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Abstract—Mobile crowdsensing is a new paradigm in which a
group of mobile users exploit their smart devices to cooperatively
perform a large-scale sensing job. One of the users’ main
concerns is the cost of data uploading, which affects their
willingness to participate in a crowdsensing task. In this paper,
we propose an efficient Prediction-based User Recruitment for
mobile crowdsEnsing (PURE), which separates the users into
two groups corresponding to different price plans: Pay as you
go (PAYG) and Pay monthly (PAYM). By regarding the PAYM
users as destinations, the minimizing cost problem goes to
recruiting the users that have the largest contact probability with
a destination. We first propose a semi-Markov model to determine
the probability distribution of user arrival time at points of
interest (PoIs) and then get the inter-user contact probability.
Next, an efficient prediction-based user-recruitment strategy for
mobile crowdsensing is proposed to minimize the data uploading
cost. We then propose PURE-DF by extending PURE to a case
in which we address the tradeoff between the delivery ratio of
sensing data and the recruiter number according to Delegation
Forwarding. We conduct extensive simulations based on three
widely-used real-world traces: roma/taxi, epfl, and geolife. The
results show that, compared with other recruitment strategies,
PURE achieves a lower recruitment payment and PURE-DF
achieves the highest delivery efficiency.

Index Terms—Mobile crowdsensing, User recruitment, Semi-
Markov, Uploading cost

I. INTRODUCTION

The proliferation of smartphones, which have generally
been equipped with multi-core processors and a set of sensors
(e.g., camera, light sensor, chemical sensor and GPS) that
allow them to be seen as powerful mobile sensors with
sensing ability, have experienced explosive growth in recent
years. Thanks to this, a new sensing paradigm called mobile
crowdsensing is proposed [1] to recruit a group of mobile users
who can jointly perform a large-scale sensing task through
their smartphones. The aggregation and processing of the
sensing data collected by mobile users’ smartphones gives
rise to diverse services ranging from traffic jam prediction
and parking space management to indoor localization and
environmental monitoring [2], [3], [4], [5], [6], [7].
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Fig. 1. User recruitment for mobile crowdsensing. The sensing tasks are
assigned in PoIs, and we decide which PAYG user will take the sensing data.
The PAYG user with the sensing data can either (1) encounter a PAYM user
before the task deadline and upload the sensing data freely or (2) upload the
sensing data costly (via 3G or 4G) when the deadline expires.

There has been much research on mobile crowdsensing
including platform design [8], [9], [10], [11], user recruitment
strategies [12], [13], [14], and incentive mechanisms [15],
[16], [17], [18], [19]. Research on platform design focuses on
proposing a framework or system for mobile crowdsensing,
while research in terms of incentive mechanisms focuses on
designing incentive mechanisms for crowdsensing to attract
users to participate in the crowdsensing task. Among them, a
common challenge for most mobile crowdsensing applications
is to identify mobile users who can contribute the most value to
the sensing task. Therefore, the user recruitment strategy is one
of the most important topics of discussion. However, previous
studies do not consider the uploading cost of sensing data.
In this paper, we focus on proposing an efficient Prediction-
based User Recruitment for mobile crowdsEnsing (PURE)
where multiple users with a higher contact probability to
the destinations can be recruited to cooperatively perform a
common task, ensuring that the expected data-uploading cost
is minimal. In PURE, users can be divided into the following
two groups [20] according to their common price plans:

• Pay As You Go (PAYG): a user pays a data cost according
to the amount of data transferred, e.g., $0.2/MB.

• Pay Monthly (PAYM): a user can transfer an unlim-
ited amount of data during a month-long period, e.g.,
$8/month.

The price plan is decided by the user’s preference and has
no relationship to the sensing task. Assuming that a sensing
task wants to collect real-time sensing data from many points
of interest (PoIs) in an urban area (e.g., current traffic jam
situations in some PoIs), and the sensing data needs to be
uploaded before the given deadline. Some mobile users move
around in the urban area every day. Users might pass by some
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PoIs frequently, so they can be recruited to collect sensing
data if they happen to be in the PoI when the sensing task is
published.

If a mobile user participates in crowdsensing, the user will
charge a recruiting payment from the publisher of the sensing
task. However, this paper focuses on the uploading payment,
not the recruiting payment. The recruiting payment is much
less than uploading payment, because the recruiting payment
is used to make up for the resource consumptions of the
users’ devices (energy, bandwidth, and memory), users do not
need to pay extra money. Moreover, a user could only get
the recruiting payment once. A user has two different ways to
upload the sensing data: (1) encounter a PAYM user before the
task deadline and upload the sensing data freely or (2) upload
the sensing data costly (via 3G or 4G) when the deadline
expires. As shown in Fig. 1, the first problem occurs, when the
sensing task is published and the publisher needs to determine
which users should be recruited in each PoI so that the total
uploading cost can be minimized. To solve the first problem,
we propose the user-recruitment strategy (PURE) which uses
the semi-Markov model to predict which PAYG users have the
highest contact probability with PAYM users so that we can
recruit them for each PoI.

Through PURE, some PAYG users with higher contact prob-
abilities with PAYM users are recruited. When they encounter
a PAYM user before a deadline, they can upload sensing data
freely. Otherwise, during the mobility process, selected PAYG
users may encounter other PAYG users who are ”better” (with
a higher contact probability with PAYM users). The users
selected by PURE could recruit the other “better” users by
informing the publisher of the sensing task. The publisher will
pay the recruiting payment. More recruiters leads to a higher
delivery ratio, but also to a higher recruitment cost. The second
problem is determining how to balance the tradeoff between
the delivery ratio of sensing data and the recruiter number.
To address this problem, we propose PURE-DF to improve
the delivery ratio while controlling the total recruiter number,
according to Delegation Forwarding.

The main contributions of this paper are briefly summarized
as follows:

• We propose a points-of-interest (PoI) trajectory-
prediction method that uses a semi-Markov process to
determine the probability distribution of user arrival
times at PoIs. Furthermore, inter-user contact probability
is predicted according to the PoI prediction.

