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Abstract—This paper addresses the coverage and workload-
balancing requirements of worker recruiting in spatial crowd-
sourcing. That is, the recruited workers should be able to visit
all the crowdsourcing locations to satisfy a certain quality,
e.g., traffic monitoring or climate forecast. In addition, each
crowdsourcing operation has a cost, e.g., data traffic or energy
consumption, and each crowdsourcing location might have a
crowdsourcing budget for the visited workers. The objective
of this paper is to find a worker recruiting algorithm, which
ensures the coverage requirement and minimizes the maximal
crowdsourcing cost for any crowdsourcing location. We gradually
discuss the problem from the 1-D scenario to the general 2-D
scenario. In the 1-D scenario, we propose a bounded directional
greedy algorithm first. Then, we propose a PTAS extension. A
dynamic programming solution is further proposed with a higher
computation complexity. In the 2-D scenario, we propose a ran-
domized rounding algorithm with an O( logn

log logn ) approximation
ratio in a high probability. Extensive experiments on realistic
traces demonstrate the effectiveness of the proposed algorithms.

Index Terms—Crowdsourcing, crowdsensing, task allocation.

I. INTRODUCTION

Spatial crowdsourcing [1], also called participatory crowd-
sourcing, has emerged in the past few years with the ubiquity
of mobile devices and vehicles equipped with high-fidelity
sensors and the development of wireless networks (e.g., WiFi
and LTE). It aims at exploiting mobile users to actively collect
and report data by using their mobile devices for a given
campaign. The unique challenge of spatial crowdsourcing is
that it consists of location-specific tasks. The people who agree
to participate in the spatial crowdsourcing, called workers,
have to physically be at specific locations to complete the
tasks. There are many applications, such as geographical
data generation (e.g., OpenStreetMap [2]) and road traffic
monitoring (e.g., Waze [3]).

Existing spatial crowdsourcing mechanisms do not consider
the coverage requirement [4–7]. However, the crowdsourcing
coverage is the requirement of many practical applications,
such as weather forecasts, e.g., DroneSense [8], and traf-
fic route optimization, e.g., CalTel [9], Nericell [10], and
GreenGPS [11]. It is because missing data from any crowd-
sourcing location might have a huge impact on the final
result, therefore, the desired performance (e.g., QoS) cannot be
guaranteed without the coverage constraint. Another problem,
which is important but often ignored in spatial crowdsourcing,
is the workload balancing requirement for each crowdsourcing
location. In reality, there is a cost (e.g., battery consumption,
time, cellular traffic, and pay-off) for each crowdsourcing
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Fig. 1. An illustration of crowdsourcing model in this paper, where the black
blocks are spatial crowdsourcing tasks.

operation, and the budget in each crowdsourcing location
is limited. For example, workers collect environment/traffic
information from sensors in a target area, the solar-charging
sensor in each location has limited battery per day, so the com-
munication energy consumption cannot exceed the sensor’s
battery. Another application scenario example is that there
exists a roadside unit in each crowdsourcing location and it
has a limited data traffic budget through cellular networks.

In this paper, we address the aforementioned challenges in
the spatial crowdsourcing. In the model of this paper, there
are a set of spatial crowdsourcing locations and workers.
The trajectory of each worker is known, and there is a
crowdsourcing cost when it visits a crowdsourcing location.
Our goal is to find a recruitment solution which ensures all the
crowdsourcing locations can be visited by at least one worker,
while minimizing the maximal cost for all crowdsourcing
locations. We refer to this problem as the Coverage and
Balanced Crowdsourcing Recruiting (CBCR) problem.

To illustrate the CBCR problem, there is a motivation
example in Fig. 1, where there are 4 workers, w

1

, w
2

, w
3

,
and w

4

with 4 crowdsourcing locations, namely, l
1

, l
2

, l
3

,
and l

4

. Assume workers have an identical cost for visiting
any crowdsourcing location in this toy example. In Fig. 1, the
worker w

1

visits l
1

, l
3

, and l
4

. We cannot only select w
1

, since
this recruiting solution does not satisfy the coverage constraint.
To satisfy the coverage constraint, there are three feasible
recruitment strategies, i.e., {w

1

, w
2

}, {w
1

, w
4

}, and {w
2

, w
3

}.
For the first two solutions, the crowdsourcing location l

1

or
l
4

is covered twice. However, in the last solution, all the
crowdsourcing locations are only covered once, which is better
in terms of balancing the workload.



