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a b s t r a c t

With the increase of mobile devices, opportunistic mobile networks become a promising technique for
disseminating data in a local area. However, existing works focus on the single data dissemination and
fail to consider the practical applications where there are multiple data under different topics. Multiple
data dissemination shows the potential applications in many scenarios, e.g., product coupon distribution.
In this paper, we focus on budget-constrainedmultiple data dissemination services. Amobile usermay be
interested in data under different topics, but receiving data for any topic is enough due to user experiences
and participation constraints. This is the mutually exclusive delivery requirement in many scenarios. In
light of the different amounts of data and the different popularity levels of data in each topic, deciding
which data should be forwarded tomobile users becomes an important problem. This paper aims to design
an efficient data dissemination scheme thatminimizes themaximumdissemination delaywhile incurring
a small communication overhead for the aforementioned scenario. In this paper,wediscuss three different
scenarios according to different knowledge.We start with the data disseminationwith network topology,
and a corresponding optimal solution is proposed. Later, we consider the probability estimation with
k-hop information, and lastly propose a distributed data forwarding algorithm, which considers the
amount of data in different topics, the mobile users’ interest, and their data forwarding abilities, respec-
tively. The real trace-driven experiments show that the proposed scheme achieves a good performance.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recently, thewidespread availability of personalmobile devices
has generated new communication techniques, called proximity-
based communication, in which mobile users walk around and
communicate with each other via Bluetooth or Wi-Fi in their
carried short-distance wireless communication devices. The Cisco
2014–2019 White Paper in [5] points out that as of 2014, the
number of mobile-connected devices has exceeded the world’s
population, which has led to many contact opportunities. New
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technologies, such as Wi-Fi Aware in [2,23], extend Wi-Fi’s capa-
bilities with a real-time and energy-efficient discoverymechanism
that provides an immediate on-ramp to rich here-and-now expe-
riences. Furthermore, our world is bigger and more personalized
than ever, with social media usage diversifying and expanding to
include localized experiences based on proximity. As the result,
proximity has become a critical element of today’s mobile con-
nected experiences, and the market for proximity-based applica-
tions is expected to grow significantly in 2017 and beyond. The
above-mentioned reasons make the proximity-based communica-
tion scheme very attractive in academia and industry.

The topic-based publish/subscribe (pub/sub) system is widely
used in many applications in [20] (e.g., RSS feeds, mobile ad-
vertisements, and online games). The publishers generate data
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Fig. 1. A motivation example of our problem, where the mobile user u1 has several data under different topics. Currently, mobile user u1 can communicate with mobile
users u2 and u3 .

and label the data into some topics. The subscribers have di-
verse interests, and each subscriber creates a filter locally, which
contains the topic it would like to receive. The subscriber will
receive the data if and only if the topic of the data contains the
topics in the filter. In this paper, we adopt the same concept
in topic-based pub/sub systems to mobile users. With the wide
availability of mobile devices, people want to apply the traditional
pub/sub system into the opportunistic mobile network to conduct
proximity-based communication. The advantage of the oppor-
tunistic mobile network is that the data dissemination has locality
characters.

In the opportunistic mobile network, past research in [6,8,11]
has lacked attention to data dissemination with a desired num-
ber of data. However, there are many budget-constrained data
dissemination services that provide incentives to receivers, such
as digital billboards in [14] and electric coupon systems in [10].
Though it is important to figure out how to minimize the data
dissemination delay, an effective solution has not been found.
Therefore, a good data dissemination scheme for opportunistic
mobile networks should carefully select the right data to forward
to the encountered mobile user. The real traces show that the
number of subscribers frequently exhibits the well-known Zipf
distribution in [12]. That is, some topics are subscribed to by many
users, but other topics are only subscribed by a few users. In this
case, a wrong forwarding decision will increase the overall delay
significantly. In addition, we point out a practical issue in data
dissemination, called themutually exclusive delivery requirement, in
this paper. That is, a mobile user may subscribe to multiple topics,
but receiving data on any matched topic is enough.

An illustration of the proposed data dissemination problem is
in Fig. 1, where the time above the arrows symbolizes the esti-
mated delay. The mobile user u1 has two data under the topics
‘‘sports’’ and ‘‘music’’, respectively. Currently, the mobile user u1
can communicate with mobile users u2 and u3 through Bluetooth
or WiFi. If the mobile user u2 consumes the data in ‘‘music’’, the
mobile user u3 can forward the remaining data and finish in 25
min in expectation. However, if the mobile user u2 consumes the
data in ‘‘sports’’, the mobile users b can further relay data to the
mobile user u7, and the data dissemination can be finished in 15
min in expectation. If the data amount in ‘‘sports’’ and ‘‘music’’ is 1
and 3, the optimal solutionwill also change. In addition, estimating
mobile users’ forwarding abilities for different types of data is
challenging, i.e., estimating the forwarding delay.

Motivated by the aforementioned problem in real applications,
we propose the following delay minimization problem in this
paper: the publishers/sources generate a certain number of data
copies under different topics, e.g., the product coupons. Then, they
would, ideally, disseminate them to the matching mobile users
and the maximum delivery delay would be minimized. In this
paper, we consider the real situation where some mobile users
might be interested in multiple different data (coupons), but only

one data can be received (applied) each time. This problem is
further complicated by the heterogeneous data copy number and
the popularity of each topic.

To solve the delay minimization problem, we first propose the
optimal algorithm with the topology information by transforming
it into a max-flow problem. In order to reduce the computation
complexity,we propose a greedy data assignment algorithm. In the
real opportunistic mobile network, mobile users might not know
the accurate knowledge of the network. Solving the important
issue of how to compress information while achieving a compa-
rable result is a fundamental problem. Therefore, we further the
probability-based solution based on nodes’ inter-meeting distri-
bution with partial knowledge. Finally, we propose an adaptive
solution with local information which provides criterion for data
selection for the mobile users with multiple interests. As for the
relay selection, several efficient criteria are proposed to evaluate
mobile users’ forwarding abilities for data in different topics.

The contributions of this paper are four-fold:

• To our best knowledge, we are the first to consider the
mutually exclusive delivery requirement during the data
dissemination in the opportunistic mobile network.

• We provide an optimal solution with the network topology
information, by formulating it into a max-flow problem. A
greedy algorithm is also proposed and analyzed.

• We provide a probability-based solution with partial net-
work information. The optimal probability-based algorithm
is proposed and analyzed.