• We propose an efficient Prediction-based User Recruit-
ment strategy for mobile crowdsEnsing (PURE), which
groups two types of users with different data upload-
ing schemes (Pay as you go (PAYG) and Pay monthly
(PAYM)) that will cooperatively finish a crowdsensing
task.

• Taking the relation between delivery ratio of sensing
data and recruiter number into consideration, we propose
PURE-DF, based on Delegation Forwarding [21], to ad-
dress the trade-off.

Dormitory Classroom
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POI
PAYG

PAYM

Con
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Deliver

Fig. 2. A running example of mobile crowdsensing network model.

• We conduct extensive simulations based on three widely-
used real-world traces: roma/taxi, epfl, and geolife. The
results show that compared with other recruitment strate-
gies, PURE achieves a lower recruitment payment and
PURE-DF achieves the highest delivery efficiency.

The remainder of this paper is organized as follows: The
system model (network, semi-markov and contact probability
models) and problem formulation are presented in Section
II. The recruitment strategies (PURE and PURE-DF) are
proposed in Section III. In Section IV, we evaluate the perfor-
mance of the proposed recruitment strategies through extensive
simulations. We review the related work in Section V. We
conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

A. Network Model

We consider a mobile crowdsensing environment that is
composed of a crowd of mobile users, denoted by the set
U = {u1, u2, · · · , un}. The users could be divided into two
groups according to their price plans: Pay as you go (UG)
and Pay monthly (UM ). PAYM users can upload the sensing
data freely, while PAYG users can only upload the data costly.
There are some points of interest (PoIs): L = {1, 2, · · · , l}.
In every PoI, two users can communicate with each other and
can deliver or replicate the sensing data to each other. Every
crowdsening task generates at some PoIs, and recruits one user
in each PoI to upload the sensing data before the deadline.

Here, we say that two users are in contact when they are in
the same PoI and can directly communicate with each other
via PoI access points. When the PoI is very large, we assume
that users could form a mobile ad hoc network because the
PoI in mobile crowdsensing is commonly a dense region of
users. Two users cannot communicate with each other when
one of them is not in a PoI. The network model is shown in
Fig. 2, where four PoIs —Canteen, Library, Dormitory, and
Classroom— exist in the network. A PAYG user can deliver
the sensing data to a PAYM user or replicate to another PAYG
user when they are in the same PoI. In this paper, we assume
that the communication duration and bandwidth are sufficient
for each user to receive sensing tasks and deliver or replicate
the sensing data. The main notations are illustrated in Table I.
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Fig. 3. Two kinds of uploading action for a PAYG user. The PAYG user with
sensing data can either (1) encounter a PAYM user before the task deadline
and upload the sensing data freely or (2) upload the sensing data costly (via
3G or 4G) when the deadline expires.

B. Problem

We consider the user recruitment problem for mobile crowd-
sensing in the above network model. Without loss of general-
ity, a sensing task will assign some sensing data, denoted by
D = d1, d2, · · · , dl, in all the PoIs at time t. The sensing task
has an uploaded deadline Td which means that the sensing data
must be uploaded before time t+ Td. Only a user in a PoI at
time t can be recruited to sense the data and perform one of
the following two uploading actions before deadline (Fig. 3):
(1) deliver the sensing data to a PAYM user and upload freely
via the PAYM user or (2) upload the sensing data itself in a
costly manner (via 3G or 4G).

Assuming that the payment for uploading through a PAYG
user is 1 and that the payment for uploading through a PAYM
user is 0, the sensing task prefers that a PAYG user upload
the sensing data through a PAYM user rather than uploading
by itself. Therefore, for each PoI without a PAYM user, we
should recruit the PAYG user with the highest probability of
contact with the PAYM users before the deadline.

The first question is how to decide which PAYG user in
the PoI is the best recruiter. To address this, we use a semi-
Markov model to predict the contact probability with PAYM
users and to recruit the PAYG user with the highest probability.
To do this, we propose a user recruitment strategy (PURE) in
which multiple users can be recruited to cooperatively perform
a common task, ensuring that the expected data-uploading
payment is minimal.

We regard the initially recruited PAYG users as sources,
and consider the PAYM users destinations. Sources can recruit
other encountered PAYG users to deliver sensing data to a
destination before the deadline. However, the sensing task
should also pay the users that are recruited later (recruitment
cost). More recruiters leads to a higher delivery ratio, but also
to a higher recruitment cost.

The second question is how to balance the tradeoff be-
tween the delivery ratio and the recruiter number. To address
the second question, we propose PURE-DF to improve the
delivery ratio while controlling the total recruiter number,
according to Delegation Forwarding. In PURE-DF, the PAYG
user with the sensing data only recruits a PAYG user and

TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

Symbol Meaning
U whole user set
UG PAYG user set
UM PAYM user set
D sensing data set
Td sensing data’s uploaded deadline
l total number of PoIs
Sk
n state holding time for user k in the nth state

Zk
ij(t) probability of user k transiting from state i

to state j at time t
Pk
ij transition probability from state i to state j

Gk
ij(t) probability that user k will transit from state i

to state j before time unit t
Gk

i (t) probability that user k will leave the PoI i on
or before time unit t

Qk
ij(t) probability that the user k’s current state is i,

it will be in state j after t time units
Ci

ab(h) contact probability between user a and user b at
the PoI i and time h

Cab(h) probability that users a and b are in contact at the time h
Rab(h) probability of the first contact at time h

between users a and b
Fab maximum probability of the first contact between a and b

before the deadline Td
FUGi

UM
probability that a PAYG user could contact anyone of
the PAYM users (UM ) before deadline

replicates the sensing data if the encountered PAYG user’s
contact probability with PAYM users is greater than any seen
by the sensing data so far.