The proposed CBCR problem is proven to be NP-hard
in the general case. Then, we discuss the solution of the
CBCR problem in the 1-D scenario. In the 1-D scenario, we
propose to cover crowdsourcing locations directionally with a
performance bound. After that, a PTAS extension is introduced
in this scenario to trade-off the computation complexity and
the performance. Lastly, the dynamic programming approach
is proposed to find the optimal solution in the 1-D scenario. In
the general 2-D scenario, we propose a randomized rounding
algorithm with an expectation bound.

The contributions of this paper are summarized as follows:
• To our best knowledge, we are the first to consider the

coverage requirement and the workload balancing of the
crowdsourcing locations in the spatial crowdsourcing.

• In the 1-D scenario, we propose a PTAS solution. Later,
we propose a dynamic programming approach to find the
optimal solution.

• In the general 2-D scenario, we propose a randomized
rounding algorithm which can solve the program effec-
tively with a high probability.

The remainder of the paper is organized as follows. The
related works are in Section II. The problem statement is
introduced in Section III. The solution in the 1-D scenario
is provided in Section IV. The solution for the 2-D scenario
is presented in Section V. The experimental results are shown
in Section VI. We conclude the paper in Section VII.

II. RELATED WORKS

With the wide adaptation of spatial crowdsourcing appli-
cations, task coverage and participant selection in the spatial
crowdsourcing system have drawn much attention from re-
searchers in recent years [4–7, 12–14]. The existing works
can be mainly categorized into two types:

Worker trajectory planning: In this type of model, the
worker’s trajectory can be controlled or planned by the server
[6, 7, 15]. Previous researchers [16] have produced many
works where there is only one worker in their spatial crowd-
sourcing model. In [6], Each task has a deadline, a feasible
route of a worker should make sure that all the tasks in the
route can be finished before their deadline. They proposed an
approach to maximize the number of tasks that a worker can
finish. In [4], they proposed a model with multiple workers.
However, their approach is an iteration solution, which consid-
ers workers one-by-one. Therefore, they did not really address
the multiple worker collaborative crowdsourcing. That is also
the reason why the method in [4] does not have a performance
bound. In [7] , authors considered the event conflict for a
worker, then provided a mapping solution with pruning to
reduce the complexity.

Trajectory coverage: In this type of model, the worker’s
trajectory is pre-determined [12, 17]. We argue that in many
crowdsourcing applications, the worker’s trajectory is deter-
mined, e.g., Waze [3]. There are many theoretical studies on
task assignments and participant selection problems, playing
trade-offs among the crowdsourcing cost and coverage range
[12, 17]. The difference between their models and our model

in this paper is that they consider maximizing the coverage
range. However, in many scenarios, ensuring the coverage
in a certain area, such as traffic monitoring or surveillance,
is very important. In [13], authors considered the coverage
requirement in the crowdsourcing, and minimized the overall
recruiting cost. The difference between their work and this
paper is that they consider the overall crowdsourcing cost. We
argue that the workload balance is very important, thus, we
consider the crowdsourcing cost for each crowdsourcing loca-
tion. In [18], the authors considered the workload constraint
but the coverage constraint was not considered.

III. MODEL AND PROBLEM

In this section, we introduce the network model used in this
paper, followed by the problem formulation. The hardness of
the proposed problem is shown at the end.

A. Model

In this paper, we discuss a spatial crowdsourcing scenario
under a centralized matter. We assume that the spatial crowd-
sourcing area can be mapped into a 2-D grid topology and each
crowdsourcing location belongs to a grid. There are two types
of locations: crowdsourcing location, denoted as a black block
in Fig. 1 and regular location. In a crowdsourcing location,
there is a crowdsourcing task. In a regular location, there is
not a crowdsourcing task. Suppose there are m crowdsourcing
locations, L = {l

1

, l
2

, · · · , lm}.
In the network there are N workers (e.g., people or ve-

hicles), W = {w
1

, w
2

, · · · , wn}, who agreed to accept the
crowdsourcing task. Each worker has a known crowdsourcing
trajectory, ti, which is pre-determined in this paper. That
is, we have a vector T , T = {t