• We propose a distributed algorithm, which jointly captures
the mobile users’ interests, mobility patterns, and the data
amount in each topic. It adaptively selects the best relays for
each topic for a timely data delivery.

The remainder of the paper is organized as follows. The prob-
lem statement is introduced in Section 2. Then, the proposed
optimal data dissemination algorithm with the network topology
is provided in Section 3. We further present a probability-based
algorithm based on inter-meeting distribution in Section 4. A local
algorithm is proposed in Section 5. The performance evaluations
are shown in Section 6. The related works are in Section 7. The
acknowledgments and the conclusion are in Sections Acknowledg-
ments and 8.

2. Problem statement

In this section, we first introduce the network model and prob-
lem clarification and formulation, followed by the applications and
the challenges.
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Table 1
Symbol summary.

Symbol Meaning

D Total number of data
m Number of different data types
h Number of different user types
di Number of data under topic i
Mi Mobile user type i, where |Mi| is its cardinality
ni The number of mobile users under type i
N Total number of mobile users
T The delivery delay for N data
si The number of data copy under topic i
pi The number of user assigned with data under topic i

Fig. 2. An illustration of mutually exclusive data dissemination.

2.1. Model

In this paper, we consider an opportunistic mobile network,
which is modeled as an undirected weighted graph G = (V , E),
where V is a set of mobile users (nodes), and E ⊆ V 2 is a set of
links connecting the mobile users. The link weight is the contact
probability of two neighbors. In the network, mobile users are
typically equipped with short range interfaces (e.g., Bluetooth or
Wi-Fi) to detect and communicate with each other. Note that we
do not consider the contact duration and assume that it is always
sufficient to exchange all data in one contact opportunity due to
the recent advantage in wireless communication. Mobile users can
serve as publishers, subscribers, or relays. The publishers/sources
generate a pre-determined amount of data, N , and label each data
into a special topic. Themobile users will consume their interested
data and they can also act as relays to forward the data to other
nodes, even for their uninterested data. In this paper, each mobile
user will consume one and only one data that it is interested in.
However, this constraint can be easily extended to any number of
data. That is, if a mobile user wants to consume multiple data, this
mobile user can be regarded as multiple dummymobile users who
are always together.

Let us assume that there exist a total number of m topics, the
number of data in each topic is denoted by the set {d1, d2, . . . , dm},
D =

∑m
i=1di. Due to the nodes’ interest condition, regarding these

m topics, the mobile users/subscribers can be divided into h types,
denoted as {M1,M2, . . . ,Mh}, and the corresponding amount of
mobile users in each type is denoted as {n1, n2, . . . , nh}, D ≤∑h

i=1ni. Note that there is no specified destination as long as the
data can be delivered to the matching mobile users. In addition, h
might not be equal to m. This is because the mobile user might be
interested in multiple topics as its interest. For example, M1 = {1}
and M2 = {1, 2}. This means that type M1 nodes are interested
in topic 1 and type M2 nodes are interested in topics 1 and 2.
Besides, we use |M| to denote the number of topics that a type of
nodes subscribe. In the above example, |M1| = 1, and |M2| = 2.
Note that as long as a mobile user receives a matching data, it is
a successful data delivery. For example, an M2 node can receive a
data under topic 1 or a data under topic 2, but not both. This is
called mutually exclusive delivery requirement and an illustration
is shown in Fig. 2, where this mobile user can receive a data un-
der ‘‘music’’ or ‘‘sports’’. The mutually exclusive delivery require-
ment distinguishes our work with existing works. Without loss of

generality, we assume that first {M1,M2, . . . ,Mm} denotes themo-
bile users who are only interested in {d1, d2, . . . , dm}, respectively
in the remainder of this paper.

2.2. Problem and applications

This paper addresses the following problem: given the interest
of each mobile user, we consider how to design a data dissemina-
tion scheme so that N data in total can reach the matching mobile
users with a small overhead, and the maximum dissemination
delay can be minimized. It is an optimization from the view of
information producer.

The proposed problem formulation can be applied to many
budget-constrained data dissemination services. The following
are two application scenarios. Some other potential applications
in [14,28] include museum ticket distribution, traffic congestion
notification, and mobile survey collections.

• Mobile advertisement dissemination: Fig. 3 shows the Face-
book advertisement payment from their website. There is
an advertisement dissemination budget and a deadline. For
the Facebook advertisement, the advertisement will only
deliver to users with certain profiles, and each successful
delivery will have a fee. The mutually exclusive delivery
requirement ensures that one userwill not receive toomany
advertisements in a time period the user experience is not
influenced.

• Electric coupon advertisement: a supermarket has a certain
number of coupons in different types. These coupons cannot
be further copied, otherwise, it will be over the budget. Cus-
tomers might have interest in several types of coupons, but
they can use only one coupon code in the supermarket per
time. These coupons are distributed through the customers
in this supermarket. These customers might also act as re-
lays to further distribute these coupons, which furthers the
supermarket’s goal to distribute these coupons as quickly as
possible.

• Game organization: An organizer would like to organize
some games and each game has a capacity. The organizer
disperses the information to their surroundings. If a person
takes notice of it, and is interested in one or some of the
games, they would choose one to join. Since all the games
are organized at the same time, each person can only join
one game. Therefore, it is important for the organizer to find
a certain number of participants as soon as possible so that
the games can begin.

2.3. Challenges and discussions

The main challenge lies in the unique mutually exclusive deliv-
ery requirement of the proposed problem. In real applications, the
amount of data and their popularities in them topics are different.
Therefore, how to select the proper data for the mobile users with
multiple interests is non-trivial.

Though we consider that each node can only get one data in
our problem formulation, it can extend to a more flexible situation
where a mobile user can get a pre-defined number of different
data. For example, If a mobile user wants to get two data, it is
the same as if there are two mobile users always moving together.
Also, to overcome the situation that some mobile users leave the
network and make sure that N mobile users will get the data
in the end, we can distribute more than N initially, called the
overbooking strategy in [6], which is widely used in airline ticket
management, pricing, etc., to ensure a desired number of receivers.
Note that once amobile user consumes a data, it cannot change the
assignment.
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Fig. 3. An illustration of advertisement delivery in Facebook.

3. Data dissemination with network topology

In this section, we first propose a scheme to solve the data
dissemination problemwith the network topology information, in
which the expected contact delay for a pair of neighbors is the
reciprocal of their contact probability. All the pairwise expected
contact delays are known in this section. This estimation has been
used in early research in [16] and provides some road-maps for
our solution. We transfer the problem into a matching problem
and solve it by using max-flow methods in [1]. Then, we derive a
greedy data dissemination algorithm, followed by the performance
analysis in special situations.

