average weighted sum of AoI of query results
and query service delays of all queries for a given time
horizon, and we showed the NP-hardness of the problem.
We then devised a performance-guaranteed approximation
algorithm for the problem, with moderate computing resource
violations. We finally evaluated the algorithm performance via
simulations. Simulation results demonstrate the proposed algo-
rithm is promising, and outperforms the comparison baseline
algorithms with performance improvement by no less than
18.9% in comparison with that of the baseline algorithms.
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