1

, t
2

, · · · , tn} for the N
worker. The length of ti is denoted as |ti|, which is the
number of crowdsourcing locations that wi passes. Workers
can only move in four directions at most, up, down, left,
and right to mimic the way that people move along roads
in reality. An illustration of the network model is shown
in Fig. 1. Once a worker reaches a crowdsourcing location,
the task in that location is considered to be covered, and
there is a corresponding crowdsourcing cost, ci, e.g., pay-
off, energy or data traffic cost. Therefore, we have a cost
vector C, C = {c

1

, c
2

, · · · , cn}, A recruitment policy is
a vector X = {x

1

, x
2

, · · · , xn}, which determines whether
worker wi is selected (xi = 1) or not (xi = 0) to conduct
the crowdsourcing task. The workload of a crowdsourcing
location is denoted as

P
cixi, once ti includes this location.

The application for this model is like Waze [3], e.g., the drivers
share the traffic information on their way home.

B. Problem Formulation

To address the coverage requirement of spatial crowdsourc-
ing, e.g., traffic monitoring, route recommendation, climate
forecast, and surveillance systems, we argue that the data
should be collected from all |L| crowdsourcing locations
before calculation to ensure a certain reliability level. In
addition, a practical issue in crowdsourcing is that there is a
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Fig. 2. The trajectory of workers in 1-D and 2-D scenarios.

crowdsourcing cost to pay the visited workers and there should
be a budget for each crowdsourcing location. Therefore, we
propose the Coverage and Balanced Crowdsourcing Recruiting
(CBCR) problem in this paper, which is formulated as follows.

min max

i

X

li2tj

cjxj

s.t.
X

li2tj

xj � 1, 8li xj 2 {0, 1},
(1)

where the objective is to find a worker recruitment solution so
that the maximum crowdsourcing budget for all crowdsourcing
locations is minimized, and the constraint ensures that every
crowdsourcing location is covered.

C. Hardness of CBCR problem

Theorem 1. The proposed CBCR problem is NP-hard.

Proof. To show the decision version of the CBCR (CBCR-D)
2 NP, suppose a recruiting policy X is given. Clearly, we can
verify the correctness of X in polynomial time. Specifically,
the complexity of the verification algorithm is O(m), and the
number of crowdsourcing location is m in X .

To show that CBCR-D 2 NP-hard, we reduce the tripartite
matching problem to it in polynomial time, which is NP-
complete [19]. The tripartite matching problem can be formu-
lated as: given sets B,G, and H , each containing n elements
and a ternary relation T 2 B ⇥G⇥H , find a set of n triples
in T, no two of which have a component in common. We
present a polynomial time reduction and construct an instance
of CBCR-D as follows:

( ) Consider an instance of CBCR-D in which ci = 1,
|U | = m, |S| = n, and D = 1. Each trajectory visits exactly
3 crowdsourcing locations. Three crowdsourcing locations can
be partitioned into three equal sets B, G, and H where each
set in T contains one element from each. It is equivalent to
that in which we build a graph G = (V,E), where V has n
nodes, and they are partitioned into three sets, where each of
the sets has n/3 nodes. Two nodes have an edge if they are
visited by one worker. We now argue that the instance (T 0, T )
of tripartite matching is a ”yes” instance, i.e. iff there is an
instance of CBCR-D.

(!) If the constructed instance of CBCR-D satisfies all the
criterion, the selected trajectories form an instance of tripartite
matching according to the problem definition.

Algorithm 1 MG algorithm

Input: The vectors of T and C.
Output: The recruiting vector X .

1: while 9l /2 [ti, where xi = 1, xi 2 X do
2: Find xi which will minimize the maximum crowdsourc-

ing cost increase.
3: Add xi to X
4: Select the worker whose increase = temp

Algorithm 2 CO algorithm

Input: The vectors of T and C.
Output: The recruiting vector X .

1: Current location, li = l
0

2: while li < lm do
3: for 8t, where li 2 t do
4: Pick ti which can increase the coverage most.
5: Update li.