3.1. Optimal assignment strategy

The data dissemination problem has two objectives: minimiz-
ing the maximum delay and distributing all the data. To solve
them, we divide the original problem into two sub-problems.
(1) Given the network information, what are the reachable nodes
from the source within T? (2) Given the network topology and
nodes’ corresponding interests, is there a solution to distribute all
the data? The idea is that we first figure out the reachable nodes
within T . Then, we only need to check whether there is a solution
by using the reachable nodes. If we cannot find a solution, we
gradually increase T until we can finally find a solution within the
minimum T .

The math formulation of the problem is as follows: the number
of reachable mobile users from the source in type i mobile user is
RT
i within the time T . A data dissemination strategy is represented

by using an m × h matrix, A, where the AT
ij represents the number

of mobile users Mi that receive data under topic j. For example,
A31 = 4means that fourM3 mobile users consumedata under topic
1. Then, the problem can be written into the following:

min T

s.t.
h∑

i=1

AT
ij = dj, ∀j,

m∑
j=1

AT
ij ≤ RT

i , ∀i, AT
ij ∈ Z

(1)

where the first constraint is delivery constraint. It indicates that
for each data topic j, the sum of mobile users consume data topic
j, i.e.,

∑h
i=1A

T
ij , equals the total number of data dj, which means

that all data are successfully delivered. The second constraint is
feasibility constraint. It indicates that all reachable type i mobile
users within T , i.e.,

∑m
j=1A

T
ij , should not exceed the reachable node

at time T .

Fig. 4. An illustration of themax-flow problem formulation, where the nodes in the
first column represent the differentmobile users and the second column represents
the different topics. If a type of mobile users are interested in a special topic, we
draw a link between them. The weight of the link is the amount of that special type
of mobile users. The weight from the source to the mobile users is also the amount
of that special type of mobile users. The weight from the topics to the sink is the
number of data in that topic.

As for the first sub-problem, we can get the expected shortest
delay from the source to any particular node by using the shortest
path algorithms in [7]. After that, if we order all the nodes ac-
cording to their expected delivery delay from the source, we can
easily find all the reachable nodes within T . Then, we find the first
node, until whom the amount of nodes is the same as the amount
of data. We set this time as the lower bound. We can also set
an upper bound, which ensures there are enough nodes; e.g., the
amount of mobile users with a single interest are larger than the
corresponding amount of data in that topic. Then,weuse the binary
search algorithm to find the smallest T .

For the second sub-problem, it becomes how to maximize the
amount of mobile users that receive the matching data, which can
be formulated into the max-flow problem in [1]. The following is
the problem transformation. First, the mobile users’ subscriptions
can be represented by using a bipartite graph. If we use a bipartite
graph G′

= (V ′, E ′), where V ′ consists of two disjoint sets, the
user sets and topic sets. If a type of mobile users is interested
in a special topic, there is a link between them. The weight of a
link is the amount of the mobile users. For example, in Fig. 4,
there are three types of mobile users, M1,M2, and M3, where the
mobile users M1 are interested in the topics 1 and 2, and n1 is 2.
To represent the available amount of data under each topic, we
add a virtual sink. There is a link from every topic to the virtual
sink and the weight in a link represents the amount of data in that
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(a) One assignment.

(b) Optimal assignment.

Fig. 5. An illustration of the importance of order in the data assignment procedure,
where the bold arrows indicate the data selection of mobile users.

topic. Then, the problem is transformed into amaximummatching
problem from the mobile user sets to the topic sets. To find the
maximum matching, we draw a virtual source in the figure. Then,
every flow from the virtual source to the virtual sink represents
a data assignment strategy. In Fig. 4, the flow f1 indicates that
we assign one M3 mobile user with data in topic 3. By restricting
the weight between the virtual source to the mobile users to the
number of mobile users in that special type, we ensure that each
mobile user can choose at most one data. If the maximum flow is
the same as the amount of data, 4 in this example, there exists a
solution. Otherwise, there is no solution.

3.2. Greedy data assignment strategy

The complexity of the well-known Ford–Fulkerson algorithm
for solving themax-flow problem is O(VE2) in [27]. The complexity
of the best known algorithm in the special case is O(E · f ), where
f is the maximum flow amount. Therefore, we propose a greedy
algorithm to speed up the procedure. To simplify the description
in the reminder of this paper, we define three concepts borrowed
from machine scheduling problems in [19].

Definition 1 (Supply level). The amount data of topic i, called di, is
defined as the supply level of topic i.

Definition 2 (Consumption level). The amount of mobile users who
are interested in topic i, called ci, is defined as the consumption
level of topic i.

Definition 3 (Feasibility level). The difference between the con-
sumption level di and the supply level of the di, called li, is defined
as the feasibility level of di.

In Fig. 5, there are threemobile users and three data. The supply
level of the topics 1, 2, and 3 is one. The consumption level of

Algorithm 1 Optimal Data Assignment with Topology

Input: The amount of data in each topic, {d1, . . . , dm}, and the
amount of mobile users in each type, {n1, . . . , nh} within T .

Output: The data assignment strategy, AT
ij , ∀i, j.

1: Create a bipartite graph, G′
= (V ′, E ′), where V ′ consists of two

disjoint sets, representing different data and mobile users.
2: Add the virtual source and sink to the bipartite graph, set the

link weight between the mobile user node i and the sink node
as ni, and set the link weight between the source node and the
data node j as dj.

3: Set the link weight between the mobile user i the data node j
as dj.

4: Call the max-flow algorithm in the graph G′, and Aij = |fk|,
where |fk| is the flow volume from mobile user node i to data
node j.

the topics 1, 2, and 3 is two. The feasibility levels of the topics 1,
2, and 3 are one, respectively. The feasibility level represents the
tolerance level for the bad assignment strategy. One idea is that
we can use the greedy algorithm, which assigns data to mobile
users with the most unfeasible topic first. However, this algorithm
might not achieve a good performance, due to the importance of
assignment order. For example in Fig. 5, the feasibility levels of the
three topics are the same. If the mobile user u1 is assigned to topic
2 and the mobile user u2 is assigned to topic 3, the mobile user
u3 cannot be assigned. On the other hand, if the mobile user u1 is
assigned to topic 2 and mobile user u2 is assigned to topic 1, the
mobile user u3 can be assigned to topic 3. In the former assignment
strategy, after the mobile user u1 is assigned, the mobile user
u2, which has two remaining selections, is assigned before the
mobile user u3, which only has one remaining selection. Based on
this observation, we propose the second greedy algorithm, which
considers the data assignment order. The mobile users with fewer
remaining data selections have higher priorities. If themobile users
have the same amount of remaining selections, the mobile users
that have the most unfeasible levels should be assigned first. If the
remaining mobile users have the same number of selections and
their feasibility levels are also the same, we begin to assign the
mobile users whose amount are minimal.

