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Abstract—The e-healthcare cloud system has shown its potential to improve the quality of healthcare and individuals’ quality
of life. Unfortunately, security and privacy impede its widespread deployment and application. There are several research
works focusing on preserving the privacy of the electronic healthcare record (EHR) data. However, these works have two main
limitations. First, they only support the ‘black or white’ access control policy. Second, they suffer from the inference attack. In
this paper, for the first time, we design an inference attack-resistant e-healthcare cloud system with fine-grained access control.
We first propose a two-layer encryption scheme. To ensure an efficient and fine-grained access control over the EHR data, we
design the first-layer encryption, where we devise a specialized access policy for each data attribute in the EHR, and encrypt them
individually with high efficiency. To preserve the privacy of role attributes and access policies used in the first-layer encryption,
we systematically construct the second-layer encryption. To take full advantage of the cloud server, we propose to let the cloud
execute computationally intensive works on behalf of the data user without knowing any sensitive information. To preserve the
access pattern of data attributes in the EHR, we further construct a blind data retrieving protocol. We also demonstrate that our
scheme can be easily extended to support search functionality. Finally, we conduct extensive security analyses and performance
evaluations, which confirm the efficacy and efficiency of our schemes.
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1 INTRODUCTION

1.1 Motivation

The electronic healthcare, providing timely, accurate,
and low-cost healthcare services, has shown its po-
tential to improve the quality of healthcare and in-
dividuals’ lives. Many companies all over the world
have developed their healthcare services, e.g., Google
Fit [1], Apple HealthKit [2], etc. Meanwhile, with the
increasing maturity and benefits brought by cloud
computing, the e-healthcare cloud system has attract-
ed many interests from both the academic and the
industry. The IBM company has already established
its e-healthcare cloud center, i.e., IBM Watson Health
Cloud [3]).

Unfortunately, security and privacy will impede
the widespread deployment and application of the
e-healthcare cloud system. The fundamental reason
is that, once the sensitive EHR data are outsourced
to the cloud, data owners would lose their control
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[4], [5], [6], [7]. Although the cloud service providers
promise they will preserve these data by installing
anti-virus softwares, firewalls, and intrusion detection
and prevention systems [8], they cannot stop their
employees from accessing these data. For example, an
employee in the department of veterans affairs once
takes away 26.5 million sensitive data without autho-
rization, which includes the social security numbers
and sensitive health data [9]. When these sensitive
data are abused, more serious problems will occur.
For example, insurance companies would refuse to
provide insurance to those who have serious health
problems. Therefore, it is vital to preserve the security
and privacy of EHR data stored in the e-healthcare
cloud system.

1.2 Limitations of Prior Art
To preserve the security and privacy of the EHR data,
some research works have been done in [10], [11], [12],
[13]. However, they suffer from three main limitations.

First, they only support the ‘black or white’ ac-
cess control policy. Specifically, once a data user is
authorized, he can access all the data attributes in
the EHR. For example, if a dentist is authorized
to access a patient’s EHR, then he can even access
the patient’s social security number, or health data
regarding that patient’s liver or kidneys. We argue
that, if this problem is not solved, serious privacy
leakage will occur.
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Fig. 1: Example of data attributes and role attributes
contained in the EHR.

Second, they suffer from the inference attack. The
inference attack includes the frequency analysis at-
tack, sorting attack, and cumulative attack. Among
them, the most well known attack is the frequency
analysis attack, which breaks the classical encryption
algorithms [14]. In the EHR scenario, the inference
attack is rooted in two aspects. 1) By observing
the access frequency of the EHRs, the cloud can
deduce the content of the EHRs with some back-
ground information even if they are encrypted. 2)
Existing schemes adopt the conventional ciphertext
policy attribute-based encryption to encrypt the EHR,
which inevitably expose the access policy to the cloud.
Therefore, the cloud can deduce sensitive data from
the EHR with some background information. For
example, if the cloud observes that a patient’s EHR
can be accessed by the doctors from the department
of radiologist and chemotherapy, then the cloud can
deduce that patient to have cancer with high proba-
bility.

Third, they have to spend a large amount of time
on secret generation for the repeated items. As shown
in Fig. 1, the EHR has four data attributes, i.e.,
D1, D2, D3, D4. Each data attribute has its own role
attributes. As we can see, there are a lot of repeated
role attributes in the EHR. In conventional schemes,
instead of generating ciphertext for the 5 distinct role
attributes, they have to generate secrets for all the 14
role attributes, which means that the efficiency can
be improved for nearly three times in this example.
Since the data attributes in the EHR often have a lot of
repeated role attributes, we need to propose schemes
to save the computation cost spent on the repeated
role attributes.

1.3 Technical Challenges
To design an efficient and inference attack-resistant
e-healthcare cloud system with fine-grained access
control, there are three key challenges.

1) To achieve the fine-grained access control, we
need to define a specialized access policy for
each data attribute in the EHR. Since different
data attributes in the EHR usually share many
role attributes in their access policies, for securi-
ty concerns, we need to conceal the frequency of
role attributes occurring in the EHR. Therefore,

how to ensure an efficient and correct encryption
on the data attributes while preserving the sta-
tistical data of the role attributes is a challenging
problem.

2) To improve the efficiency of the whole system,
the cloud is expected to execute computationally
intensive works on behalf of the data users.
Thus, how to prevent the cloud from deducing
sensitive data, while achieving the above func-
tionality is very important.

3) Since the cloud possesses all the EHR data and is
responsible for returning accessed data, how to
ensure the cloud correctly and efficiently returns
the data attributes without knowing which data
attributes are actually returned is also a chal-
lenging problem.

1.4 Our Approach and Key Contributions
In this paper, for the first time, we design an inference
attack-resistant e-healthcare cloud system with fine-
grained access control. We first propose a two-layer
encryption scheme. In the first-layer encryption, we
propose to define a specialized access policy for each
data attribute in the EHR, generate a secret share
for every distinct role attribute, and reconstruct the
secret to encrypt each data attribute, which ensures
a fine-grained access control, saves much encryption
time, and conceals the frequency of role attributes
occurring in the EHR. In the second-layer encryption,
we propose to preserve the privacy of role attributes
and access policies used in the first-layer encryption.
Specifically, we merge the first-layer access policies,
add noise to the merged access policy, and encrypt the
first-layer access policies under the noisy and merged
access policy. Additionally, to take full advantage of
the cloud server, we propose to let the cloud execute
computationally intensive works on behalf of the data
user without knowing any sensitive information. To
preserve the access pattern(access frequency) of the
data attributes in the EHR, we construct a blind data
retrieving protocol. Furthermore, we show that our
scheme can be easily extended to support search
functionality. Finally, we conduct extensive security
analyses and performance evaluations, which confirm
the efficacy and efficiency of our schemes.