C. Semi-Markov Model

The states of user k are recorded as the PoIs Lk =
{1, 2, 3, · · · , l}, which represents the PoI id that user k is being
now. l represents the total number of PoIs and the nth state
of user k is recorded as Lk

n, which is the nth PoI in the path
of user k. The beginning time of user k to be in the nth state
is recorded as T k

n , which represents the time to enter the nth
PoI in the path of user k.

We model the mobility of user k with a time homogeneous
semi-Markov [22], [23] (Lk

n,T k
n ) with discrete time because

the probability of a user k transiting from state Lk
n to state

Lk
n+1 is independent of state Lk

n−1. Thus, process Lk
n is a

standard discrete-time Markov Chain. The random variable
T k
n represents the time instant of the transition from Lk

n to
Lk
n+1. Random variable Sk

n = T k
n+1 − T k

n describes the PoI
sojourn time, or state holding time. These random variables
are independent and identically distributed (i.i.d.), with dis-
tributions that do not change over time (time-homogeneous).
For example, for a student, the expected breakfast time is
20 mins, and expected class time is 45 mins. So this can
be different from the geometric or exponential distributions
(semi-Markov).

The associated time-homogeneous semi-Markov kernel part
is defined in Eq. 1, where Zk

ij(t) represents the probability
of user k transiting from state i to state j at time t. It is not
difficult to find that in Eq. 1, Lk

n+1 depends on Lk
n, but has

no relationship with Lk
n−1.
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Zk
ij(t) = P (Lk

n+1 = j, Sk
n ≤ t|Lk

0 · · ·Lk
n, T

k
0 · · ·T k

n )

= P (Lk
n+1 = j, Sk

n ≤ t|Lk
n = i) (1)

Suppose P k = P k
ij is the transition probability matrix of the

Lk
n embedded Markov chain for user k. Then, the transition

probability from state i to state j is shown in Eq. 2, where
numk

i stands for the number of transitions from PoI i without
considering the next PoI, and where numk

ij is the number of
transitions from PoI i to PoI j.

P k
ij = P (Lk

n+1 = j|Lk
n = i) = numk

ij/num
k
i (2)

The probability that user k will transit from state i to state
j before time unit t is defined as Gk

ij(t), which is shown in
Eq. 3.

Gk
ij(t) = P (Sk

n ≤ t|Lk
n = i, Lk

n+1 = j)

=
t∑

x=1

P (Sk
n = x|Lk

n = i, Lk
n+1 = j)) (3)

Also, we can achieve the probability Gk
i (t) that user k will

leave the PoI i on or before time unit t as follows:

Gk
i (t) = P (Sk

n ≤ t|Lk
n = i) =

l∑

j=1,j ̸=i

Zk
ij(t). (4)

Sk
n = T k

n+1 − T k
n describes the PoI state holding time. It is

not difficult to find that Gk
i (t) also indicates the distribution

of the state-holding time at PoI i for user k, regardless of the
next state.

According to Eqs. 1- 3, we could derive the associated time-
homogeneous semi-Markov kernel part Zk

ij , which is shown
as Eq. 5.

Zk
ij(t) = P (Lk

n+1 = j, Sk
n ≤ t|Lk

0 · · ·Lk
n, T

k
0 · · ·T k

n )

= P (Sk
n ≤ t|Lk

n=i, Lk
n+1=j)P (Lk

n+1=j|Lk
n=i)

= Gk
ij(t)P

k
ij (5)

Let Qk
ij(t) be another time-homogeneous semi-Markov that

describes the probability that the user k is currently in PoI
i. After t time units, it will be in PoI j. Note that, Qk

ij(t) is
different from Zk

ij(t) in Eq. 1. Zk
ij(t) represents the probability

that the current state of user k is i, the next state is j, and
the transiting time is not more than t. However, Qk

ij(t) is the
probability that the user k’s current state is i, and that it will be
in state j after t time units. That is to say, the transition may
be more than one hop; the transiting process from state i to j
could pass through another one or more states. Qk

ij(t) provides
an easy prediction of the user’s location at an arbitrary time
unit t, with knowing its current location. The derivation of
Qk

ij(t) is described next.
It is worth noting that for any initial state i of user k, the

transition in the further time t,
l∑

j=1
Qk

ij(t) = 1. For the initial

case t = 0 without any iteration, if j ̸= i, then Qk
ij(0) = 0.

Similarly, if j = i, then Qk
ij(0) = 1.

In order to achieve Qk
ij(t), we start with a special case:

user k will not leave initial state i before time unit t. In other
words, user k has no transition before time t. In this case,
according to Eq. 4, the probability is shown in Eq. 6

P (Sk
n > t|Lk

n = i) = 1−Gk
i (t) (6)

Next, we consider a second case: user k has at least one
transition between times 0 and t, and we assume that the first
transition happens at time x to PoI r. Then, we can achieve
the probability in this case as follows:

P (Lk
t = j|Lk

0 = i and at least one transition to r)

=
l∑

r=1

t∑

x=1

(Zk
ir(x)− Zk

ir(x− 1))Qk
rj(t− x), (7)

where (Zk
ir(x) − Zk

ir(x − 1)) means that the first transition
happens at time x to PoI r.

Combine the above two cases, we achieve Qk
ij(t) as follows:

Qk
ij(t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l∑
r=1

t∑
x=1

(Zk
ir(x)− Zk

ir(x− 1))Qk
rj(t− x), j ̸=i

1−Gk
i (t)+

l∑
r=1,r ̸=i

t∑
x=1

(Zk
ir(x)−Z

k
ir(x−1))Qk

rj(t−x), j=i

(8)

With regard to Eq. 8, we have the following explanations.
Case 1: when j ̸= i, Zk

ir(x) − Zk
ir(x − 1) means that the

first transition step is from i to r, which happens at time x.
Then, Qk

rj(t − x) means that the current state is r. After
time t − x, the state turns to j. Case 2: when j = i,
1 − Gk

i (t) means that user k has no transition before time

t.
l∑

r=1,r ̸=i

t∑
x=1

(Zk
ir(x)−Z

k
ir(x−1))Qk

rj(t−x) means that user k

has at least one transition to r (r ̸= i), and then get back to i
at time t. According to this analysis, Qk

ij(t) can be correctly
obtained by Eq. 8.