IV. 1-D SCENARIO

In this scenario, we assume that all the crowdsourcing loca-
tions are in a line-topology. Application for this type of line-
topology is road segment monitoring, e.g., a highway situation.
On the highway, different vehicles enter in different entrances
and leave at different exits. Without loss of generality, let
us denote the crowdsourcing locations from one side to the
another side as l

1

to lm for the remainder of this section.
In the 1-D scenario, the overlapping relationship between

different trajectories becomes simple. There are two cases in
total for two trajectories. (1) They do not have overlapping
relationships with each other. (2) They overlap with each
other, and all the overlapping locations are contiguous. An
illustration of this property in the 1-D scenario is shown in
Fig. 2, where there are 8 crowdsourcing locations. In Fig. 2(a),
if we map workers’ trajectories into a 1-D dimension, their
trajectories are contiguous. However, in Fig. 2(b), if we map
workers’ trajectories into a 1-D dimension, their trajectories
might be discontinuous, e.g., t

1

’s trajectory is {l
1

, l
2

, l
3

, l
5

, l
7

}
in Fig. 2(b), which is much more complex.

A. Greedy Approach

In this subsection, we propose two greedy solutions first,
followed by the analysis and limitation about the proposed
greedy solutions.

1) Min-max greedy algorithm: A natural idea is to select
the worker who cannot increase the maximal workload cost
much to cover the network in each round. Therefore, we
propose the min-max greedy (MG) algorithm as a baseline
algorithm in this paper. For the MG algorithm, if the network
is not covered, we select the worker who can minimize
the maximal workload of all the crowdsourcing locations in
the network. The drawback of the MG algorithm is that a
single crowdsourcing location might be unnecessarily covered
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Fig. 3. Two cases for a crowdsourcing location.

multiple times in the MG algorithm and such unnecessary
coverage can accumulate and lead to a bad result.

Theorem 2. In the optimal solution, a crowdsourcing location
will not be covered by 3 workers in the 1-D scenario.

Proof. This theorem can be proven by contradiction. If we
project all the trajectories for a special crowdsourcing location
into the road, we can always find a trajectory whose starting
position is the left most, and we can also find a trajectory
whose end position is the right most. Then, we can use
these two trajectories, possibly as one trajectory, to cover this
crowdsourcing location.

2) Directional coverage algorithm: Facing this drawback
of the MG algorithm and theorem 2, we propose the coverage-
only (CO) algorithm which covers all the crowdsourcing
locations from one side to the other side, i.e., from l

1

to lm.
Each time, we select the worker in an uncovered area, which
increases coverage most from left to right. It is easy to prove
that the result of the CO algorithm is always feasible which can
be proven by contradiction. The CO algorithm takes advantage
of the contiguous trajectory overlapping property in the 1-D
scenario as shown in theorem 2, and achieves the performance
bound, shown in theorem 3.

Theorem 3. The CO algorithm has a 2max8i,j
ci
cj

approxi-
mation ratio in the 1-D scenario.

Proof. The proof insight is that each time, we guarantee that
a new crowdsourcing location will be covered, so that it
avoids unnecessary coverage accumulation. The problem can
be proven through contradiction, assuming that there exists a
crowdsourcing location, li, where 3 workers can visit. Based
on the end position of their trajectories from left to right, we
denote these three trajectories as t

1

, t
2

, and t
3

and their staring
positions as s

1

, s
2

, and s
3

. Then, for the starting points of t
1

and t
2

, there exist two cases: s
1

< s
2

or s
1

> s
2

as shown in
Fig. 3. In the first case, the CO algorithm will select t

1

rather
than t

2

. In the second case, the CO algorithm will select t
2

instead of t
1

. Therefore, neither of these two cases exists in the
CO algorithm. Otherwise, there would be a contradiction. As a
result, there are at most two workers visiting a crowdsourcing
location and the cost is bounded by 2max8i,j

ci
cj

.

3) CO-PTAS algorithm: We observe that the bad perfor-
mance of the CO algorithm is due to the improper recruitment
of workers with a large recruiting cost. Therefore, if these
jobs are scheduled with a low priority, they cannot have a big
influence on the final result. Based on this observation, we
propose a Polynomial-Time Approximation Scheme (PTAS)

Algorithm 3 CO-PTAS algorithm

Input: The vector of T and C.
1: Guess the " value
2: for from t

0

to tn do
3: if ci  "

2

max8j cj then
4: Add ti to S
5: else
6: Add ti to B
7: Call CO algorithm for trajectories in S
8: if the result is a coverage then
9: Modify the guess, ", and repeat

10: else
11: Return X

algorithm. Given all the workers, we partition the workers
into two sets: costly workers and cheap workers. Let us
use the ratio, ri between the cost of a worker, ci, and the
maximum worker cost. We call a worker, wi, a costly worker,
if ri > ". Let B and S denote the set of costly workers and
cheap workers respectively, i.e., B = {wi : ri > "/2} and
S = {wi : ri < "/2}.

