
Improving Cooperative Trajectory Mapping
Applications with Encounter-based Error Correction

Wei Chang, Jie Wu, and Chiu C. Tan
Department of Computer and Information Sciences

Temple University, Philadelphia, PA 19122
Email: {wei.chang, jiewu, cctan}@temple.edu

Abstract—Cooperative trajectory mapping is an emerging
technique that allows users to create such a map by using
data that is collected from each other’s mobile phones. This
technique has been proposed for many applications, such as
people localization, public transportation tracking, and traffic
monitoring. Unlike the traditional GPS, cooperative trajectory
mapping only requires information about the departure distance
and moving direction from the previously reported position.
This avoids problems like the high energy consumption of GPS
and weak GPS signals in indoor conditions. However, the new
technique also brings about other problems, such as measurement
errors in cooperative trajectory mapping, which is when a
measurement error causes the spatial relations among users
to be wrong. We propose an encounter-based error correction
algorithm to efficiently reduce measurement errors. Extensive
simulation experiments are performed to validate our solutions.

Index Terms—Cooperative trajectory mapping, encounter,
measurement error, mobile phones, relative error.

I. I NTRODUCTION

Maps are useful in helping people navigate through unfamil-
iar places. However, ensuring that the maps remain up-to-date
is a constant challenge. Moreover, electronic maps may not
always be available, which thus motivates researchers to con-
sistently develop more accurate and efficient map construction
techniques. Cooperative trajectory mapping is an emerging
technique for map construction that takes advantage of the
different sensors that are embedded in smartphones to create
maps of users’ trajectories. This type of map is known as a
trajectory map.

Unlike traditional map construction problems, GPS is gen-
erally not used when cooperatively building the map due to
its high energy consumption [1], [2] and the unavailabilityof
GPS signals in certain environments, such as indoors. Instead,
the smartphone’s sensors, like the accelerometer and electronic
compass, are used to collect information like the departure
distance, moving speed, and direction between consecutive
sampling times [1]. This data is then transmitted to a central
depository via a 3G or 4G connection, which, in turn, process-
es the data from multiple users to construct a trajectory map.
This type of map can be used in various applications, such as
traffic monitoring [3], public transportation tracking [4]–[6],
and people localization [2], [7], [8].

An important issue that arises when constructing a trajectory
map is dealing with measurement errors from the sensor
data. In this paper, the measurement error is also known as

(a) the collected data (b) one possible

constructed map

A A

B

B

(c) the other possible

constructed map

B

A
Northward-

westward

group

Southward-

eastward

group

Fig. 1. The effect of a measurement error. There are two groups of users:
one northward and turning westward and the other southward and turning
eastward. Because of the measured noise, the reported trails of users may be
different, as shown in Fig. 1(a). Only based on the collectedtrajectories, the
central server may create two different maps, as shown in Figs. 1(b) and 1(c).

measurement noise, or noise. A slight measurement error can
have a larger impact in the overall map if left uncorrected. For
example, a1◦ error on a compass will result in a difference of
1.74 miles after a user has traveled100 miles. Prior researchers
have also recognized the importance of measurement errors,
but to date, research has only used a simple noise model to
address the problem [1].

We illustrate the impact of error correction in the example
shown in Fig. 1. Suppose that there are two groups of users;
one group of users is moving North and then turning West,
while the other group moves South and then turns East. Users
in each respective group are moving along the same path. In
Fig. 1(a), we use solid arrows to depict each user’s reported
trails. We see that, due to the effects of measurement noise,
there is some variance in the reported trails, even though all
of the users are traveling along the same path. As a result,
the server that is using the collected data can build either the
map shown in Fig. 1(b), or the one depicted in Fig. 1(c). We
cannot simply average the data to build the map since it is
possible that the noise may not follow a normal distribution.
Furthermore, during the process of map building, two spatially
disjointed paths may be falsely reported as a pair of paths
intersecting with each other (false positive), or two joined
paths may be depicted as unrelated (false negative).