Theorem 1. If each mobile user has at most two interests, the
proposed greedy algorithm achieves an optimal data assignment.

Proof. In Algorithm 2, themobile users that have only one remain-
ing interest will be assigned first, which can be regarded that we
change the initial number of data in each topic. If the mobile users
with one interest are not fully assigned, we can always use the
mobile users with one interest to exchange the other mobile users
in the optimal solution; the optimality will not change or there
exists a contradiction. For themobile users that have two interests,
after they are assigned, there are two situations: (1) The mobile
users with the minimum amount are fewer than the data in that
topic. In this case, the feasibility level of that topic will not change.
So, we will keep assigning mobile users with data in that topic
until the topic is fully assigned or unable to be assigned. If data
in a special topic cannot be fully assigned in the greedy algorithm,
it is the optimal solution since we use up all the possible mobile
users to assign data in this topic. (2) The mobile users with the
minimal amount are equal to or larger than the data in that topic;
this case is equal to the situation where the total number of topic
reduces one. Then, we get another mobile user which has only one
remaining interest. If the optimal solution is not the same as the
greedy algorithm, we can always exchange the difference between
these two algorithms. □
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Algorithm 2 Greedy Data Assignment

Input: The amount of data in each topic, {d1, . . . , dm}, and the
amount of mobile users in each type, {n1, . . . , nh}.

Output: The data assignment strategy, AT
ij , ∀i, j.

1: while
∑

ni > 0 do
2: \\ find the set of mobile users with smallest cardinality.
3: S = Θ , and cmin = ∞.
4: for i from 1 to h do
5: if ni > 0 & |Mi|< cmin then
6: θ = Mi,
7: else if ni > 0 & |Mi|== cmin then
8: θ = θ ∪ Mi,
9: \\ find the topic whose feasibility is the lowest.

10: lmin = ∞, and j′ = −1
11: for j from 1 tom do
12: if j ∈ θ & lj < lmin then
13: lmin = lj and j′ = j
14: \\ find the mobile user type whose amount is the minimal.
15: nmin = ∞, and i′ = −1
16: for i from 1 to h do
17: if j′ ∈ Mi &Mi ∈ θ & ni < i′ then
18: nmin = ni and i′ = i
19: Ai′,j′ = min{ni′ , dj′}, and update ni′ , dj′ andMi′ .

(a) INFOCOM trace.

(b) SIGCOMM trace.

Fig. 6. Probability density function of inter-meeting times in the INFOCOM and
SIGCOMM datasets.

4. Probability-based data dissemination

The unique challenge of the mobile opportunistic network
is that contacts between users are opportunistic. Therefore, the
real assignment should be feasible, since the path based assign-
ment might not be the real case. Facing this challenge, we pro-
pose a probability-based approach which does not have specific

forwarding path and thus can adjust the forwarding strategy based
on the real situation.

4.1. Probability estimation

The recent research in [24] has found that inter-meeting time
distribution follows exponential distribution in many datasets as
shown in Fig. 6, which are the inter-meeting distribution results of
people from two real datasets in [3,18] from international confer-
ences.

Therefore, it is safe to approximate the average inter-meeting
time distribution as an exponential distribution with a parameter
λ in the network. That is, f (t) = λe−λt . That is, the majority of
inter-meeting times are very short and only a few inter-meeting
times are large. Based on this observation, we try to analyze the
data delivery opportunity, i.e., the opportunity that a data can be
delivered within a time, as follows:

Let us denote percentage of nodes that can receive their topic
i data within time t in the network, called reachable nodes, as
P(i, t). Then, the percentage of nodes that cannot receive their
desired data at time t in the network, called unreachable nodes,
is 1 − P(i, t). If βi is the percentage of users who would like to
consume one data in topic i,

d(P(i, t))
dt

= βiλP(i, t)(1 − P(i, t)), (2)

which is the contact probability between reachable nodes and
unreachable nodes for a particular time. Then, through solving the
differential equation, we get the following result for a data within
the time t .

P(i, t) =
x0eβiλt

1 − x0 + x0eβiλt
=

x0
(1 − x0)e−βiλt + x0

, (3)

where x0 =
1
N , which means that initially only source has the

data. Here, we first consider the users that only have one interest
and thus, βi equals

ni
N . Then, for a type i user, the reachable type

i user until t is x0ni/(((1 − x0)e−βiλt + x0)), according to Eq. (3).
Note that P(i, t) considers one-hop direct forwarding and multi-
hop forwarding.

Considering the different supply levels for different data types,
the maximum dissemination time should satisfy the following
constraint

di =
x0ni

(1 − x0)e−βiλt + x0
. (4)

Since Eq. (4) is an exponential function of t , it can be simplified into
the following equation

t = −
ni

λN
ln(

ni
di

− 1

N − 1
) = f (ni, di). (5)

Therefore, the maximum delivery delay can be estimated and cal-
culated by ni and di. From Eq. (5), we observe that when di is small,
it takes a relatively short time to finish the data dissemination. The
influence of ni is a little bit complex. Another observation is that the
λ has an influence on the delivery delay, the larger λ, the smaller
expected delivery delay.

Theorem 2. In an opportunistic mobile network, a schedule which
makesmax{ d1

n1
,

d2
n2

, . . ., dm
nm

} minimized, is the optimal assignment.

Proof. The proof can be done by contradiction. If all the different
types of mobile users are uniformly distributed in the network,
the probability of encountering a mobile user with a special type
becomes a constant probability. Then, once we give data selection
criteria, the probability of encountering a mobile user who would
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(a) Case 1.

(b) Case 2.