Our main contributions are summarized as follows:
• To the best of our knowledge, this is the first

attempt to address the inference attack prob-
lem in the e-healthcare cloud system with fine-
grained access control. Compared with the exist-
ing solutions, our scheme not only ensures novel
functionalities, but also achieves higher efficien-
cy on encryption, decryption, and role attribute
revocation.

• We systematically construct a two-layer encryp-
tion scheme. The first-layer encryption ensures
the fine-grained access control, saves much en-
cryption time, and conceals the frequency of role
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attributes occurring in the EHR. The second-
layer encryption enables the cloud to execute
computationally intensive works on behalf of the
data user, while preserving the privacy of access
policies used in the first-layer encryption.

• We design a blind data retrieving protocol, which
preserves the access pattern of data attributes in
the EHR, and achieves high efficiency.

• We provide rigorous security analyses and con-
duct extensive experiments to confirm the effica-
cy and efficiency of our proposed schemes.

The rest of this paper is organized as follows. Sec-
tion 2 presents the preliminaries. Section 3 formulates
the problem. Section 4 demonstrates the secure con-
structions. Section 5 presents the security and privacy
analysis. Section 6 demonstrates the efficiency of our
proposed scheme. Section 7 reviews the related works.
In Section 8, we conclude the paper.

2 PRELIMINARIES

In this section, we briefly introduce the preliminaries,
which will be used in this paper.

2.1 Data Attributes and Role Attributes
The data attributes refer to the data in the EHR data
that require to be encrypted. The role attributes refer
to the roles that the users should have in order to
access and decrypt the encrypted data attributes. For
example, if the EHR data contains the social security
number, the liver health data, and the dental health
data, then there are three data attributes in the EHR
data, i.e., the social security number, the liver health
data, and the dental health data. Before we encrypt
these data attributes, we need to specify the role at-
tributes that the accessors should have. For example, if
we specify the social security number can be accessed
by the hospital financial staff, the dental health data
can be accessed by the dentist or the radiologist, and
the liver health data can only be accessed by the
internist, then there are four role attributes here, i.e.,
the hospital financial staff, the dentist, the radiologist,
and the internist.

2.2 Access Policy
The access policy is defined over role attributes. For
example, to ensure fine-grained access control over
data D, the data owner would encrypt D with the fol-
lowing access policy-the accessors should have at least
three role attributes from (a, b, c, d), where (a, b, c, d)
denotes four distinct role attribute. Therefore, the
accessors with less than three role attributes from
(a, b, c, d) cannot decrypt the cipher-text of D.

Linear Secret Sharing Scheme Matrix The Linear
Secret Sharing Scheme matrix (LSSS) [15] is commonly
used to implement the access policy. Specifically, the
LSSS defines its access policy with (M,ρ), where M

is the secret share generating matrix, ρ is a function,
and ρ(i) maps the row Mi to an authorized role
attribute. Assume M has m rows and n columns, to
distribute a secret s among m role attributes, the LSSS
randomly chooses a column vector v = (s, r2, · · · , rn),
and generates the secret share λi = (Mv)i for each
role attribute. Meanwhile, the LSSS has the linear
reconstruction property. Specifically, for any autho-
rized role attribute set γ that satisfies the access
policy (M,ρ), there exists a constant vector w, where∑
ρ(i)∈γ

wi ·Mi = (1, 0, · · · 0). We can reconstruct the se-

cret s with s =
∑

ρ(i)∈γ

wi · λi.

The LSSS matrix is appropriate to implement the
access policy when encrypting data. However, it is
not intuitive to use. To bridge the gap between the
usability and implementation techniques of the access
policy, an alternative way is to denote the access
policy with some intuitive methods(e.g., access tree,
threshold-tree-string) and then transfer the method to
the LSSS matrix when encrypting data.

Threshold-gate Access Tree We denote T as an
access tree with root r, and Tx as T ’s subtree rooted at
node x. Therefore, T can be also denoted with Tr. If a
set of role attributes γ satisfy the access tree Tx, then
we define Tx(γ) = 1. The Tx is computed recursively
as follows, if x is not a leaf node, evaluate all x’s child
node x′, and set Tx(γ) = 1 if and only if at least tx
children of x return 1, where tx is the threshold value
for node x. If x is a leaf node, then Tx(γ) = 1 if and
only if x ∈ γ.

Threshold-tree-string The threshold-gate access
tree can represent the access policy expressively. How-
ever, if not appropriately designed, the access tree
will require abundant storage cost. To meet this chal-
lenge, the threshold-tree-string [16], which denotes
the threshold-gate access tree with a single string, is
proposed.

The threshold-tree-string is composed of many sub-
strings, each sub-string is composed of some role
attributes and a number, where the number means the
threshold number of role attributes an authenticated
accessor should have. Each sub-string corresponds to
a sub-tree in the threshold-gate access tree.

For example, once the access policy is represent-
ed with the threshold-tree-string L = (a, b, c, d, e, 4),
it means that the accessors should have at least 4
role attributes out of the 5-element role attribute set
(a, b, c, d, e). Additionally, the threshold-tree-string L
can also be easily transformed to the LSSS matrix
(M,ρ) [16]. For easy description, we will use these
two conceptions alternatively when regarding to the
access policies.

2.3 Bilinear Map
Let G and G1 denote two cyclic groups with a prime
order p. Let g be the generator of G, and e be the
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Fig. 2: Architecture of the e-healthcare cloud system.

bilinear map e : G × G → G1. The bilinear map e
will have the following three properties: 1) Bilinear:
∀a, b ∈ Z∗

p, e(ga, gb) = e(g, g)ab. 2) Non-degenerate:
e(g, g) ̸= 1. 3) Computable: bilinear map e : G×G →
G1 can be efficiently computed.