After the partition, we apply the CO algorithm in the set S.
Then, the problem becomes to find a feasible solution in set
S. Then, according to theorem 2, the optimal value is at most
twice as this value. The optimal " can be found through the
binary search. Initially, we find the maximum worker cost in
the network. Then, we set " = 1 and try to check if we can
find a feasible schedule through the CO algorithm. If so, we
decrease the value of " and repeat the CO algorithm, otherwise
we increase the value of ".

Theorem 4. The CO-PTAS algorithm can achieve a 2 + "
approximation ratio in the proposed problem.

The proof is similar to the approximation ratio proof of the
CO algorithm. Due to space limitation, we ignore the proof in
this paper. For the complexity of the CO-PTAS algorithm, the
CO-PATS algorithm at most calls the CO algorithm log(n)
times according to the binary search. Therefore, the overall
complexity of the CO-PTAS algorithm is O(mnlog(n)).

An illustration of these three algorithms is in Fig. 4, where
there are four trajectories, and their costs are c

1

= 1, c
2

= 1.5,
c
3

= 3, and c
4

= 2, respectively. The MG algorithm will select
w

1

first, since it will only increase by 1, followed by w
4

, which
further increases 1 for the maximum workload cost. Then, to
finish the coverage requirement, w

2

should also be selected.
As a result, the maximum workload cost is 3.5. As for the
CO algorithm, it directionally covers from l

1

to l
4

. Therefore,
w

1

is selected first, followed by w
3

in the worst case. Then,
the maximum workload cost is 3. However, in the CO-PTAS
algorithm, when " = 1, w

3

will have a lower priority for being
selected. Then, the CO-PTAS algorithm will use w

1

and w
2

to finish the coverage, and the maximum workload cost is 2.5.
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Fig. 4. An example to illustrate the proposed algorithms, where the worker
recruiting costs are c

1

= 1, c
2

= 1.5, c
3

= 3, and c
4

= 2, respectively.

B. Dynamic Programming Approach

We notice that the trajectory of a worker can only have in-
fluence on contiguous locations in the 1-D scenario. Therefore,
we can partition the problem into a series of sub-problems to
further overcome the improper selection of cost trajectories.

Assume the crowdsourcing locations from one side to
another side (e.g., from left to right) is l

1

, l
2

, · · · lm. Without
loss of generality, we assume trajectories are ordered based on
their ending positions. In dynamic programming, we maintain
a 2-D vector d[·, ·] to store the best result so far. That is, d[i, j]
is the optimal solution from crowdsourcing locations l

1

to li,
and j denotes that the last trajectory tj which is used to cover
location li. The objective of dynamic programming is to find
min d[m, j], 8j. Note that if a trajectory tj does not cover li,
d[i, j] equals 1, which ensures that we will not select tj to
cover location li. Initially d[0, j] = 0, 8j, which means that
before we select any trajectories, the minimal maximum cost
is 0. Then we can get the following relationship:

d[i, j] =

(
0 i = 0
min

i0<i,j0j
max{d[i0, j0], cj0 + cj} Otherwise (2)

where location li0 is any crowdsourcing location that is no
smaller than the first crowdsourcing location before the starting
point of tj . j0 is any trajectory whose index is smaller than j.
For example, if j = 3, l0i means crowdsourcing location l

2

, tj0
can be t

1

or t
2

. The idea behind Eq. 2 is that if we want to
find the optimal solutions up to crowdsourcing location li with
trajectory tj as the last trajectory, we only need to check all
the optimal solution from previous location i0 with trajectory
tj0 to ensure the coverage constraint. If adding tj to cover
the crowdsourcing location from li0 to li does not increase
the maximum cost, (i.e., d[i0, j0] > cj + cj0 ), we keep the
maximum cost, (i.e., d[i, j] = d[i0, j0]). Otherwise, we update
the maximum cost of d[i, j], (i.e., d[i, j] = cj + cj0 ). Note
that cj0 can be zero, in which case tj0 ends at the previous
crowdsourcing location before tj starts. Note that the reason
that we can maintain the number of trajectories covering one
crowdsourcing location rather than the set of combinations of
these trajectories is that the latter is always worse.