The derive process of Qk
ij(t) utilizes the thought of Dy-

namic Programming (DP). Because we know the initial value
of Qk

ij(0), (1) Qk
ij(0) = 0 when j ̸= i and (2) Qk

ij(0) = 1
when j = i. Time t of Qk

ij(t) represents the phase number in
DP. We can use the results of t = 0 to calculate the results of
t = 1 and so on. Therefore, Qk

ij(t) could be achieved through
Qk

ij(0) to Qk
ij(t− 1).

Note that the derivation of Qk
ij(t) needs to use Zk

ij(t)
matrix, which is derived through two other matrices: the
state holding time probability matrix Gk

ij(t) and the transition
probability matrix P k

ij . With these matrices, we can predict the
future PoI of user k based on its current PoI using probability
distributions Qk

ij(t). Therefore, the problem comes to get the
matrices: Gk

ij(t) and P k
ij .

We retrieve both matrices of user k from its history path
composed of 2-tuples (Lk

n,T k
n ). P is the transition probability
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Fig. 4. The matrices P and G in the semi-Markov model.

matrix of the embedded Markov chain. G is the state-holding
time probability distribution matrix. Fig. 4 shows an example
of transition probability matrix and state-holding time prob-
ability distribution matrix for user k that visits four PoIs:
Dormitory (PoI 1), Canteen (PoI 2), Library (PoI 3), and
Classroom (PoI 4). For each PoI, the user can choose to stay
for a while or to move to another PoI according to its preferred
probability. For example, if the user is at the Dormitory (PoI
1), it can undertake one of the following four actions:
(1) move to the Canteen with probability P12 and transition

time probability distribution G12(t)
(2) move to the Library with probability P13 and transition

time probability distribution G13(t)
(3) move to the Canteen with probability P14 and the transi-

tion time probability distribution G14(t)
(4) stay in the Dormitory with the probability P11 and the

transition time probability distribution G1(t)

It is not difficult to find that Pij can be achieved by
Eq. 2. For example, the state list of Lk

n is 2, 1, 2, 1, 2, 3, 5,
and P k

21 = 2/3. It is not difficult to find that, numk
ij ≤ numk

i

and P k
ij ≤ 1. By keeping track of numk

ij and numk
i , each user

can generate and refine its own P matrix over time. Similarly,
Gk

ij can be obtained through Eq. 3. For example, the time
list of transiting from state i to state j is 2, 3, 4, 4, 5, 6, 9,
then Gk

ij(4) = 4/7. Based on the above descriptions, user
k can achieve Qk

ij(t) through the results of matrices P and
G. Moreover, in the general Markov process, the state holding
time is usually considered to be an exponential distribution.
The semi-Markov used in our model eliminates this constraint
and is more reflective of real-world processes.

D. Contact Probability Model
In this paper, we try to propose an efficient user recruitment

strategy where multiple users can be recruited to cooperatively
perform a common task, ensuring that the expected data
uploading-cost is minimal. As previously described, we divide
all the users into two groups corresponding to different price
plans: PAYG users and PAYM users. In each POI, we attempt
to recruit the PAYG user that has the highest probability of
contacting a PAYM user before the deadline. In this way, a
PAYG user can freely upload the sensing data through a PAYM
user.

Next, the question is how to achieve the contact probability
between a PAYG user and a PAYM user. Probability distribu-
tions Qk

ij(t) give the probability that the future PoI at time t
of a user k will be j, with the condition that at time 0 the PoI
was i. We assume that, the paths of users are independent of
each other and that the most recently known state of user a
is PoI la at time ha, and that of user b is PoI lb at time hb.
Therefore, the contact probability between user a and user b
at PoI i and time h is shown as follows:

Ci
ab(h) = Qa

lai(h− ha)Q
b
lbi(h− hb), h > 0, (9)

where h > ha > 0, and h > hb > 0. Then, the probability
that users a and b are in contact at time h at any PoI is

Cab(h) =
l∑

i=1

Ci
ab(h), h > 0. (10)

Because the purpose of our study is to select the optimal
PAYG user who has the highest contact probability with any
PAYM user, the first contact probability is useful for us. We
define the probability that two users begin their first contact at
time h. Note that when we talk about users a and b beginning
their first contact at time h, it means that they had no contact
at any prior time unit. Assuming that user trajectories are
independent, the probability of the first contact at time h
between users a and b is defined as follows:

Rab(h) = Cab(h)
h−1∏

t=0

(1− Cab(t)), h > 0. (11)

Denote the maximum data uploading deadline as Td, which
means that a PAYG user a with sensing data is required to
contact a PAYM user b in time Td. Thus, maximum probability
of the first contact between a and b before the deadline Td is
shown in Eq. 12.

Fab =
Td∑

h=1

Rab(h) (12)

According to Eq. 12, for a PAYG user UGi , the probability
of contacting a PAYM user (UM ) before the deadline is shown
in Eq. 13, where m is the total number of PAYM users.

FUGiUM = 1−
m∏

y=1

(1− FUGiUMy
) (13)

According to Eq. 13, we can decide which PAYG user is
optimal to upload the sensing data in each PoI in order to
minimize the total uploading cost.

III. USER RECRUITMENT STRATEGY

A. PURE
In this section, we propose an efficient Prediction-based

User Recruitment for mobile crowdsEnsing (PURE) in order
to address the following question: how can we recruit a user
in each PoI in a way that will minimize the total uploading
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Algorithm 1 PURE
Input:

PAYG users: UG

PAYM users: UM

1: Calculate the FUGiUM for each PAYG user in the POIs
2: for each PoI do
3: if there is a PAYM user UGi in this PoI then
4: upload the sensing data through the PAYM user
5: else if there is no user in this PoI then
6: no user could be recruited
7: else
8: recruit the UGi with highest FUGiUM in this PoI to

sense the data

cost? To save uploading cost, a PAYG user prefers uploading
sensing data through a PAYM user, rather than uploading by
itself. The analysis above shows that, the problem in each
PoI becomes how to find the PAYG user with the highest
probability of encountering a PAYM user before the deadline.
In the previous section, we calculated the contact probability
by FUGiUM . Therefore, the recruitment strategy PURE is
proposed in Algorithm 1.