2.4 Paillier Encryption
Paillier encryption [17] is a public key cryptosystem
with additive homomorphic properties. Let E(a) de-
note the ciphertext after the Paillier encryption on a,
and D(E(a)) denote the Paillier decryption on E(a).
∀a, b ∈ Zn, we have the following properties:

1) D(E(a) · E(b) mod n2) = a+ b mod n.
2) D(E(a)b mod n2) = a · b mod n.

3 PROBLEM FORMULATION

3.1 System Model
In our system model, four entities are involved, as
shown in Fig. 2: they are the trusted authority, the data
owners, the users, and the cloud. The trusted author-
ity is responsible for user registration and revocation.
The data owners are those who will outsource their
EHR data to the cloud. To guarantee a fine-grained
access control while preserving data privacy, the data
owners encrypt their EHR data before outsourcing. To
access this encrypted EHR data, the data user submits
his role attributes to the cloud. Upon receiving the role
attributes, the cloud retrieves the encrypted data and
returns them to the data user. The data user further
decrypts the ciphertexts, and obtains the authorized
data attributes in the EHR with his role attributes.

3.2 Threat Model
We assume that the trusted authority and data owners
are trusted. However, the cloud is not trusted, we treat
it as ‘curious but honest’ [18], [19], [20], [21], [22].
Specifically, the cloud will follow our protocol, but it
is very curious to deduce sensitive data from the EHR
stored on it. Particularly, the cloud will try to collect
the frequency of role attributes contained in the EHR,
and the access frequency of data attributes in the EHR
data. The cloud will also try to collect other useful

background information to launch the inference at-
tack, so that, he can deduce useful private data from
the EHR data attributes even if they are encrypted. In
this paper, we aim to defend the cloud from launching
such inference attacks. Additionally, the data user can
only access his authorized data attributes in the EHR,
i.e., the data user’s role attributes should satisfy the
access policies of the accessed data attributes.

3.3 Design goals
Fine-gained access control: Data owners should spec-
ify the access policy for each data attribute in the EHR,
so that the data user can only access and decrypt his
authorized data attribute.
Efficiency: The data attributes encryption, decryption,
and role attributes revocation should be executed
efficiently.
Security: The encryption scheme should be secure
under the security model formulated as follows:
Setup: The challenger generates the public keys and
private keys, and sends the public keys to the adver-
sary.
Phase 1: The adversary A queries the private keys for
sets of role attributes S1, S2, · · · , Sq1.
Challenge: A submits two equal length EHR data
D0 and D1 to the challenger. Additionally, A submits
a challenge access policy A∗, such that the queried
S1, S2, · · · , Sq1 do not satisfy A∗. The challenger flips
a coin γ, encrypts Dγ under A∗, and returns the
ciphertext CT ∗ to the adversary A.
Phase 2: Phase 1 is repeated. The only restriction is the
queried sets of attributes Sq1+1, · · · , Sq do not satisfy
A∗.
Guess: A outputs a guess γ′ for γ.

Definition 1. Our scheme is secure if all probabilistic
polynomial time adversaries have at most a negligible
advantage Pr[γ = γ′]− 1/2 in the above game.

Privacy: Our proposed scheme should control the
privacy protection to a specific level. We measure the
privacy disclosure of our scheme by the attacker’s
confidence in the success of an attack [23], [24].

1) ϵ-access-policy-privacy: Given there are n role
attributes contained in the access policy of the EHR
data, and we add n′ noisy role attributes to the access
policy, then the attacker’s confidence in the success of
an attack translates into the probability of finding out
the true positive.

Definition 2. our scheme achieves ϵ-access-policy-privacy,
if and only if for any EHR data Dj with pre-defined priva-
cy degree ϵj , the following inequality holds: P (n′

j |(nj +

n′
j), Â) ≥ ϵj , where Â denotes the attacker’s auxiliary

information.

2) ϵ′-access-pattern-privacy: Given the data user
wants to retrieve n data attributes from the cloud,
and he requests n′ additional data attributes from the
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Fig. 3: A brief overview of the secure constructions

cloud, then the attacker’s confidence in the success of
an attack translates into the probability of finding out
the true positive.

Definition 3. our scheme achieves ϵ′-access-pattern-
privacy, if and only if for any jth request, issued by the
data user with pre-defined privacy degree ϵ′j , the following
inequality holds: P (n′

j |(nj + n′
j), Â

′) ≥ ϵ′j , where Â′

denotes the attacker’s auxiliary information.

4 SECURE CONSTRUCTIONS
In this section, we elaborate on how to achieve the effi-
cient and inference attack-resistant e-healthcare cloud
system with fine-grained access control. Fig. 3 demon-
strates a brief overview of the secure constructions. As
we can see, at the beginning, the data owner conducts
the first-layer encryption on each data attribute in the
EHR with the attribute based encryption algorithms.
Then, to prevent the attacker from knowing the access
policies used in the first-layer encryption, the data
owner conceals these access policy, and conducts the
second-layer encryption. After that, the data owner
outsources the encrypted EHR data, the encrypted
first-layer access policy, and the second-layer access
policy to the cloud. Once the data user wants to
retrieve data stored on the cloud, he submits his role
attributes to the cloud, and the cloud will return the
encrypted first-layer access policy. Upon receiving the
ciphertext of the first-layer access policy, the data user
performs the second-layer decryption, and retrieves
his authorized data attributes from the cloud. With
our design, the data retrieving process preserves the
access pattern privacy. Finally, the data user conducts
the first-layer decryption and obtains the authorized
data attributes in the EHR with his role attributes.
In what follows, we will demonstrate the secure con-
structions step by step.

For easy description hereafter, we introduce the
following definition.

Definition 4. We define the role attribute set of the EHR
data D as A = A1 ∪ A2 · · · ∪ Ad, Tj as the threshold

(4,5)

b c d
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Fig. 4: Example of generating the secret share.

of the access policy (threshold-tree-string) Lj , and Tjk as
the threshold of the kth sub-access policy of Lj , i.e., Ljk,
where Tj = 1+

∑
Ljk∈Lj

(Tjk − 1). If f data attributes’
access policy contains the role attribute x, then we define
f as the frequency of x. We further define the minimum
threshold of the access policies involving x as the minimum
threshold of x, and the corresponding access policy as x’s
minimum access policy.