In this paper, we propose an encounter-based error can-
cellation algorithm, which can correct measurement errors,
even if every phone has different error properties. By letting
the server periodically check for any inconsistencies between
users’ reported trajectories and their encounters with other

2

users. An example of an inconsistency is when two users do
not report meeting each other but their trajectories suggest
otherwise. Whenever an inconsistency is found, the server
will adjust the reported trajectories accordingly. Furthermore,
our solution will make opportunistic use of any permanent
access points (APs) that a user encounters to improve error
cancellation.

The main contributions of our paper are as follows:
1) we are the first to explore the use of encounter infor-

mation to correct the measurement error in cooperative
trajectory mapping applications;

2) we design a realistic measurement error model that
considers both systematic errors and random noise;

3) we propose an encounter-based error cancellation algo-
rithm that is effective against systematic and random
noise;

4) we validate the effectiveness of our solutions through
extensive simulations. In particular, we focus on the im-
pact of false positive and false negative intersections on
the performance of the traditional shortest path routing
protocol.

The remainder of the paper is organized as follows. In
Section II, we introduce some related work. The system model,
previous solution, and challenges are given in Section III.
In Section IV, we provide the framework of our solution.
Sections V and VI respectively introduce our accessorial
anchor-based error reducing algorithm (AAER) and anchor-
free error reducing algorithm (AFER). The technical details are
presented in Section VII. We have a case study in Section VIII,
which focuses on a routing application: friend locator. Theper-
formance analysis and evaluation are described in Section IX.
We make a conclusion and provide our future research goals
in Section X.

II. RELATED WORK

One of the earliest applications of cooperative trajectory
mapping is a mobile social network-based [9] navigation
system that was proposed by Constandache et al. [1]. Each
user in the mobile social network will periodically report his
trajectory and his encounter information to the server. The
server will use this information to build a set of directionsand
displacements that allows friends to locate each other. Later
work by Constandache et al. [10], and Thiagarajan et al. [2],
[11] also applied a similar idea to other applications. The main
difference of our work is that prior research used a relatively
simple noise model and only considered noise cancellation by
a single user, while we consider a more realistic noise model
that has both systematic errors and random noise. We use
encounter information among multiple users to reduce errors.

In Thiagarajan et al. [12], the authors propose a low-energy
and accurate trajectory mapping approach, and they also
discuss the trade-off between GPS and multi-sensor devices.
However, their work is based on the assumption that the
electronic map is available to use. In our paper, we assume
that the server needs to build the trajectory map from users’
uploaded data, and then users can be localized on this map.

A

B

C

D

encounter

server

Trajectory mappingTrajectory mapping

A D

C

encounter

AP
AP

Fig. 2. System model.

Cooperative trajectory mapping shares similar characteris-
tics with the inertial navigation system (INS) that is used
in submarine navigation [13]–[15]. Both techniques use the
recorded moving distance and direction to determine a loca-
tion, and both are subject to drifting because of the sensors’
noise [16]. INS research has two general approaches to address
this problem. The first approach is to use filtering techniques,
such as the Kalman filter [17], [18] and particle filters [19],
[20], to limit the effects of the measurement noise. The second
approach is to apply noise cancellation methods using GPS,
assisted GPS, or Wi-Fi [7], [8], [21], [22]. A key difference
in our approach is that our technique is more flexible since
we emphasize the related locations of each user rather than
the physical locations. A recent paper [23] also considers the
problem of correcting systematic errors by reducing relative
errors. However, that solution only considers the case of
existing APs, and does not provide solution for AP-free case.

Finally, Priyantha et al. [24] proposed an anchor-free local-
ization (AFL) algorithm to resolve the localization problem in
sensor networks. The goal of [24] is to determine the position
coordinates of every sensor via local node-to-node distance,
even if the physical location of the nodes is unavailable.
However, this solution cannot be used to build a trajectory map
because the positions are static spot locations. In the process
of creating the trajectory map, we consider the trajectories of
moving nodes.