An example to illustrate the dynamic programming ap-
proach is shown in Fig. 4. For crowdsourcing location l

1

, since

Algorithm 4 Dynamic programming algorithm

Input: The vector of T and C.
1: Initialize the state record d[·][·]
2: for check crowdsourcing location i from l

1

to lm do
3: for for all crowdsourcing locations li0 , li0  li do
4: if tj can reach location li0 then
5: d[i, j] = mini0<i,j0j max{d[i0, j0], cj0 + cj}
6: Update the d[i][j] for location li
7: Find min d[m][·]
8: Return X

Algorithm 5 Rounding algorithm

Input: The vector of T and C.
Output: The recruiting vector X .

1: Relax the problem into a linear programming formulation.
2: Solve the LP problem and get vector X?.
3: for for l

1

to lm do
4: for 8li 2 ti do
5: Assign each ti to a interval between 0 and

P
x?
i .

6: Randomly generate a value in the whole range.
7: Pick the xi, if the random value is in its interval.

it is only covered by trajectory ti, d[1, 1] equals 1. Similarly,
there are two trajectories covering crowdsourcing location l

2

,
thus we have d[2, 1] = 1 and d[2, 2] = 2.5. The optimal
solution that covers the crowdsourcing location from l

1

to l
2

is min{d[2, 1], d[2, 2]} = 1. For crowdsourcing location l
3

,
there are two trajectories, t

2

and t
3

, covering it. For t
2

, it
is already calculated in the previous crowdsourcing location,
therefore, d[3, 2] = d[2, 2] = 2.5. For t

3

, it checks all the pre-
vious solutions up until crowdsourcing location l

2

. Therefore,
d[3, 3] = min{max{d[2, 1], c

3

},max{d[2, 2], c
2

+ c
3

}} = 3.
In the former case, t

1

ends before t
3

, hence cj0 = 0. Therefore,
the optimal solution up to l

3

is min{d[3, 2], d[3, 3]} = 2.
For crowdsourcing location t

4

, the optimal solution upto l
4

is min{d[4, 2], d[4, 3], d[4, 4]} = 2.5.
The complexity analysis of dynamic programming is shown

as follows. Dynamic programming requires to store O(mn)
states. For each state update, we need to check O(mn log n)
times at most. This is because the algorithm needs to trace
back to find the optimal solution in each previous location,
O(m), and check the optimal solution at that crowdsourcing
location, which is O(n). The dynamic programming approach
still needs a sorting algorithm to find the smallest cj , which is
O(log n). Thus, the overall time complexity is O(m2n2

log n).

V. GENERAL 2-D SCENARIO

In this section, we discuss approaches to the CBCR problem
in the 2-D scenario. Application scenarios for the 2-D scenario
is traffic monitoring in an urban area.

In this section, we use a rounding technique [20] to propose
a randomized rounding algorithm. For the original problem in
Eq. 1, it is equivalent to finding a smallest value ✓, which
ensures that the workload of any crowdsourcing location is no
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larger than ✓. Then, if we relax the formulation from xi 2
{0, 1} to xi 2 [0, 1], Eq. 1 becomes a linear programming
problem as follows

min ✓

s.t.
X

li2tj

cjxj  ✓,
X

li2tj

xi � 1, xi 2 [0, 1] 8i, j.

(3)
Eq. 3 can be optimally solved by using the linear programming
solver and getting ✓? and the corresponding {x?

1

, x?
2

, · · · , x?
n}.

For the original problem, we can use {x?
1

, x?
2

, · · · , x?
n} to

get a randomized rounding result. In detail, the randomized
rounding algorithm gives each worker a probability to be
recruited. For every crowdsourcing location li from l

1

to lm,
we check all trajectories that include li. These trajectories
are selected based on the their corresponding x? in the LP
solution. For example, we have three workers with x?

1

= 0.5,
x?
2

= 0.3, and x?
3

= 0.2 who visit a crowdsourcing location.
The randomized rounding algorithm will randomly generate
a number between 0 and 1, the sum of 0.5, 0.3, and 0.2. If
the number is between 0 and 0.5, the randomized rounding
algorithm will pick the first worker. If the number is between
0.5 and 0.8, pick the second worker, and if the number is
between 0.8 and 1, pick the third worker.