Fig. 7. An illustration of Theorem 2 in different cases.

like to consume a topic is a constant value. Therefore, di
ni

is propor-
tional to the delivery delay of di. Suppose

di
ni

is the maximum value
produced by that optimal solution. If the optimal solution does
not satisfy the above condition, some mobile users with multiple
interests, δ, can be assigned to topic i from another topic, denoted
as topic j. As a result, n′

i = ni+δ, n′

j = nj−δ, and di
n′
i
>

dj
n′
j
is satisfied

at the same time. Hence, this data selection method is better than
the optimal solution, which is a contradiction. □

For mobile users with multiple interests, it can be used to
minimize the maximum ti, ∀i. This can be solved by using linear
programming, since the problem is transferred into the following
format.
min t

s.t. f ((
∑
j∈Mi

nixij + nj), dj) ≤ t, ∀i, j, i ̸= j

∑
j∈Mi

xij = 1, ∀i, j,

0 ≤ xij ≤ 1, ∀i, j

(6)

where the first constraint means that all the data under each topic
should be disseminated within t , specially, the left part of the first
constraint is the expected delivery delay for each topic by using
Eq. (5). The second constraint means that typeMi mobile users are
assigned to a specific topic j, i.e., xij percentage of Mi mobile users
are regarded as Mj mobile users to increase its supply level. An
illustration of the optimal assignment is shown in Fig. 7, where the
mobile users with multiple interests are assigned to two different
users to balance the corresponding data copy delivery delay.

4.2. Probability optimal data forwarding

In Section 4.1, we discuss how to determine the minimal time
so that we can finish the data dissemination and the optimal user
assignment. After the probability user assignment, it is equivalent
that the network has m different user types and each type of user
has only one interest. In this sub-section, wewill discuss how to do
optimal relay data assignments from source nodes.

The basic idea of data forwarding is that data should be forward
to the nodes which have more neighbors quickly so that these

Algorithm 3 Probability Data Forwarding

Input: The amount of data in each topic for relay node r ,
{d1, . . . , dm} for relay node, its neighbor setNr , and the amount
of mobile users in each type, {n1, . . . , nh}.

Output: The data allocation strategy for each neighbor of node r .
1: Calculate the k-hop forwarding ability of node’s neighbors

within time T according to Eqs. (10) and (11).
2: Solve the Eq. (6) to get the optimal data assignment xij, ∀i, j.
3: for i ∈ Nr do
4: Node i consumes the data which minimizes maximum la-

tency according to Eq. (5).
5: for j from 1 tom do

6: Assign node i number of ⌈
Fkij (T )∑

r′∈Nr Fk
r′ j

(T )
· dj⌉ data in topic j.

neighbors can further act as relays to increase the data dissemi-
nation speed. Based on this idea, we evaluate a node’s forwarding
ability using the following criterion.

Definition 4. A k-hop opportunistic path between two nodes
(us, ud) consists of a node set Vp = {us, u1, u2, . . . , uk, ud}. The
path weight is the probability that a data item is opportunistically
forwarded from us to ud within T .

An illustration of a k-hop opportunistic path is shown in Fig. 8,
where the red arrow forms a 3-hop opportunistic forwarding path.
Since the inter-contact time between two nodes, (uk, uk+1), follows
an exponential distribution with f (t) = λke−λkt , we can calculate
the path weight as follows:

ps,d(T ) = 1−
∫

∞

T

∫ tk

0

∫ tk−1

0
· · ·

∫ t1

0
f (tk − tk−1)

f (tk−1 − tk−2) · · · f (t1)dt1 · · · dtk.
(7)

According to the phase-type distribution in [15], the Probability
Density Function (PDF) of the path weight with {λ1, λ2, . . . , λk} is

pV =

k∑
i=1

C (k)
i λke−λkt (8)

where the coefficient C (k)
i is

C (k)
i =

k∏
j=1,j̸=i

λj

λj − λk
. (9)

Therefore, Eq. (7) can be written as

ps,d(T ) =

∫ T

0

k∑
i=1

C (k)
i λke−λkt =

k∑
i=1

C (k)
i (1 − e−λkT ). (10)

Note that each mobile user maintains the opportunistic path
with the largest forwarding probability for each other node as the
path weight between them. Based on the path weight, we define
the forwarding ability of each node as follows:

Definition 5. The k-hop forwarding ability of data topic j for a node
i at time t

F k
ij (t) =

∑
i′∈Ni

pii′F k−1
i′j (T − t) (11)

where Ni is the mobile users within i’s 1-hop neighbors, pii′ is
contact probability between nodes i and i′, and F k−1

i′j (T − t) is the
k−1 hop probability that user i′ can forward the type j data before
deadline T .
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Fig. 8. An illustration of the multiple-hop opportunistic forwarding path.

Specially, F 0
ii (t) = 1 and F 1

ij (t) = λ1e−λ1t . Based on each node’s
forwarding ability, the source node can distribute data according to
its neighbor’s forwarding abilities, i.e., the amount of data is split
according to the reverse forwarding ability at that time.

Discussion. As for the selection of k, it would always be better if k
is large, because the local network knowledge may not be optimal.
However, to gather a larger number of k, it requires a high network
overhead. There is a trade-off.

5. Distributed data dissemination

In this section, we propose the distributed data dissemina-
tion algorithm. Due to mobility or privacy issues, mobile users
do not have accurate information about the network. The data
dissemination becomes more challenging. To disseminate data in
a distributed environment, a relay node has to make the follow-
ing two decisions locally upon meeting with other mobile users:
(1) If the encountered mobile user has not been assigned data,
which data should the relay node forward? (2) If the encountered
node has been assigned data, should the relay node forward data
to it to accelerate the data dissemination?

5.1. Data selection for the mobile users with multiple interests

In this sub-section, we first propose the optimal strategy for the
relay’s data selection when there are two topics in total. Later, we
extend it into a general scenario.

5.1.1. Two topics
When the relay walks into an area, there might exist several

mobile users, waiting for data, within the relay’s proximity. There-
fore, the relay has to decidewhich data should be distributed to the
encountered mobile users with multiple interests. Here, we pro-
pose an algorithm, which will balance the data distribution speed
in different topics. When the relay meets a node with multiple
interests, the node should choose the data whose consumption
speed is low. Suppose that there are three types of mobile users.
Among them, M1 nodes are interested in topic 1, M2 nodes are
interests topic 2, and M3 nodes are interested in topics 1 and 2.
Their amounts are n1, n2, and n3, respectively. The number of nodes
having been assigned to topics 1 and 2 are n1 and n2. Before theM3
mobile users are assigned, we propose the following criterion for
them. If d1

n1
<

d2
n2

, we will treat mobile users M3 as mobile users
M1 until the condition is not longer held. If there are still some
M3 mobile users, the remaining mobile usersM3 are assigned data
in these topics in proportion to the ratio of d1 and d2. Similarly, if
d1
n1

>
d2
n2
, we will treat mobile users M3 as mobile users M2 until

the condition is no longer held. The remainingmobile usersM3 are
assigned data in these two topics proportionally.