III. B ACKGROUND

A. System Model

A cooperative trajectory mapping system has two basic
components, as shown in Fig. 2.

1) A remote server. The server collects users’ data and
build the trajectory map with that information. The
server also provides additional services based on the
trajectory map, such as friend locator or location routing.

2) User smartphone.All users will report their trails and
encounters to the server. The reported trails are stored
as the displacement and direction between consecutive
samplings. The details about trails and encounters will
be explained later.

Besides these two basic components, our solution can also
take advantage of any AP, such as a WiFi AP, that a user

3

TABLE I
TABLE OF NOTATION

L Reported displacement
k(t) Systematic error in displacement measurement
l Real displacement
N Number of participants in the system
λ Random noise caused by accelerometer
Θ Reported moving direction
θ Real moving direction
∆θ(t) Electronic compass systematic error parameter
δ Random noise caused by compass
T Cycle time for reporting data to the server
xt, yt The coordinates of a user’s position at timet
−→

E Accumulated error
−→

V Adjustment vector

encounters. An AP serves as a fixed location reference, and
the physical location of the AP does not need to be known.
The purpose of the AP is to quickly establish the spatial
relationship among each user’s local movement trails and to
provide an external global reference for noise cancellation.
The AP will periodically broadcast time-stamped beacons, and
when a user receives the beacon, he will record the encounters
and report to the server. Note that the broadcasting of the
beacon is part of the 802.11 standard; thus, any WiFi AP can
be used.

We assume that there areN participants in this system.
Each user’s mobile phone is equipped with an accelerometer,
a compass, a wireless receiver, and an encounter sensor. The
accelerometer and compass are used to determine a user’s
displacement and direction, respectively. The wireless receiver
is used to receive beacons that are transmitted from the AP.
The encounter sensor is used to periodically signal and record
the presence of other users. This can be accomplished by using
a Bluetooth module1 built into the smartphone [1].

A user maintains two lists in his smartphone, amovement
list and anencounter list. The smartphone will periodically
report the two lists to the server via a 3G or 4G connec-
tion [26]. The movement list consists of a displacement series
and the moving direction from the last recorded position.
The encounter list consists of timestamps and user IDs that
denote when the encounter occured. We use mathematical0◦

to represent East and180◦ to represent West. The position of
a user at timet can be computed by:

(
xt
yt

)
=

(
xt−1

yt−1

)
+ L×

(
cos(Θt)
sin(Θt)

)
, (1)

whereL is the reported displacement between two measure-
ments, andΘ is the moving direction. All of the symbols used
in this section can be found in Table. I. Note that the trail of
each user is recorded in his own coordinate system, which is
only relative to the initial (unknown) location of the user [1].

The server will use the two lists from each user to derive
a trajectory map. If each measurement is accurate, the users’

1As mentioned by [1], although there are several Bluetooth-based neighbor
discovery techniques [25], the low detecting rate of short-lived encounters is
a problem. In this paper, we assume that all encounters can bedetected.

(a) One path should be adjusted

A’s real path

A’s noisy path

(b) Two paths should be adjusted

B’s real path

B’s
noisy path

d1

d2

A’s real path

A’s noisy path

B’s real path

B’s noisy path

d3

d2

User A’s encounter-sensor range User A’s encounter-sensor range

Fig. 3. The challenge of making adjustments without the auxiliary informa-
tion. In Fig. 3(a), even if the server knows that user B’s datais accurate, the
server is only given the reported data of A and B, real distance d2, and current
distance of A and B in the map being constructed; thus, correctly adjusting
user A’s path is hard. In a more general case: both users have measurement
errors, as shown in Fig. 3(b).

mutual position information at each time is fully preservedby
the server. We will illustrate an application for this map in
Section VIII.