The result generated by the randomized rounding algorithm
is always a feasible solution. This is because the random
assignment ensures that one trajectory for a crowdsourcing
location will be selected. The performance of the randomized
rounding algorithm is as follows. Since all workers are selected
with probability xi independently, we get the

Pr[
X

T :li2tj

cjE[xj ]] =

X

T :li2tj

cjE[xj ] =

X
cj ·x?

j  ✓?, (4)

the expected cost on any location is at most ✓?. However,
since we have many crowdsourcing locations in the network,
some crowdsourcing locations may end up with a larger
cost than the expectation. We would like to show that there
exists some number � such that for every crowdsourcing
location, Pr[cixi � �✓?]  1

nm . Then, by the union bound,
Pr[9li,

P
cixi � �✓?]  |L|

mn 
1

n . That is, we would get a �
approximation with a 1

n probability to exceed the �✓?. In the
following, we will prove that � = O(

logn
log logn ).

Theorem 5. The proposed algorithm has an O(

logn
log logn )

approximation ratio.
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Fig. 6. The vehicles’ movement history.

Proof. Without loss of generality, let us assume that all rounds
of the randomized rounding algorithm are all disjoint events.
Workers are selected with probabilities {x?

1

, x?
2

, ..., x?
n} for any

crowdsourcing location li, where x?
i follows the independent

and identically distributed random distribution, the probability
that

P
x?
i is normalized to 1. Let random variables xi 2 [0, 1].

Then, E[

P
cixi] =

Pn
1

ciE[xi] =: ✓?. Then, for any � > 0

by using Chernoff bounds, we get the following result due to
the random selection:

Pr[
X

cixi � (1 + �)✓?] 
⇣ e�

(1 + �)1+�

⌘✓?

(5)

It is equivalent to

Pr[
X

cixi > �✓?]  (

e��1

��
)

��✓?

 (�/e)�� (6)

If we set �� ⇡ n, that is, � = O(

logn
log logn ). Eq. 6  1

n .

VI. PERFORMANCE EVALUATION

A. Traces
The EPFL [21] trace is the taxi trace collected from San

Francisco, USA. It contains GPS coordinates of approximately
500 taxies over 30 days. Another trace that we use is the
Seattle bus [22] trace. The traces were collected from the bus
while on different routes in Seattle, USA for several weeks.

Some detailed experiment parameters are as follows: we
choose the center city of these two cities, 10,000 (ft) ⇥ 10,000
(ft), as the experiment area. Then, we divide the experiment
area into grids. The grid size is 200 (ft) ⇥ 200 (ft), which
is the typical WiFi range under 2.4 GHz in 802.11 protocol
for outdoor environment [23]. The experiment area and the
vehicles’ movement history are shown in Figs. 5 and 6. We
consider that once a vehicle reaches a grid, it can successfully
finish the crowdsourcing task. In the experiment, we choose
the first 40 taxis in the EPFL trace, and we choose 236 buses in
the Seattle bus trace. Since we do not have the cost information
in these two traces, we generate five different costs, which
refers from 5 different cost in Uber cars [24], i.e., Uber pool,
UberX, UberXL, UberSelect, and UberBlack, in reality.

B. Experiment Setting
In the 1-D scenario, we randomly select a row in the

area to conduct the experiments. The crowdsourcing locations
are randomly selected among the grids [4, 20] and [2, 6],
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Fig. 7. Different cost ranges.
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Fig. 8. Different amounts of crowdsourcing locations.

respectively in two datasets. For each vehicle, we use the
uniform distribution and the exponential distribution to assign
a cost for a vehicle. The enter position and the exit position
are considered as the left-most grid and the right-most grid,
respectively. In the 2-D scenario, we randomly select [5, 25]
and [4, 20] crowdsourcing locations in the 2-D scenario. In
addition, we use the uniform distribution to assign the vehicle
cost. All the experiments are repeated 500 to 2000 times.