As shown in Fig. 4, the EHR data has four da-
ta attributes, i.e., (D1, D2, D3, D4), the corresponding
access policies of these data attributes are {L1 =
(a, b, c, d, e, 4),L2 = (a, f, g, 2),L3 = (a, b, g, 3),L4 =
(a, b, c, f, 3)}. The tree shown above is the threshold-
gate access tree, and the following string(e.g., L1 =
(a, b, c, d, e, 4)) is the equivalent threshold-tree-string.
Both the threshold-gate access tree and threshold-
tree-string denotes the access policies of the data
attributes. For example, for the data attribute D1’s
access policy L1 = (a, b, c, d, e, 4), the accessors should
have at least 4 role attributes out of the 5-element role
attribute set (a, b, c, d, e).

Obviously, the role attribute sets corresponding
to (D1, D2, D3, D4) are A1 = (a, b, c, d, e), A2 =
(a, f, g), A3 = (a, b, g), A4 = (a, b, c, f), respectively.
Since the role attribute a occurs in (L1,L2,L3,L4), we
call a’s frequency is 4. Additionally, the thresholds of
(L1,L2,L3,L4) are (T1 = 4, T2 = 2, T3 = 3, T4 = 3),
respectively. Therefore, the minimum threshold for a
is 2, and T2 is a’s minimum access policy.

4.1 Distributing keys and parameters

In our system, the trusted authority (TA) is respon-
sible for distributing keys and parameters. Initial-
ly, TA randomly generates the primary key mk =
(α, β ∈ Zp). Then he sets the public key as pk =
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(gα, e(g, g)αβ). Meanwhile, TA is also responsible for
distributing public parameters for the system. Assume
that the size of the whole role attribute set A is
n, TA randomly chooses n distinct group members:
(ha1, ha2, · · · , han ∈ G), and sets them as public pa-
rameters. Once a user Ui registers with TA, TA will
authorize a role attribute set Ãi to Ui, and generate
the secret key Ĉi1 = gαrigαβ , and public parameters
{Ĉi2 = gri , {Hx = hri

x }∀x∈Ãi
} for Ui, where ri is

randomly chosen from Zp.

4.2 First-layer Encryption

To achieve the fine-grained access control over the
EHR data D, before outsoursing D to the cloud, the
data owner first specifies a specialized role attribute
set Aj , and a corresponding access policy Lj for each
data attribute Dj in D, where j ∈ [1, d]. Then he
encrypts D with our first-layer encryption, which is
formulated in the following three steps.

1. Generate a secret share λx for each role attribute
x in A. Note that, though the attribute x would occur
in the access policies of many data attributes, we
only generate one secret share for x, which not only
conceals the frequency of x, but also saves much com-
putation cost. The secret share generation is achieved
as follows:

1) The data owner adjusts the access policies of
data attributes with the following principle. For
any Lj and Lj′ , either Tj or Tj′ is greater than
|Aj ∩ Aj′ |, where |Aj ∩ Aj′ | denotes the size of
Aj ∩Aj′ .

2) Rank role attributes in descending order based
on their frequencies, and mark their minimum
thresholds.

3) Iteratively generate or compute the secret share
for each role attribute. The principle is described
as follows, for the role attribute x, if the number
of role attributes that have set a secret share
in x’s minimum access policy is less than x’s
minimum threshold, then choose a random val-
ue as x’s secret share. Otherwise, with the role
attributes value in in x’s minimum access policy,
use Lagrange interpolation theorem to deduce
the secret sharing formula, and compute the
secret share for x and other role attributes in x’s
minimum access policy with that formula.

For the example demonstrated in Fig. 4, the process
of generating the secret share is illustrated as follows.
1) we check these access policies with step 1, and find
that no access policy needs to be adjusted. 2) we rank
these role attributes according to their frequencies:
(a, 4; b, 3; c, 2; f, 2; g, 2; d, 1; e, 1), and mark their mini-
mum threshold: (a, 2; b, 3; c, 4; f, 2; g, 2; d, 4; e, 4). 3) we
set the value of a, b, c, d by choosing random numbers,
and use Lagrange interpolation theorem to deduce
the secret sharing formula for D1, D2, D3, D4, and

compute the value of f, g, e with that formula. There-
fore, the sequence of generating the secret share is
(a → b → c → f → g → d → e).

2. For all the distinct role attribute x in the role
attribute set A, generate a random rx for x, and
compute the ciphertext C ′

x = gαλxhrx
x , C ′′

x = grx .
3. Transform Lj to (Mj , ρj) [16], compute the ci-

phertext for each data attribute Dj with the following
three steps.

1) Compute a weight vector w, such that:∑
1≤k≤|M |

wk ·Mk = (1, 0, · · · 0).

2) Compute the secret sj for each data attribute Dj :
sj =

∑
ρj(k)∈Aj

wk · λρj(k).

3) Generate the ciphertext for Dj :
Cj0 = Dj · e(g, g)αβsj , Cj1 = gsj .

Therefore, the ciphertexts of D af-
ter the first-layer encryption are C ={
{C ′

x, C
′′
x}∀x∈A, {Cj0, Cj1}j∈[1,d]

}
.

4.3 Second-layer Encryption
With the first-layer encryption, we can achieve the
efficient and fine-grained access control. However, the
cloud can still launch the inference attack. Specifically,
with some background knowledge, the cloud can
deduce the content of the EHR by observing the role
attributes, access policies, and the access frequency
of data attributes in the EHR. To defend the cloud
against knowing the actual role attributes and access
policies, we propose to merge all the role attributes
and access policies of data attributes in the EHR,
add noise to the merged attributes and access policy,
and encrypt the access policies used in the first-layer
encryption under the noisy and merged access policy.

4.3.1 Merging access policies
To prevent the cloud from knowing the access policy
of each data attribute, we propose loosely merging all
these access policies, so that, if a set of role attributes
satisfy any of the access policies used in the first-
layer encryption, then these attributes also satisfy the
merged access policy.

Given the role attribute set A, and the access
policies (denoted by threshold-tree-strings, the LSSS
access policy can be easily transformed to threshold-
tree-string, and vise verse [16]) of all data attributes,
i.e., {Lj}j∈[1,d], the merging process is achieved in two
phases. In the first phase, we initialize the threshold-
tree-string set L, by adding all these threshold-tree-
strings, i.e., L = {L1,L2, · · · ,Ld}. In the second
phase, we merge all these threshold-tree-strings. The
key idea of merging is illustrated as follows: if two
threshold-tree-strings have common attributes, then
we merge their role attributes, and set their minimum
threshold as the threshold of the merged threshold-
tree-string. The merge process ends when all the role
attributes in L are distinct.
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Fig. 5: Example of merging on a threshold-gate access tree and its equivalent threshold-tree-strings. (a) Access
policies for {D1, D2, D3, D4}; (b) Merged access policy for D; (c) Noisy access policy for D.