As shown in Algorithm 1, users are divided into two groups:
PAYG users and PAYM users. If there is a PAYM user in a
PoI at the sensing task time, the PAYM user will be recruited
to upload the sensing data freely. Otherwise, if there is no
PAYG user in it, we could not sense any data in this PoI. If
there is no PAYM user in the PoI, but one or more PAYG
users in it, then the PAYG user with the highest FUGiUM will
be recruited to sense the data. Moreover, the running time for
line 2 of Algorithm 1 is O(l), where l is the total number of
PoIs. And the running time for line 8 of Algorithm 1 is O(n),
where n is total number of PAYG users. The worst case is that
PURE needs to select the best user among all the PAYG users.
Therefore, it can be seen that Algorithm 1 can be implemented
to run in O(ln) time.

Algorithm 2 PURE-DF
Input:

Recruit initial users UGi , (0 < i ≤ C) through PURE
(Algorithm 1)
Sensing data: d1, d2, · · · , dl

1: INITIALIZE ∀i : Hi ← FUGiUM

2: On contact between UGi with sensing data and UGj

without sensing data
3: for k =1 to l do
4: if dk is currently held by UGi , and UGj without dk

then
5: if Hi < FUGjUM then
6: Hi ← FUGjUM

7: recruit user UGj

8: replicate dk from UGi to UGj

Records

Records
Records

Records

Records
Records

Records

Records

Records
Records

Fig. 5. Dissemination process of the PAYM users’ parameters with PoI-
assistant. We regard the PoIs as the stationary users and users exchange and
update their records of the PAYM users’ parameters. With the help of PoIs,
the parameters could be disseminated more quickly. Therefore, the warm-start
time can be further reduced.

B. PURE-DF

In this section, we propose PURE-DF by extending PURE
to a case where we address the tradeoff between the delivery
ratio of sensing data and the recruiter number according to
the thought of Delegation Forwarding. PURE-DF first recruits
the initial users UGi in each PoI through PURE, and then,
PURE-DF decides whether to recruit the encountered UGj by
the initial users UGi according to their contact probabilities
with UM before the uploading deadline.

Based on the contact probabilities with UM users, two
simple recruitment strategies are naturally proposed. The first
is the PURE recruitment strategy, which only recruits the
initial users UGi , and waits for them to forward the sensing
data to UM users. The second is Epidemic recruitment strategy,
which recruits every encounter to assist in forwarding the
sensing data to UM users. It is not difficult to find that the
PURE recruitment strategy uses fewer PAYG users, though
its contact probability cannot be guaranteed. However, the
Epidemic recruitment strategy can achieve the highest contact
probability, but it also incurs the highest recruitment cost.
Recruiting more users leads to higher contact probability,
which means a lower uploading cost, but which also leads
to higher recruitment cost. Therefore, taking the Delegation
Forwarding strategy into consideration, we attempt to recruit
the most efficient users to forward the sensing data. The
pseudo-code of PURE-DF is shown in Algorithm 2.

In PURE-DF recruitment strategy, the initial PAYG users
recruited by PURE will recruit PAYG user and replicate the
sensing data only if the encountered PAYG user’s contact
probability with the PAYM users is greater than any seen by
the sensing data so far. As shown in Algorithm 2, when user
UGi encounters user UGj , it will recruit user UGj and replicate
the sensing data to user UGj if and only if FUGjUM is higher
than highest contact probability existing in the threshold Hi.
Moreover, the method to recruit initial users is the same as that
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Fig. 6. An example where users A and B exchange and update the parameters
of PAYM users according to the record time (i.e. 250, 300, and 350).

of PURE, so the running time is O(ln). The other steps are
the same as those of Delegation Forwarding, so the running
time could be bounded by O( 53

√
n) [21]. Therefore, it can be

seen that Algorithm 2 can be implemented to run in O( 53 ln
3
2 )

time.

C. Parameters Collection
Each user k records its mobility history list: (Lk

n,T k
n ), when

it enters the nth PoI, it will add the (Lk
n,T k

n ) to the tail of its
list. After a period of time, each user could collect its mobility
history list, which is shown in the parameter structure of Fig. 6.
The last item of the mobility history list shows the newest state
containing both the last PoI it enters and the updating time.

To predict user mobility in the PURE and PURE-DF al-
gorithms, a pair of users in communication need to know
each other’s mobility history lists. More importantly, they also
need to know the PAYM users’ mobility history lists. For
example, when a PAYG user A encounters a PAYG user B,
they could exchange their mobility history lists, and they could
calculate the transition probability matrix and the sojourn time
probability distribution matrix. However, they could not know
the PAYM users’ mobility history lists. Therefore, they could
not calculate the contact probability between user A and the
PAYM users.

To easily solve this problem, regard the PAYM users as
sources that will disseminate their mobility history lists to the
network. The dissemination process is considered the warm-
start time, after which they begin the PURE and PURE-DF
algorithms to recruit users. However, there are still following
two issues to be solved: (1) finding a dissemination strategy to
make the PAYM users’ mobility history lists cover all the users
as soon as possible and (2) estimating the current position of
the PAYM user to further calculate the contact probability of
Eq. 13.

For issue (1), an easy solution is to exchange the PAYM
users’ mobility history lists through Epidemic dissemination
strategy [24]. However, simulation results in Section IV-C
show that, in order to cover all the users, we achieve an
overlong warm-start time; this is not good enough. Therefore,
in order to reduce the warm-start time, we propose a parameter
dissemination strategy with PoI-assistant (shown in Fig. 5).