Algorithm 4 Data Selection in Two Topics

Input: The amount of data in topics 1 and 2, and the estimated
mobile user’s interest, respectively.

Output: The data allocation strategy forM3 mobile users.
1: if d1

n1
<

d2
n2

then
2: Treat min{⌈

d1
d2
n2 − n1⌉, n3} as M1, n3 = max{n3 − ⌈( d1d2 n2 −

n1)⌉, 0}.
3: else
4: Treat min{⌈

d2
d1
n1 − n2⌉, n3} ad M2, n3 = max{n3 − ⌈( d2d1 n1 −

n2)⌉, 0}.
5: if n3 > 0 then
6: Treat ⌈

d1
d1+d2

n3⌉ and n3 − ⌈
d1

d1+d2
n3⌉ M3 users asM1 and M2.

Algorithm 5 Data Selection in Multiple Topics

Input: The amount of data in each topic for relay node,
{d1, . . . , dm} for relay node, and the local utility and the
global vectors of encounter node.

Output: The data forwarding strategy for this pair of nodes.
1: Calculate the overall utility of this pair of nodes accord-

ing to Eq. (12), and denote them as {u′

1, u
′

2, . . . , u
′

h} and
{u′′

1, u
′′

2, . . . , u
′′

h}.
2: Regard {u′

1 + u′′

1, . . . , u
′

h + u′′

h} as {n1, n2, . . . , nh} in Eq. (6), and
calculate the result xij, ∀i, j.

3: Forward ⌈

∑
j∈Mi

u′′
i xij+u′′

j∑
j∈Mi

(u′
i+u′′

i )xij+(u′
j+u′′

j )
·dj⌉ to the encountered node, ∀j.

Theorem 3. The proposed data selection algorithm for two topics is
the optimal schedule in uniform distribution.

Proof. If there exists a feasible schedule, the following two con-
ditions must be satisfied: n1 ≥ d1 and n2 ≥ d2. If

d1
n1

<
d2
n2
, the

algorithmwill regardmobile usersM3 asmobile usersM1, until the
above two ratios become the same. Then, (n1 + n2 + n3)

d1
d1+d2

=

n1 ≥ d1, and (n1 + n2 + n3)
d2

d1+d2
= n2 ≥ d2, since n1 + n2 + n3 ≥

d1+d2 in a feasible solution. If all themobile usersM3 cannotmake
the two ratios the same, that is, all theM3 mobile users are treated
asM1, i.e., n1 = n1+n3, n2 = n2. This case is true,when d1

n1+n3
<

d2
n2
.

It can be written as d1
d2
n2 < n1 + n3. Besides, in a feasible solution,

n1 +n3 ≥ d1 so that n1 +n2 +n3 ≥
d1
d2
n2 +n2 > d1 +d2, as a result,

n2 = n2 > d2. In either case, our proposed algorithm is feasible.We
can use the same way to prove it is true when we treat all the M3
mobile users as M2, in the case that d1

n1
>

d2
n2
. In all the situations,

if a feasible solution exists, the proposed algorithm will achieve it
so that it is the optimal schedule. □

5.1.2. Multiple topics
If there are more than 2 topics, we can use the similar idea as

the previous sub-section. Based on Theorem 2, we get the local op-
timal solution when different types of mobile users are uniformly
distributed in the network. Themobile userswhich can be assigned
withmultiple types of data should be assignedwith the datawhose
consumption level is the lowest.

5.2. Forwarding utility estimation

To answer the second question for the relay data distribution,
we propose a distributed method to estimate each mobile user’s
ability to relay data in different topics, which jointly considers the
mobility patterns and the mobile users’ diverse interests in the
local and global views by using two vectors.
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Fig. 9. An illustration of the global utility updating.

5.2.1. Local utility vector
The idea of the local utility vector is that each mobile user

maintains a vector to record its encounter history summary with
its neighbors for different types of mobile users. In the follow-
ing, we use 2 topics as an illustration. In this case, we have 4
different mobile users, M1,M2,M3, and M4, which subscribe to
topic 1, topic 2, topics 1 and 2, and none, respectively. A node’s
local utility vector is denoted as {l1, l2, l3, l4}. Each mobile node
summarizes its neighbors’ information. For example, if the current
node has four neighbors, and the types of these four neighbors are
M1,M2,M1, and M3, respectively, we can calculate its local utility
as {0.5, 0.25, 0.25, 0} to types M1,M2,M3, and M4 mobile users.
We also record the average inter-meeting times of the current
node, T l, which is important in estimating the delivery delay for
the current node.

5.2.2. Global utility vector
The idea of the global utility vector summarizes a node’s en-

countered history information, which represents its knowledge
about its forwarding ability in the network. Specifically, each mo-
bile user maintains a vector, {g1, g2, g3, g4}, which indicates the
accumulated probability that a mobile user and its neighbors’
forwarding abilities to each topic. The accumulated average inter-
meeting delay, T g , is also recorded. Initially, each node keeps the
vector, which indicates its own information. For example, a node
belongs to M2. Initially, its global vector is {0, 1, 0, 0}, and the
T g = T l.

The global utility vector updates after every sliding window.
The following is the updating procedure: each mobile user keeps
exchanging the global utility vector while they encounter. The left
part of Fig. 9 is a summary of the encounter history information
of the mobile user u1 in a sliding window. In this sliding window,
the mobile user u1 encountered three other nodes, u2, u3, and u4.
We accumulate the global utility of node u1’s neighbors by the
sum operation. For example, forM1 nodes, the accumulated global
utility is 0.2 × 2 + 0.4 × 3 + 0.4 × 5 = 3.6. By using the same
method, we get the accumulated global utility for type M2,M3,
and M4 mobile users as 2.6, 2.8 and 1, respectively. Then, we
do normalization for the accumulated global utilities for different
types of users, and it turns out to be 0.36, 0.26, 0.28, and 0.1,
respectively. The average inter-meeting time is (2 + 3 + 5)/3 =

3.3. By using the accumulated information in this sliding window,
the mobile user u1 updates its global vector. We accumulate the
global utility of these two sliding windows by the sum operation.
Then, we do normalization for the accumulated result, shown on
the right side of Fig. 9. In the global utility updating, we consider
the weight of the current sliding window to be the same as the
past accumulated results. As the result, the current utility vector is
assigned a heavier weight than the accumulated result.

The above-mentioned two vectors can be combined into the
overall utility, called U , by using the parameter α.