Fig. 5 shows an example of merging. For the data
attributes {D1, D2, D3, D4}, their corresponding ac-
cess policies {L1,L2,L3,L4} are illustrated in Fig. 5(a).
The merged access policy L is shown in Fig. 5(b).
As we can see, the EHR data D is composed of
4 data attributes, each attribute has its own access
policy, if they are exposed to the cloud separately, the
cloud would easily deduce their context from the role
attributes of the accessors. By merging them together,
the cloud does not know the relationship between the
role attributes and the data attributes.

4.3.2 Adding noise to the merged access policy

By merging the role attributes and access policies of
all data attributes in an EHR, the cloud does not
know the accurate role attributes or access policy of
a specific data attribute, but he can deduce that these
role attributes are involved in the access policy of the
EHR, therefore, the cloud can still deduce sensitive
information about the data attributes in the EHR.
To solve this problem, we propose adding noise to
the merged role attributes and access policy. In this
way, the cloud does not know whether a specific role
attribute is actually involved in the access policy of
the EHR, or just a noisy attribute.

We can add two types of noise here. The first type
of noise can be any attributes that do not occur in
the attribute set A, therefore we can choose any noise
attributes according to the system requirement, and
randomly distribute them among the threshold-tree-
strings. The second noise can be any threshold-tree-
strings, where role attributes in the threshold-tree-
strings should have no intersection with those in A.
Denote L̃ as the threshold-tree-strings with noisy role
attributes, and (M̃, ρ̃) is transformed from L̃ with the
method proposed in [16], we should ensure that, the
number of columns in M̃ is greater than the number
of role attributes in the original role attribute set A.

Fig. 5(c) shows an example of adding noise to the
merged access policy.

Note that, to achieve the pre-defined ϵ-access-
policy-privacy, for any EHR data Dj with pre-defined
privacy degree ϵj , let nj be the distinct role attributes
used in the first-layer encryption, then the data owner

chooses n′
j noisy role attributes that satisfies n′

j/nj ≥
ϵ′j .

4.3.3 Encryption
The key idea of the second-layer encryption is to
encrypt the access policies used in the first-layer
encryption under the noisy and merged access policy,
so that only the authorized data users can decrypt
them. Here, since the threshold-tree-string L is more
expressive and saves storage cost, instead of encrypt-
ing (M,ρ), we choose to encrypt L. Given the first-
layer access policies: {Lj}j∈[1,d] of D, the second-
layer encryption is formulated with the following four
steps.

1) ∀x ∈ Â, where Â denotes the noisy attribute
set, generate a secret share λx for the attribute
x, choose a random rx, and compute C ′

x =
gαλxhrx

x , C ′′
x = grx .

2) Compute w:
∑

1≤k≤|M̃ |
wk · M̃k = (1, 0, · · · 0).

3) Compute the secret s̃ =
∑

ρ̃(k)∈A∪Â

wk · λρ̃(k).

4) Concatenate all the first-layer access policies:
L = L1||L2|| · · · ||Ld, and encrypt L as L̂ =
L · e(g, g)αβs̃.

After the two-layer encryption, the ci-
phertexts outsourced to the cloud are:{
{C ′

x, C
′′
x}∀x∈A∪Â, {Cj0, Cj1}j∈[1,d], C, L̂

}
, where

C = gs̃. Note that, during the whole process described
above, we do not need to regenerate ciphertext for
the attributes in the original role attribute set A.
Instead, we only need to generate the ciphertext for
the attributes in the noisy role attribute set Â, which
also saves much computation overhead.

4.4 Returning Encrypted Access Policies
Upon receiving a data user’s access request, instead of
returning all the data stored on the cloud and letting
the data user decrypt a huge amount of EHR data,
the cloud needs to filter out the EHR data that do
not match the user’s role attributes, and only return
the encrypted access policies L̂ that match the user’s
role attributes. Assume the user Ui submits his role
attributes Ãi, and parameters {gri , {Hx = hri

x }∀x∈Ãi
}
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to the cloud. If Ui’s role attributes satisfy an EHR’s
second-layer access policy, the cloud will return the
encrypted access policy L̂ of that EHR to Ui. Other-
wise, Ui is regarded as an unauthorized user to all
the data attributes in that EHR, and therefore, the
cloud will refuse to return that EHR data to Ui. Note
that, to save computation cost for Ui, we let the cloud
compute e(g, g)αris̃ on behalf of Ui with the following
equation:∏

ρ̃(k)∈Ãi

(
e(C ′

ρ̃(k), Ĉi2)/e(C
′′
ρ̃(k), Hρ̃(k))

)wk

=
∏

ρ̃(k)∈Ãi

(
e(gαλρ̃(k)h

rρ̃(k)

ρ̃(k) , g
ri)/e(grρ̃(k) , hri

ρ̃(k))
)wk

=
∏

ρ̃(k)∈Ãi

e(g, g)
αriλρ̃(k)wk

= e(g, g)αris̃

(1)
Therefore, if Ui is an authorized user for the EHR, he
will receive L̂, C, and e(g, g)αris̃ from the cloud.

4.5 Second-layer Decryption

When the user Ui receives L̂, C, and e(g, g)αris̃, Ui

computes the decryption key for L̂ with the following
equation:

e(C, Ĉi1)
/
e(g, g)

αris̃

= e(gs̃, gαrigαβ)
/
e(g, g)

αris̃

= e(g, g)αβs̃

(2)

Then Ui decrypts and obtains L = L1||L2|| · · · ||Ld.
According to L, Ui easily knows the data attributes
that he is authorized to access.

4.6 Retrieving Data with Access Pattern Privacy
Preserved

To preserve the access frequency of a specific data
attribute, we propose to design a blind data retrieving
protocol.

Assume the data user Ui has the authorization to
t′ data attributes of an EHR, we denote them as
D′ = {D1, D2, · · · , Dt′}. The blind retrieving method
is achieved in the following three steps.