TABLE II
SIMULATION PARAMETERS

Parameter Traces
roma/taxi epfl geolife

Simulation Time 800,850,900,950,1000
Uploading Deadline 400,450,500,550,600

Time Unit (s) 15 30 5
Number of PoIs 10 13 12
PoI Radius (m) 200 80 300

Number of Users 158 368 727
Number of PAYM Users 2∼6 4∼8 8∼12

Because users communicate with each other only in the PoI,
we propose making the PAYM users’ mobility history lists
cover all the PoIs, instead of covering all the users. As shown
in Fig. 5, all the PoIs are regarded as common users, they
could also help disseminate the PAYM users’ mobility history
lists. The PAYM user disseminates its mobility history list to
the encountered PoI, and every user in this PoI could save
the parameter in its buffer and take it to another PoI. In this
manner, the parameters could be disseminated more quickly
and the warm-start time could be further reduced. Simulation
results are shown in Section IV-C.

To ensure that all the PoIs have the newest mobility history
lists of the PAYM users, we propose a parameter exchange
and update strategy as shown in Fig. 6. The users including
PAYG users, PAYM users, and PoIs, exchange and update the
records of the PAYM users. For example, in Fig. 6, user A
with records of PAYM1 and PAYM2 encounters user B with
records of PAYM2 and PAYM3, they exchange their missing
records (user A forwards the record of PAYM1 to user B and
user B forwards the record of PAYM3 to user A), and they
update their same record (PAYM2). A simple update action is
implemented according to the record time (updating the record
with the nearest record time). The record time is the time of
the tail item in the parameter structure.

For issue (2), user A wants to calculate the contact proba-
bility to PAYM1. First, user A needs to estimate the current
position of PAYM1, according to the mobility history list
of PAYM1. As shown in Eq. 14, the current time is t,
TRecPAYM1 is the record time, and we know that the PoI of
PAYM1 at TRecPAYM1 is PoICurPAYM1. According to Eq. 8,
we could achieve the probability that PAYM1 is currently
in j is QPAYM1

PoICurPAY M1j
(t − TRecPAYM1). For every PoI

j, we regard the PoI with the highest QPAYM1
PoICurPAY M1j

(t −
TRecPAYM1) as the current position of PAYM1.

QPAYM1
PoICurPAY M1j(t− TRecPAYM1) =

P (LPAYM1
t = j|LPAYM1

TRecPAY M1
= PoICurPAYM1) (14)

IV. PERFORMANCE EVALUATION

A. The Traces Used and Settings

We adopt three widely-used real-world traces, roma/taxi
trace set [25], epfl trace set [26], and geolife trace set [27],
[28] to test the performances of the proposed recruitment
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(a) roma/taxi (b) epfl (c) geolife

Fig. 7. The PoI areas in Baidu map of the three real-world data sets.

strategies. The roma/taxi trace set includes 320 taxi drivers
that work in the center of Rome, Italy. The traces present the
positions of drivers. Each taxi driver has a tablet that periodi-
cally retrieves a GPS position and sends it to a central server.
The epfl trace set contains mobility traces of taxi cabs in San
Francisco, USA. It contains GPS coordinates of approximately
500 taxis collected over 30 days in the San Francisco Bay
Area. The geolife trace set contains 17,621 trajectories with
a total distance of about 1.2 million kilometers and a total
duration of 48,000+ hours. These trajectories were recorded
by different GPS loggers and GPS phones.

We first address these data sets by filtering some abnormal
user traces (discontinuous records or remote areas). Then,
we put the traces into Baidu map according to the GPS.
Through invoking the JavaScript API in Baidu map, we draw
a thermodynamic diagram. We paint red to the area that
is covered by more than 400 times and find the associate
PoIs in each data set (Fig. 7). We divide all the users into
PAYG users and PAYM users. We regard the initial PAYG
users with sensing data as sources, and we consider the
PAYM users destinations. The detailed simulation parameters
in this network environment (simulation time, number of PoIs,
number of PAYM users) are listed in Table II. In particular,
800, 850 in simulation time means the number of time slice,
which is the period of collecting data. For the roma/taxi data
set, the collecting period is 15s, for the efpl data set 30s, and
for the geolife data set 5s.

B. Algorithms and Performances in Comparison

In order to validate the time complexity of Algorithms 1
and 2, in real-world trace roma/taxi, we test the relationship
(as shown in Fig. 8) between the number of PAYG users (n)
and the time complexity (C), which is achieved by count-
ing the number of elementary operations performed by the
algorithm (assignment, comparison and judgment operations).
The results in Fig. 8 show that, the time complexity of PURE
is O(ln), and that of PURE-DF is O(ln

3
2 ). The experimental

results match the theoretical results.
To demonstrate the performance of the proposed recruitment

strategies, we carry out simulations focusing on the following
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Fig. 8. Experimental results of the time complexity for Algorithms 1 and 2.
The time complexity is defined as C. n is the total number of PAYG users.

two aspects: (1) payment in PURE and (2) delivery efficiency
in PURE-DF.

For the first part, in order to test whether PURE could
achieve a lower payment, we compare two recruitment strate-
gies: PURE and RR. PURE, proposed in this paper, recruits
one user with the highest contact probability with a PAYM user
in every PoI. RR (Recruitment Randomly) randomly recruits
a user in each PoI.

For the second part, we attempt to test whether PURE-DF
could achieve the highest delivery efficiency compared to four
other recruitment strategies: PURE, PURE-DF, EP [24], and
SAW [29]. PURE has just been described, and in PURE-DF
recruitment strategy, the initial PAYG users recruited by PURE
will recruit another PAYG user and replicate the sensing data
only if the encountered PAYG user’s contact probability with
PAYM users is greater than any seen by the sensing data so far.
In EP (Epidemic) recruitment strategy, the initial PAYG users
recruited by PURE will recruit every encounter and replicate
the sensing data to it. In SAW (Spray and Wait) recruitment
strategy, the initial PAYG users recruited by PURE will make
a fixed number of sensing data copies (8 in the simulation),
recruit every encounter, and spray half of its copies to each
encounter until its copies reduce to 1. The encounters will
undertake the same spray and wait action.