C. Algorithm Comparison
We propose four algorithms in the 1-D scenario. (1) min-

max greedy (MG) algorithm selects the worker candidate sets
which increase the max-cost of any crowdsourcing location
at least, then among them, the worker who can increase
the coverage most is selected until the network is covered.
(2) coverage-only (CO) algorithm selects a set of workers
from one side to another side without considering their cost.
(3) PTAS (PT) algorithm divides the workers into to two
sets according to their corresponding cost, then, uses worker
with the lowest cost to cover the network. Then, we try
to find the optimal set partition. (4) dynamic programming
(DP) algorithm uses the dynamic programming technique to
find the optimal solution. In the 2-D scenario, we extend the
solution in the 1-D scenario and compare their performances
with the randomize rounding (RD) algorithm, which uses the
randomized rounding technique to select the workers.

D. Experimental results
1) 1-D scenario: Figs. 7, 9, and 8 show the result in the

EPFL trace and in the Seattle trace in the 1-D scenario. In
Fig. 7(a), the results show that along with the worker cost
increase, the performance difference between the proposed
four algorithms increases. In detail, the maximum workload
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Fig. 9. Different cost distributions.

cost for any crowdsourcing location in the network decreases
from the MG algorithm, followed by the CO algorithm and the
PT algorithm. The DP algorithm achieves the lowest maximum
workload cost, and the MG algorithm has the worst perfor-
mance. The CO algorithm reduces 120% of the maximum
cost. The PT algorithm further increases about 100% of the
performance. The DP algorithm only further improves about
10 % of the performance with a higher computation com-
plexity. This result demonstrates effectiveness of the proposed
PT algorithm. For two different cost distribution cases, Fig.
9(a) shows the result, where algorithm(U) denotes the uniform
cost distribution and algorithm(E) denotes the exponential
distribution. It shows that exponential distribution leads to a
worse performance. Figs. 7(b) and 9(b) show similar results in
the Seattle trace. The difference is that there is a best point for
the MG algorithm in EPFL trace, which shown in Fig. 8(a).
The insight behind that is when the amount of crowdsourcing
locations is small, an improper step might have a big influence
on the future. When the amount of crowdsourcing locations
is large, the improper selection accumulates. In the Seattle
trace as shown in Fig. 8(b), the CO, PT, and DP performances
remain nearly the same.

2) 2-D scenario: Fig. 10 shows the result in the EPFL and
Seattle traces in the 2-D scenario. Figs. 10(a) and 10(b) show
the similar performance order of the four algorithms in terms
of different worker costs. That is, in Figs. 10(a) and 10(b),
the maximum workload cost decreases following the order of
the MG, CO, PT and RD algorithm. However, in Fig. 10(a),
the CO and RD algorithms achieve 30% maximum workload
cost than the MG algorithm in the EPFL trace. However, in
the Seattle trace, the CO and RD algorithms achieve 50%
maximum workload cost than that of the workload of the other
two algorithms. The reason might be that the taxies visit the
whole grid area more uniformly than the buses. Therefore, we
can more easily to find a taxi with a smaller cost to cover the
same area. However, different buses’ routes are more different.
In terms of the different amount of crowdsourcing locations,
the proposed RD and PT algorithms also achieve the best
and the second best performances. For the MG algorithm,
the maximum workload cost gradually increases first and then
decreases. The insight behind it is that when the crowdsourcing
location is sparse, the improper selection of the MG algorithm
increases. However, then the crowdsourcing location becomes
dense, and the improper of the MG algorithm decreases, since
it becomes easy to cover some uncovered areas. We also
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Fig. 10. Performance comparison in two datasets in the 2-D scenario.
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Fig. 11. Different cost distribution.

conduct experiments in terms of different cost distribution,
Fig. 11 shows that the exponential cost distribution increases
the maximum workload cost in the 2-D scenario.

VII. CONCLUSION

In this paper, we address coverage and workload-balancing
in spatial crowdsourcing, which are ignored in existing ap-
proaches. We propose a series of worker recruit algorithms.
We discuss the problem in the 1-D scenario first and propose
a directional coverage algorithm with a performance bound
of 2 times of maximum cost ratio. A PTAS extension is
further proposed to improve the performance. At the end, we
propose to use the dynamic programming approach to find the
optimal solution in the 1-D scenario. Then, we address the
problem in the general 2-D situation by using the randomized
rounding algorithm. It achieves an O(

logn
log logn ) approximation

ratio in a high probability. Extensive experiments show that
the proposed algorithms achieve a good performance.
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