First, Ui chooses a random public key pki, and pre-
pares t̂ ciphertexts, where t′ ciphertexts are E(pki, 1),
and the other (t̂ − t′) ciphertexts are E(pki, 0). Here
E(·) denotes the homomorphic Paillier encryption.
Due to the its randomness, the encryption of 1 and
0 would be different each time. Note that, to achieve
the pre-defined ϵ′-access-pattern-privacy, for any jth
data retrieving, the data user requests t̂j−t′j additional
data attributes, that satisfies (t̂j − t′j)/t̂j ≥ ϵ′j .

Second, assume the ciphertext of Dj after the first-
layer encryption is Cj = Cj0||Cj1, Ui specifies the
cloud to compute E′

j = E(pki, 1)
Cj for the data

attributes in D′, and compute E′′
j = E(pki, 0)

Cj for

(t̂−t′) data attributes not in D′. Ui would also specify
the cloud to compute E′

j · E′′
j .

Third, the cloud executes the above method and
returns the results.

Since Ui also knows which role attributes are re-
quired for the first-layer decryption after obtaining the
access policies L, Ui would also use the above method
to access the corresponding role attributes data, i.e.,
{C ′

x, C
′′
x}∀x∈Aj .

Now, we give an example to illustrate the above
process. Assume Ui has the privilege of decrypt-
ing D1. He first prepares three ciphertexts E(pki, 1),
E(pki, 0), E(pki, 0). Then Ui specifies the cloud to
compute E′

1 = E(pki, 1)
C1 = E(pki, C1), E′′

2 =
E(pki, 0)

C2 = E(pki, 0), E′′
3 = E(pki, 0)

C3 = E(pki, 0).
Additionally, Ui specifies the cloud to multiply the
three computation results together, i.e., E(pki, C1) ·
E(pki, 0) ·E(pki, 0) = E(pki, C1). After decryption, Ui

obtains C1. As we can see, during the whole process,
the cloud only conducts computation on random ci-
phertexts, and therefore, he does not know which data
attributes are actually returned. Assume D1 needs
{C ′

j1, C
′′
j1, C

′
j2, C

′′
j2} for decryption, Ui will use the

similar method to obtain {C ′
j1, C

′′
j1, C

′
j2, C

′′
j2}.

4.7 First-layer Decryption
After obtaining the ciphertext
Cj0, Cj1, {C ′

x, C
′′
x}∀x∈Aj , the user Ui first converts

Lj to (Mj , ρj), then Ui uses his secret key Ĉi1 and
parameters {Ĉi2, {Hx}∀x∈Ãi

} to decrypt the returned
data attributes in the EHR. The process is formulated
with the following two steps:

First, Ui computes∏
ρi(k)∈Ãi

(
e(C ′

ρi(k), Ĉi2)/e(C
′′
ρi(k),Hρi(k))

)wk

=
∏

ρi(k)∈Ãi

(
e(gαλρi(k)h

rρi(k)

ρi(k)
, gri)/e(grρi(k) , hri

ρi(k)
)
)wk

=
∏

ρi(k)∈Ãi

e(g, g)
αriλρi(k)wk

= e(g, g)αrisj

(3)
Second, Ui decrypts and obtains Dj with the following
equation.

Cj0

/(
e(Cj1, Ĉi1)/e(g, g)

αrisj
)

= Dj · e(g, g)αβsj
/(

e(g, g)
αrisj+αβsj/e(g, g)

αrisj
)

= Dj

(4)

4.8 Revoking Role Attributes
In conventional schemes, when a data owner wants to
revoke several role attributes, say A′, the data owner
needs to update the secret for role attributes in A′, and
re-generate secret shares and ciphertexts for all the
role attributes involved in the affected data attributes.
Different from these schemes, we only need to update
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very few secret shares in the distinct role attribute set
A−A′. Specifically, we need to update the ciphertext
{C ′

x, C
′′
x} for the affected role attributes, {sj , Cj0, Cj1}

for the affected data attributes in the first-layer en-
cryption, and L̂ in the second-layer encryption.

We observe that, when the data attributes share
very few repeated role attributes in an EHR data,
then we only need to update secret shares for very
few role attributes. When the data attributes share
many repeated role attributes in an EHR data, though
we need to update the secret shares for some role
attributes, we can still outperform the conventional
schemes. The fundamental reason is that, even if only
one role attribute needs to be updated, conventional
schemes have to update the secret share for all the
role attributes of all the affected data attributes.

4.9 Extension and Discussion

4.9.1 Achieving Search Functionality

To ensure the search functionality on the EHR data,
we can modify our scheme as follows, assume the
data owner provides the keyword w̃ for an EHR data
D, he encrypts w̃ as Cw̃ = gs̃w̃. Once a user wants
to search w̃, he generates the trapdoor Tw̃ = griw̃,
then the cloud can determine whether D contains
the searched keyword by checking the equality of the
following equation:

e(Cw̃, Ĉi2) = e(g, g)s̃w̃ri = e(Tw̃, C)

4.9.2 Impact of the Frequency of Repeated Role At-
tributes

Conventional attribute-based encryption schemes
would randomly choose a secret for each data at-
tribute, and generate the secret share for the role
attributes in each data attribute. Different from these
schemes, we reverse this process. Specifically, we
first generate the secret share for each distinct role
attribute, and then reconstruct the secret for each
data attribute. This design will benefit our scheme
from two aspects. First, for security concerns, since
we conceal the frequency of these role attributes in
the access policies of data attributes in the EHR, we
can defend the cloud from doing the inference attack.
Second, for efficiency concerns, since different data
attributes will share many role attributes in their ac-
cess policies (the frequency of repeated role attributes
is high), we can save much computation cost for the
expensive exponential operation. Note that, the higher
frequency of the role attributes occur in the EHR, the
more computation cost can be saved. Additionally, we
observe that, these frequently repeated role attributes
would contribute to the reconstruction of secrets for
many data attributes, to enhance the security of our
system, we propose to select a relatively longer secret
key for the more frequently repeated role attributes.

5 SECURITY AND PRIVACY ANALYSIS

In this section, we analyze the security and privacy
of our proposed scheme, and show that the security
and privacy goals have been achieved. We first prove
that the two-layer encryption scheme is secure. For
brief presentation, we reduce our security to the pre-
vious work [25]. Then we analyze the privacy of our
proposed scheme.

5.1 Security Analysis

Theorem 1. If the expressive ciphertext-policy attribute-
based encryption is secure in the security game of [25], then
our two-layer encryption scheme is secure in the security
game defined in Section 3.