While a range of data is gathered from the simulations,
we take the following five main performance metrics into
consideration:



1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2702613, IEEE
Transactions on Mobile Computing

120 140 160 180 200
PoI Radius (m)

0

0.1

0.2

0.3

0.4

0.5
D

el
iv

er
y 

R
at

io
PURE
PURE-DF
EP
SAW

Fig. 9. Relationship between delivery ratio and PoI radius.

(1) Payment, which is the total cost for uploading the sensing
data of all the PoIs.

(2) Delivery Ratio, which is the ratio between the sensing data
number uploaded by PAYM users and the total sensing
number data generated by all the PoIs.

(3) Delivery Cost, which is the number of recruiters that assist
in delivering the sensing data.

(4) Average Delay, which is the average elapsed time of the
successfully-delivered (uploaded by PAYM users) sensing
data.

(5) Delivery Efficiency, which is the result of delivery ratio
divided by delivery cost.

C. Simulation Results

1) PoI Radius: To determine the influence of different PoI
sizes, in real-world trace roma/taxi, we first test the delivery
ratio along with the growth of PoI radius. As shown in Fig. 9,
there is an upward trend of delivery ratio along with the
growth of PoI radius because a larger PoI radius leads to
a better communication condition. Moreover, the ranking of
delivery ratio performance is EP>PURE-DF>SAW>PURE,
which proves that the recruitment strategy proposed in this
paper could be efficiently and widely used in a PoI-based
network environment.

2) Warm-start Time: To determine the warm-start time in
the three different real-world data sets: roma/taxi, epfl, and
geolife, we test the situation of parameter collection along with
the change of simulation time.

As described in Section III-C, an easy solution to exchange
the PAYM users’ mobility history lists is using Epidemic dis-
semination strategy, which utilizes every possible connection
to replicate the records in its buffer to every ever-encountered
user. However, if we only use PAYG and PAYM users to
exchange the parameters, the dissemination speed in this
method is unsatisfactory; we need an overlong time to make
the PAYM users’ mobility history lists cover all the users. As
shown in Fig. 10, we test the user percentage, defined as the
infected user number divided by the total user number, along
with the growth of simulation time. The simulation results
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Fig. 10. Parameters’ dissemination results without PoI-assistant.
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Fig. 11. Parameters’ dissemination results with PoI-assistant.

show that, after 1,000 simulation time, the user percentages
of the three data sets are 41%, 83%, and 9%, respectively.
This means that we need an overlong warm-start time to get a
100% user percentage. Therefore, this dissemination strategy
without PoI-assistant is useless.

In order to reduce the warm-start time, we propose a
parameter dissemination strategy with PoI-assistant. This dis-
semination strategy regards the PoIs as the users.Because
users could communicate with each other only in the PoI, we
propose covering all the PoIs with the PAYM users’ mobility
history lists instead of covering all the users. Then, every
pair of users that encounter one another could obtain the
mobility history lists of the PAYM users via the current PoI.
As shown in Fig. 11, the PoI percentage is defined as the
infected PoI number (having the PAYM users’ mobility history
lists) divided by the total PoI number. With the growth of the
simulation time, the PoI percentage quickly reaches 100%. For
the different data sets to reach 100%, the simulation times in
roma/taxi, epfl, and geolife are 270, 32, and 200, respectively.
The simulation results show that the dissemination strategy
with PoI-assistant is useful in reducing warm-start times. In
the following simulations, the warm-start times for each of the
data sets are designed as 300, 50, and 250, respectively.

3) Payment in PURE: To evaluate the performances of
PURE and RR, we first conduct three groups of simulations
using the roma/taxi, epfl, and geolife traces. PURE recruits
a PAYG user with the highest contact probability with the
PAYM users in each PoI, while RR randomly recruits a PAYG
user in each PoI. Assuming that, the payment for sensing
data uploaded via a PAYM user is 0, while the payment for
uploading by a PAYG user is 1. The payments as a function of
the number of PAYM users, sensing data uploading deadline
(message TTLs), and simulation time are shown in Fig. 12-
Fig. 14 for roma/taxi, epfl, and geolife, respectively.

It is not difficult to find that, PURE achieves a lower
payment compared with RR. This is because the recruiters in
PURE have a higher probability of contacting a PAYM user.
Therefore, the sensing data uploaded by PAYG users is less
than that to RR. As seen in Fig. 12, where the first part displays
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Fig. 12. Payment comparisons on the roma/taxi trace set.
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Fig. 13. Payment comparisons on the epfl trace set.
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Fig. 14. Payment comparisons on the geolife trace set.

the variation of payments along with the growth of the number
of PAYM users. The payments for PURE are lower than that
of RR. It is worth noting that, the payment difference between
PURE and RR becomes larger with the growth of the number
of PAYM users. This is not strange because more PAYM users
improve the precision of the prediction in PURE. Therefore,
more sensing data can be delivered to PAYM users and can
be uploaded by them freely.

Moreover, there is a downward trend of payment along
with the increase of the number of PAYM users for RR and
PURE. This is because more PAYM users could save more
uploading payment. In the second part of Fig. 12, there is
still a downward trend of payment along with the growth of
message TTL because a larger message TTL leads to a higher
delivery ratio to the PAYM users which, in turn, reduces the
uploading payment. Similarly, in the third part of Fig. 12,
a downward trend of payment also appears along with the
growth of simulation time, because longer simulation time
leads to a lower recruitment payment.

4) Delivery Efficiency in PURE-DF: In this section, we
regard the PAYG users recruited by PURE as source users
and treat the PAYM users as destination users. We attempt to
recruit as few users as possible to achieve the best possible
delivery performance from sources to destinations. A larger
number of recruiters leads to a higher delivery ratio, but also
to a higher recruitment cost. To evaluate the performance of
PURE-DF, we test the delivery ratio, delivery cost, average
delay, and delivery efficiency in three real-world data sets.