U =
T l{l1, l2, . . . , lh} + αT g{g1, g2, . . . , gh}∑h

i=1(dlli + αT ggi)
, (12)

where α is a parameter vector to evaluate the importance of global
utility in the data distribution procedure. It depends on the amount
of data that the current relay can carry. If the data can be fully
distributed within its one-hop neighbors, we will no longer assign
a weight to the global utility. However, on the other hand, if there
is a lot of data, we might put a high weight on the global utility. In
the experiment, we assign the α proportionally to the amount of
unassigned data in each topic.

5.3. An extension

In the aforementioned solution, there might be 2m types of
mobile users in an extreme case. To avoid the exponentially in-
creasing number of mobile user types, which causes a relatively
huge buffer consumption, we propose an efficient compressing
scheme. Instead of recording the accurate type of each encountered
mobile user, each node records the probability of the encountered
mobile user subscribing to a particular topic. To deal with the
mobile users with multiple interests, we propose two versions
of estimation, positive estimation and negative estimation. In the
positive estimation, if the current mobile user meets a mobile user
with multiple interests, it is equivalent to the case that the current
node meets with several mobile users, and each mobile user has
one interest. In Fig. 10, u2 is treated as two nodes. However, in
the negative estimation, if a mobile user hasmultiple interests, the
encountered node is still regarded as one node, so its contribution
to each topic decreases. In negative estimation, mobile user u2’s
contribution to topics 1, and 2 is 1

2 , since we only need to keep a
vector size of m. This extension can significantly save the network
overhead when the total topic number is large.

6. Experiments

In this section, we compare the proposed algorithms using ex-
tensive experiments based on a real dataset. We first introduce the
experimental settings and their parameters. Then, we will discuss
the performance evaluation results.

6.1. Trace introduction

The INFOCOM06 dataset [22] consists of two parts: contacts
between the iMote devices carried by participants and social fea-
tures of the participants, which are the statistics of participants’
information from a questionnaire form. In the questionnaire, the
participants indicated their interested topics. According to the
questionnaire, there are 35 different topics in total. First, we dis-
card some participants that do not have social features in their
profiles. In this way, we reduce the number of participants to 61.
There are 74,981 contacts between these participants over a period
of 337,418 time slots in seconds.

The SIGCOMM09 dataset in [18] was collected during the SIG-
COMM 2009 conference in Barcelona, Spain. Around 76 smart-
phones were distributed to a set of volunteers during the first two
days of the conference. The participants were recruited on-site
in conjunction with the conference registration. Each device was
initialized with the social profile of the participant that included
some basic information such as home city, country, and affiliation.
We discard No. 73 participant, who does not have social features in
his profile. The number of contacts is 285,879 in our experiments.

However, the scale of the INFOCOM06 and SIGCOM09 traces are
relatively small, i.e., the average subscription number for a topic
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Fig. 10. An illustration of the positive/negative estimation of node u1 .

is 12, and the number of mobile users have two interests in the
most popular topic is 14. To overcome this, we generate a synthetic
dataset with 100 nodes with exponential contact distribution. In
this synthetic dataset, we gradually change the amount of users
who subscribe to a topic from 20 to 60 and the ratio of nodes that
have multiple interests from 0 to 40. Therefore, the synthetic trace
could provide some unrevealed insights into the data assignment.

6.2. Experimental setting

Some detailed experimental settings are as follows: we choose
2–6 topics with the topology information from the network. With-
out the topology information, we consider 2 topics in total. In each
experiment round, we randomly selected several publishers, and
each of them generates a certain amount of data. The total data
is smaller than the amount of the corresponding subscribers to
ensure all the data can be distributed. In the experiments, the
source nodes and the destination nodes are randomly selected in
each round and for each experiment.

6.3. Algorithm comparison

Our algorithm comparison consists of three parts, which ad-
dress the three scenarios that we propose in this paper.

In the path-based approach, we compare the following four
algorithms. The random algorithm randomly assigns data for the
mobile users with multiple interest. The Greedy algorithm will
select the topic which is most unfeasible Greedy2 is the revised
greedy algorithm version, which also considers the number of the
nodes’ remaining selections. The proposed Flow-based algorithm is
explained in Section 3.1.

In the probability-based data dissemination, the proposed algo-
rithm is called the min–max speed algorithm. In addition, an alter-
native solution is to minimize the max number of data in a topic,
which is called themin–max volume algorithm. Another alternative
solution is to randomly forward one data to the encounter node,
called the Random algorithm.

As for the distributed data dissemination, the performance
comparison is made by using different utility estimation schemes,
there are four methods. If we just use the one-hop local informa-
tion and global information to estimate the mobile users’ ability, it
is called the Local algorithm, and theGlobal algorithm, respectively.
Two more efficient versions of the global estimation are called the
Positive algorithm and the Negative algorithm, respectively.

6.4. The performance results

6.4.1. Nodes with multiple common interests
We verify whether this is the case where there are many nodes

with multiple common interests to demonstrate the necessity of
mutually exclusive data dissemination. The results are shown in
Fig. 11. The overall number of topics is 35 in the INFOCOM trace,
which means that each node has at least 2 interests. In addition,
Fig. 11(a) shows that it is very common that multiple nodes have
multiple common interests; even when the number of common
interests is 6, there are still 12 users. Fig. 11(b) shows the results
from the SIGCOMM09 dataset. It also shows that multiple nodes
have multiple common interests.

(a) INFOCOM06 dataset.

(b) SIGCOMM09 dataset.

Fig. 11. Users with multiple common interests.

(a) Amounts of assigned data.

(b) Processing time.

Fig. 12. Performance comparison with topology information.

6.4.2. Results with whole network information
Fig. 12 shows the performance results of the proposed greedy

algorithm, compared with the optimal flow-based solution in dif-
ferent numbers of topics. From the result, the proposed algorithm’s
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(a) Different assignment schemes.

(b) Different k.

(c) Different data distributions.

(d) Different local information.

Fig. 13. Performance comparison of our algorithms in the INFOCOM Dataset.

differencewith the optimal solution increases. However, its perfor-
mance is still close to the optimal solution. From the experiments,
the greedy algorithm assigns more than 90% of nodes compared to
the optimal solution when the topic number is 6. However, for the
processing time, the greedy algorithm only uses about 1

4 the time
of the optimal algorithm. The Greedy2 and random algorithms
achieve similar processing times but the performance is not good.
Therefore, according to the difference scenario, we can use the

flow-based optimal algorithm or greedy2 algorithm to trade-off
the difference performance and delay.