Proof: Assume a probabilistic polynomial-time ad-
versary A has a non-negligible advantage ϵ against
our scheme in the security game defined in Section
3. Then we can build a simulator B that plays the
security game in [25] with advantage ϵ/2. The goal of
B is to win the game by interacting with A.
Setup: The challenger C sends the public key PK :
{g, e(g, g)α, ga, h1, · · · , hU} to the simulator B, where
U is the size of the whole role attribute set in the
system. Then B transfers the public key PK to the
adversary A.
Phase 1: A queries the private keys for sets of role
attributes S, B transfers S to C. C returns {K =
gαgat, L = gt, {Kx = ht

x}∀x∈S} to B. B transfers them
to A. Note that, for easy description, we use hx to
denote hid(x), where id(x) denotes the ID of x in the
whole role attribute set.
Challenge: A submits two equal length EHR data
D0 and D1, and an access policy A∗ to B. The re-
striction here is that all the previously queried S do
not satisfy A∗. Then B transfers these data to the
challenger C. C flips a coin µ, encrypts Dµ as: CT ∗

µ =

{C∗ = Dµe(g, g)
αs, C∗∗ = gs, {C∗

x = gaλxh
−r∗x
x , D∗

x =
gr

∗
x}∀x∈A∗}, and sends CT ∗

µ to B. Upon receiving CT ∗
µ ,

B also flips a coin γ, computes CTγ based on CT ∗
µ ,

i.e., CTγ = {Cγ = C∗∗, L̂γ = LγC
∗/Dγ , {Cγj0 =

Dγj(C
∗/Dγ)

rj , Cγj1 = (C∗∗)rj}j∈[1,d], {C ′
x = C∗

x, C
′′
x =

1/D∗
x}∀x∈A∗}, where rj is randomly generated, and

sends CTγ to A.
Phase 2: Phase 1 is repeated. The only restriction is
that the queried sets of attributes S do not satisfy A∗.
Guess: A outputs a guess γ′ for γ. If γ′ = γ, B outputs
µ′ = γ′, otherwise, B outputs µ′ = 1⊕ γ′.

In the case that µ ̸= γ, the adversary A obtains no
information about Dγ , thus, Pr[µ′ = µ|µ ̸= γ] = 1

2 .
In the case that µ = γ, A sees an encryption of Dγ ,

since the adversary advantage is ϵ, therefore, Pr[µ′ =
µ|µ = γ] = 1

2 + ε.
Therefore, the advantage of B in the security game

of [25] is 1
2 Pr[µ

′ = µ|µ ̸= γ] + 1
2 Pr[µ

′ = µ|µ = γ] = ε
2 .
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Fig. 6: Time cost of encryption and decryption.

5.2 Privacy Analysis

Access policy privacy: In our scheme, with the first-
layer encryption, we conceal the data attributes in
the EHR, while with the second-layer encryption, we
conceal the role attributes and access policies used
in the first-layer encryption. Therefore, what exposed
to the attack is the n + n′ role attributes used in
the second-layer encryption. Recall that, for any EHR
data Dj with pre-defined privacy degree ϵj , let nj

be the distinct role attributes used in the first-layer
encryption, the data owner chooses n′

j noisy role
attributes that satisfies n′

j/(nj+n′
j) ≥ ϵj . Therefore, for

any EHR data Dj with pre-defined privacy degree ϵj ,
the attacker cannot have a confidence in the success of
attack higher than ϵj . Therefore, our scheme achieves
the ϵ-access-policy-privacy.

Access Pattern privacy: In our scheme, to preserve
the access pattern(access frequency) of data attributes,
the data user adds n′ additional data attributes in his
request. Additionally, we adopt the Paillier encryption
scheme to encrypt the retrieved data. Due to the ho-
momorphic property of Paillier encryption, during the
whole process of data retrieval, the cloud only con-
ducts homomorphic computation on random Paillier
ciphertexts. Because the Paillier encryption scheme is
semantically secure, the cloud cannot know anything

from the ciphertext of the data attributes during the
retrieving process. Therefore, what exposed to the
attack is the n + n′ data attributes. Recall that, to
achieve the pre-defined ϵ′-access-pattern-privacy, for
any jth data retrieving, let t̂j denote the number
of total requested data attributes, the data user re-
quests t̂j − t′j additional data attributes, that satisfies
(t̂j − t′j)/t̂j ≥ ϵ′j . Therefore, for any jth request, issued
by the data user with pre-defined privacy degree ϵ′j ,
the attacker cannot have a confidence in the success of
attack higher than ϵ′j . Therefore, our scheme achieves
the ϵ′-access-pattern-privacy.

6 PERFORMANCE EVALUATION

6.1 Evaluation Settings
The experiment programs are coded using Python
programming language on a PC with 3.0GHZ Pen-
tium Dual Core CPU and 2GB memory. We adopt
the cryptographic framework and settings proposed
in [26], and implement all necessary routines. We also
make a thorough comparison with the state-of-the-art
TR-MABE [13].

6.2 Evaluation Results
Fig. 6 shows the time cost of encrypting and de-
crypting data attributes in the EHR. We use ENC
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Fig. 7: Time cost of operation.
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and DEC, to denote the encryption and decryption
scheme in our scheme, TRENC and TRDEC, to de-
note the encryption and decryption scheme in [13],
respectively. In Fig. 6(a), we set the EHR involves
60 distinct role attributes, and we add 10 noisy role
attributes in the second-layer encryption. We observe
that, with the number of data attributes increasing,
TRENC increases linearly, while ENC remains con-
stant. Additionally, the more role attributes per data
attribute, the more time is required by TRENC. The
fundamental reason is that, TRENC has to conduct the
exponential operation for all role attributes of all data
attributes, while in ENC, we only need to conduct the
exponential operation for every distinct role attribute.
In Fig. 6(b), we set the EHR involves 100 distinct role

attributes, each data attribute is accompanied with 10
role attributes. We observe that, as the frequency of
repeated role attributes increases, TRENC increases
linearly, while ENC also remains constant. Therefore,
the higher frequency of the repeated role attributes,
the more time is saved by our scheme. In Fig. 6(c),
we set the EHR contains 20 data attributes, and each
data attribute is accompanied with 10 role attributes.
The figure illustrates that, as the number of noisy
role attributes increases, ENC increases slowly, while
TRENC remains the same. Meanwhile, the larger the
total number of role attributes in the EHR, the more
time is required by ENC. The reason is that, ENC
is mainly affected by the number of noisy attributes
and the number of distinct role attributes in the EHR,
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while TRENC is mainly affected by the number of
role attributes of each data attribute, and the number
of data attributes in the EHR. Fig. 6(d) illustrates the
time cost of decryption. As we can see, as the num-
ber of data attributes increases, both schemes spend
more time on decryption. Additionally, the more role
attributes are involved in the access policy of a data
attribute, the more time is required for decryption.