The simulation results are shown in Fig. 15-Fig. 17.
As seen in Fig. 15, the ranking of delivery ratio performance

is EP>PURE-DF>SAW>PURE, which is reasonable because
EP recruits every encounter to assist in delivering the sensing
data so the delivery ratio of EP is the highest. However,
the delivery cost of EP is also the highest, which is also
shown in Fig. 15. EP utilizes every replication opportunity to
disseminate the sensing data, and therefore, the delivery cost is
higher than in any other strategy. In addition, the delivery ratio
of PURE-DF is higher than that of SAW because PURE-DF
will recruit a PAYG user and replicate the sensing data only
if the encountered PAYG user’s contact probability with the
PAYM users is greater than any seen by the sensing data so
far. SAW just replicates the sensing data to the encountered
PAYG user without considering the contact probability with
the PAYM users. Therefore, the recruiters of PURE-DF have
a higher contact probability with destinations than SAW does.
As a result, the delivery ratio of PURE-DF is higher than that
of SAW.

Most importantly, PURE-DF achieves the highest delivery
efficiency of all four recruitment strategies. This means that
each recruiter of PURE-DF can do the more average contribu-
tion to the delivery ratio of sensing data, compared with other
recruitment strategies. In other words, PURE-DF recruits as
few users as possible to achieve the best delivery performance.
Even if EP achieves the highest delivery ratio, its delivery
efficiency is the lowest among all the recruitment strategies
because EP recruits too many users thereby increasing its
recruitment cost. Fig. 16 and Fig. 17 show performance
comparisons on the epfl and geolife trace sets, respectively.

V. RELATED WORK

Most of mobile crowdsensing works [30] focus on the
following two aspects: (1) how to stimulate users to participate
in a crowdsensing task and (2) which users should be recruited
to finish the crowdsensing task.

A. Incentive Mechanisms

Game theoretic model and auction-based mechanism have
been widely used in designing incentive mechanisms for
mobile crowdsensing systems. Li et al. [31] propose a private
incentive mechanism that protects the privacy of each user’s
bid against the other honest-but-curious users. Zhang et al.
[32] propose incentivizing a number of workers to label a set
of binary tasks under strict budget constraint. Yang et al. [33]
present an incentive mechanism through a Stackelberg game,
where the crowdsourcer is the leader and the users are the
followers. Jin et al. [34] propose INCEPTION, a novel mobile
crowdsensing system framework that integrates an incentive, a
data aggregation, and a data perturbation mechanism. Wen et
al. [35] present an incentive mechanism according to a quality-
driven auction aimed at the mobile crowdsensing system. The
worker is paid based on the quality of sensed data instead
of working time, as adopted in the literature. Wu et al. [36]
propose a quality-of-video oriented pricing incentive scheme,
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Fig. 15. Performance comparisons on the roma/taxi trace set: delivery ratio & delivery cost & average delay & delivery efficiency.

namely Vbargain, to stimulate mobile users to deliver video
data collaboratively.

The above research focus on stimulating the users to partic-
ipate in a crowdsensing task. These could be regarded as the
preliminary works of this paper, and are an important part in
mobile crowdsensing.

B. Recruitment Strategy
There is also plenty of research that focuses on user recruit-

ment strategy. Xiong et al. [37] recruit some users in each
sensing period for piggyback crowdsensing task participation,
so that the resulting solution achieves near-maximal coverage
quality without exceeding incentive budget. Xiao et al. [38]
first formulate the deadline-sensitive user recruitment problem
as an NP-hard problem. Then, they propose a greedy algorithm
to solve this problem. Wang et al. [20] propose the design
and implementation of a mobile crowdsensing data uploading
mechanism (ecoSense) to help reduce additional 3G data
costs incurred by the whole crowd of sensing participants.
He et al. [39] present a new participant recruitment strategy
for vehicle-based crowdsourcing, according to the predicted
vehicle trajectory. This strategy guarantees that the system
can perform well through the currently recruited participants
for a period of future time. Xiao et al. [40] propose an
oFfline Task Assignment (FTA) algorithm and an oNline
Task Assignment (NTA) algorithm to assign tasks in mobile

crowdsensing, according to the mobility model of users in
mobile social networks. Pu et al. [41] formulate an online
worker recruitment problem to maximize the expected sum
of service quality. Hien To et al. [42] present a framework
for crowdsourcing hyper-local information, where only the
workers who have already been within the spatiotemporal
vicinity of a task are eligible candidates to report data. Li
et al. [43] make use of mobile crowdsourced data obtained
from location-based social network services to study influence
maximization in location-based social networks. Karaliopoulos
et al. [44] decide which mobile users to select in order to
generate the required space-time paths across the network for
collecting data from a set of fixed locations.

The above works focus on proposing a user recruitment
strategy to efficiently finish the crowdsensing task. However,
almost all the works utilize the WiFi APs to upload the sensing
data and ignore freely uploading the data through mobile users.

VI. CONCLUSION
We have looked into the problem of user recruitment in

mobile crowdsensing campaigns drawing on opportunistic net-
working methods. First, we divide the users in the network into
PAYG (uploading costly) users and PAYM users (uploading
freely), and we formalize this problem as recruiting the user
of the highest contact probability with PAYM users. Then,
according to the semi-Markov model, we propose an efficient
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Fig. 16. Performance comparisons on the epfl trace set: delivery ratio & delivery cost & average delay & delivery efficiency.

Prediction-based User Recruitment for mobile crowdsEnsing
(PURE), where the PAYG user’s contact probability with
destinations is achieved and where multiple users can be
recruited to cooperatively perform a common task, ensuring
that the expected data-uploading cost is minimal. Moreover,
we propose PURE-DF by extending PURE to a case in which
we address the tradeoff between the delivery ratio of sensing
data and the recruiter number according to the thought of Del-
egation Forwarding. We conduct extensive simulations based
on three widely-used real-world traces: roma/taxi, epfl and
geolife. The results show that compared with other recruitment
strategies, PURE achieves a lower recruitment payment and
PURE-DF achieves the highest delivery efficiency.
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