6.4.3. Result with k-hop information
Figs. 13(a), 14(a), and 15(a) show the results of the proposed

three different user assignment algorithms where number of data
in each topic is randomly generated. The proposedmin–max speed
algorithm always achieves the best performances in the three
datasets, followed by the min–max volume algorithm and the ran-
dom algorithm. This demonstrates the importance of distributing
topics smartly to users with multiple interests. Note that in the
synthetic dataset as shown in Fig. 15(a), we observe that alongwith
the increase of data, themin–max speed algorithm becomes better
than the min–max volume algorithm and the random algorithm.
One possible reason why this occurs is that when the amount of
data is small, we can always find a sufficient amount of mobile
users in our surroundings, which causes the assignment strategies
to become unimportant. However, when the number of users
increases, the min–max speed algorithm reduces by 20% delivery
delay than min–max volume algorithm.

Figs. 13(b), 14(b), and 15(b) show the results of having different
k values in the min–max speed algorithm. The results show that
when k equals 2, the performance significantly improves. However,
the marginal benefit is minimal when k increases to 3. Specifically,
when k increases from 1 to 2, the maximum delay reduces by
about 15%, 20% and 8% in the three datasets respectively. When k
increases from 2 to 3, there is almost no benefit when the number
of data is small. The reason is thatmost users can be reachedwithin
two-hops in the datasets. Therefore, it is not necessary to maintain
3-hop network information and the min–max speed algorithm
always uses 2-hop information without specific explanations. Figs.
13(c), 14(c), and 15(c) show the influence of data amount distribu-
tion in different topics. In this setting, there are two different data
amount distributions, i.e., exponential distribution and uniform
distribution. The results show that a good mobile user assignment
algorithm can increase the performance significantly, when the
data amount distribution is exponentially distributed. The reason
is that a small improper assignment will increase the maximum
delivery delay.

6.4.4. Result with local neighbor information
Figs. 13(d), 14(d), show the data disseminationwith local neigh-

bor information. The results show that the Global utility estimation
method is much better than the local utility estimation, at the cost
of more network overhead. The proposed Positive and Negative
utility estimations reduce the network overhead and achieve a
relatively good performance. In Fig. 15(d), we do not change the
overall data amount for two topics, but adjust the percentage of
data in each topic and the results show that the proposed algorithm
has good performance in the different scenarios. Fig. 15(d) demon-
strates that as the amount of mobile users with multiple interests
increases, so do the advantages of the proposed algorithm, which
demonstrates the effectiveness of the proposed min–max speed
algorithm. When 40 users have multiple interests, the maximum
delivery delay is reduced to a half.

7. Related works

In this section, we capture some important issues arising from
the design of the data dissemination scheme in the proximity-
based communication in [4,8,11,13,17,25,26].

In the beginning, a lot of research was been done on the epi-
demic problem in [8,13,17,26]. The main concern in the epidemic
problem is avoiding the outbreak of disease. In the epidemic prob-
lem, there are susceptible mobile users, infected mobile users,
and recovered mobile users. In our problem, there are also three



N. Wang, J. Wu / J. Parallel Distrib. Comput. 119 (2018) 50–63 61

(a) Different assignment schemes.

(b) Different k.

(c) Different data distributions.

(d) Different local information.

Fig. 14. Performance comparison of our algorithms in the SIGCOMM Dataset.

types of mobile users: the mobile users that do not receive the
data, the relay, and the mobile users which have received the
data but do not act as relays. The difference between our problem
and the epidemic problem is that infected mobile users can keep
infecting the susceptible mobile users until they are recovered,
i.e., unlimited copies. In addition, an infected user can infect any
encountered mobile users in the epidemic problem. However, in
our problem, themobile user can forwarddata to others only if they

(a) Different assignment schemes.

(b) Different k.

(c) Different data distributions.

(d) Different local information.

Fig. 15. Performance comparison of our algorithms in the synthetic data Dataset.

carry some copies. In [11], the authors consider the broadcasting
in delay tolerant networks, which is essentially the same as the
epidemic problem, but its recovery rate is 0. The major difference
with our problem is that in [11] all the infected mobile users have
the same forwarding ability, while our problem considers that the
relays have different forwarding abilities. This difference makes
our problem more difficult than the epidemic problem.

In [8,9,24], the authors evaluate the forwarding ability of each
node and forward data only to a node with a good forwarding
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ability. In addition, the problem in [9] is different than in this
paper. In that paper, a certain amount of data should reach the
corresponding destinations. It is an N to N mapping. However,
in this paper, we do not specify the destination, thus any nodes
that are interested in the data can be a destination. It is an N to
many (more than N) mapping. As a result, it is harder to analyze a
mobile user’s forwarding ability. In [3], they propose to use social
information to evaluate each node’s forwarding ability. In [28],
the authors focus on data dissemination to a desired number of
receivers in a vehicular network. However, there is only one type
of data and their problem is a simplified version of our problem.
In [20], their problem only considers one type of data, making their
work a simplified version of our problem. Furthermore, in [20],
their analysis is under the assumption that all the nodes have an
identical mobility pattern, which is not realistic. In [21,29], the
authors applied the data dissemination problem into the vehicular
networks and discussed some practical constraints, such as relay
buffer size.

To the best of our knowledge, we are the first to consider the
mobile users’ mutually exclusive delivery requirement in mobile
data dissemination, which distinguishes the proposed work from
existing works. The practical budget based dissemination further
increases the design difficulty.

8. Conclusion

The opportunistic mobile network can be applied to many
scenarios by using proximity-based communication technology. In
this paper, we design an efficient opportunistic mobile network to
distribute a pre-determined number of data with a minimal delay.
Our practical model considers the situation in which a mobile user
might have multiple interests, and the mutually exclusive delivery
requirement is proposed. Considering the different amounts of
data in each topic and the different popularities of each topic, the
above problem is non-trivial. We start with the data dissemination
with topology information, which is transformed into a matching
problem and is solved by themax-flow algorithm.We also propose
a greedy data assignment algorithm, which achieves a good per-
formance in theory and experiments. We further consider the data
dissemination with partial k-hop contact knowledge and propose
a probability-based forwarding algorithm. In addition, if we only
have the local information, we propose a utility estimation scheme
which jointly considers the amount of data, popularities in differ-
ent topics, andmobile users’ forwarding abilities, respectively. The
experiments in the real trace show that our schemes achieve a good
performance compared with existing schemes.
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