Fig. 7(a) describes the time cost of user registration.
As we can see, the more role attributes and more
users are involved, the more time is required for
registration. Fig. 7(b) shows the time cost of construct-
ing the secret buffer, which is used to preserve the
access pattern of data attributes and role attributes of
the EHR. We observe that, the more data attributes
and role attributes we submit to the cloud, the more
time is spent. Fig. 7(c) illustrates the time cost of
operation on the secret buffers. As we can see, the
more data are provided, the more time is required by
the cloud. Fig. 7(d) shows the time cost of the cloud
spent on computing the secret data for data users.
We observe that, as the number of role attributes
increases, the time increases linearly. When 3000 users
concurrently submit requests, and each user submits
10 role attributes, 93.721s are needed. This relatively
long time further confirms that, instead of computing
these data on the user-side, they should be executed
on the cloud.

Fig. 8 illustrates the time cost for role attributes
revoking. For a better comparison, we use Revoke
and TRrevoke to denote the revoke operation in our
scheme and in [13], respectively. In Fig. 8(a), we set
10 data attributes contain the revoked role attributes,
each data attribute has 10 role attributes, and the EHR
involves 200 role attributes. Fig. 8(a) illustrates that,
as the number of revoked role attributes increases, the
time cost of revoking remains nearly constant for both
schemes. The reason is that, Revoke mainly depends
on the number of distinct role attributes in the whole
role attribute set. When we set that constant, the
time cost would change very slowly. TRrevoke only
depends on the number of affected data attributes,
and the number of role attributes of the affected data
attributes. This is also confirmed in Figs. 8(b) and (c).
As we can see, with the number of the affected data
attribute, and the number of role attributes of the
affected data attributes increase, TRrevoke increases
linearly, while Revoke increases very slowly.

7 RELATED WORK

7.1 Privacy Preserving Electronic Healthcare Sys-
tems
The security and privacy problems in e-healthcare
systems have attracted much interest. Benaloh et al.
[10] proposed an efficient system that enables data
owners to perform searches over their EHR data, and
share partial access rights with other users. To achieve

a data owner-centric access control over EHR in the
multi-owner cloud system, Li et al. [11] proposed to
adopt the multi-authority attribute-based encryption
to encrypt each owner’s EHR. In [12], Sun et al. de-
signed a secure electronic health record system based
on anonymous credentials, a pseudorandom number
generator, and the proof of knowledge. Based on the
noninteractive proof system, Guo et al. proposed a
privacy preserving attribute-based authentication sys-
tem in mobile health networks [27], and a verifiable
and privacy-preserving monitoring scheme for the e-
healthcare cloud system [28]. Zhou et al. [13] further
proposed a white-box traceable and revocable multi-
authority attribute-based encryption (TR-MABE) to
achieve a multilevel privacy preservation for EHR
data.

These works suffer from two main limitations. First,
they only support the ‘black or white’ access control
policy. Second, they suffer from the inference attack.
Different from these works, we seek to design an
inference attack-resistant e-healthcare cloud system
with fine-grained access control.

7.2 Attribute-based Encryption

The Attribute-based Encryption (ABE) was first intro-
duced by Sahai and Waters [29]. In the ABE, a user is
authorized to decrypt a cipher-text only if his role at-
tributes satisfy the corresponding access policy. Goyal
et al. [30] first designed the Key-Policy Attribute-
Based Encryption (KP-ABE), where a ciphertext is la-
beled with a set of role attributes, and the correspond-
ing private key is associated with an access policy. Lat-
er, Bethencourt et al. [31] introduced the Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), where
the private key is associated with role attributes and
the cipher-text is associated with an access policy. In
[25], Waters presented the efficient, expressive, and
secure CP-ABE systems, where they embed a LSSS
matrix into the public parameters.

Since the conventional ABE-based schemes will in-
evitably expose the role attributes and access policies
to the public, they suffer from the inference attack. We
aim to systematically construct a secure and privacy
preserving e-health cloud system, so that it is immune
to the inference attack and runs efficiently.

7.3 Inference Attack

The recent papers [14], [32] focus on the inference
attack against encrypted databases. They demonstrate
that by adopting techniques including frequency anal-
ysis and sorting attack, the inference attack can break
most of existing encrypted databases. In these two
papers, the data is assumed to be numerical, and
encrypted with the property-preserving encryption
schemes(the order preserving encryption, the deter-
ministic encryption, etc.).
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Different from these researches, we aim to protect
the E-Healthcare data with fine-grained access control,
the data can be either numerical or string value. To
achieve this, we devise our own two-layer encryp-
tion scheme, the ciphertext is neither order-preserving
nor deterministic, since we embed randomness there.
Additionally, the inference attack described in our
paper is launched by observing the role attributes,
access policy, and access pattern(access frequency).
With our constructions, we can prevent the attackers
from achieving the inference attacks.

8 CONCLUSION

In this paper, for the first time, we design an inference
attack resistant e-healthcare cloud system with fine-
grained access control. We first propose a two-layer
encryption scheme. In the first-layer encryption, we
propose to define a specialized access policy for each
data attribute in the EHR, generate a secret share for
every distinct role attribute, and reconstruct the secret
to encrypt each data attribute, which ensures a fine-
grained access control, saves much encryption time,
and conceals the frequency of role attributes occur-
ring in the EHR. In the second-layer encryption, we
propose to preserve the privacy of role attributes and
access policies used in the first-layer encryption. Ad-
ditionally, to take full advantage of the cloud server,
we propose to let the cloud execute computationally
intensive works on behalf of the data user without
knowing any sensitive information. To preserve the
access pattern of the data attributes in the EHR, we
construct a blind data retrieving protocol based on
the Paillier encryption. Furthermore, we show that
our scheme can be easily extended to support search
functionality. Finally, we conduct extensive security
analyses and performance evaluations, which confirm
the efficacy and efficiency of our schemes.
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