B. Existing Noise Cancellation Solutions

The general idea behind error cancellation in prior work
is that each user’s noise can be corrected by some physical
references [1]. If a user passes by the AP (the user is in the
communication range of the AP), the server can then compute
the amount of accumulated errors, which causes the trails to
drift; then, the user’s trails can be repositioned. Let the detect-
ed accumulated errorbe

−→
E . The correspondingadjustment

vector, which is generated by the server for error cancellation,
is

−→
V (

−→
V = −

−→
E). If userA encounters userB, who has just

been repositioned with the help of an AP, the trail ofA can
also be corrected since the position ofB is likely to be more
accurate. Consider that the amount of noise is proportionalto
time [1] if each user moves with a constant speed. We can also
proportionally use the instantaneous correcting vector toadjust
the historical trail. For example, lett1 be the previous time for
adjustment; the server detects a new adjustment vector

−→
V (t2)

at t2. Then, the adjustment vector of the position at timet
(t1 < t < t2) is given as:

−→
V (t) =

t− t1
t2 − t1

−→
V (t2). (2)

The solution is inadequate due to the following reasons.
Firstly, only false negative encounters are used in the error
cancellation; false positive encounters are ignored. By incor-
porating both false positive and negative encounters, we can
improve the error cancellation. Secondly, the direction ofthe
adjustment vector used is the same in all of the data. However,
since there is a systematic error of compasses, we should use
rotation to adjust the trajectory, which means the direction
of the adjustment vector should be different. In this paper,
we solve the measurement error problem by using both false
positive and false negative, and we use different adjustment
directions with different data points.

C. Challenges

In order to correct measurement errors, we need to solve
the following three issues.

4

Real path

Reported path

AP

Real path

Reported path

AP

a

b

c

(a) False negative (b) False positive

d

Fig. 4. An example of false negative and false positive when auser encounters
an AP.

Firstly, every user’s accelerometer and compass may exhibit
different error parameters. Without knowing these parameters,
we cannot correct the trails since we cannot determine the
extent of the error of each user. For example, in Fig. 3 (a),
there are two users’ reported trails, and both of them consist of
noise. Suppose that the server can compute the spatial distance
d1 of the reported trails and can obtain the real distanced2
from the reported encounter information; we cannot determine
how much of an adjustment should be made and in which
direction. Even if only one user is inaccurate, without knowing
the identity of the accurate user, a correct adjustment is
still hard, as shown in Fig. 3 (b). Moreover, users’ error
parameters may slightly change with time. Knowing some
error parameters at a given time cannot guarantee that the
problem can also be solved in the future.

Secondly, there are two types of encounter errors which
can be detected, and they should be treated differently.False
positivemeans that two physically disjointed trajectories are
falsely reported as a pair of intersecting trails, whilefalse
negativerepresents the situation where two physically joined
trajectories are depicted as unrelated. Fig. 4 illustratesboth
types of error. In the false negative case, the server can obtain
the real distance between the users (or between a user and an
AP) by the encounter sensors and the false distance between
their reported trails. However, in the false positive case,the
server cannot attain the real distance since the user is out of
the range of the AP.

Lastly, since each user may not move at a constant speed,
there is a special case of the false positive error: two reported
trails have a spatial intersection with no physical encounter.
Considering the speed restriction, two users may pass the
intersection at different time. Hence, in the false positive case,
we should only consider the reported trails which definitely
will have an encounter.

IV. SOLUTION FRAMEWORK

A key feature of our solution is that when two users meet,
each user will independently report their encounter with the
other to the server. Hence, we can use encounter information
to adjust users’ trajectories. Another feature of our solution
is about relative measurement errors: although the absolute
error of devices may be large and hard to detect, the relative
errors can be easily detected by multiple times of physical

encounters. If we relatively adjust users’ trajectories and let the
relative errors of adjusted trajectories be small, the cooperative
trajectory mapping system can work well. In a nutshell, our
method exploits the relative errors and physical encounters of
users, through which different users can interpret the samedata
in the same way. As a result, instead of estimating absolute
error parameters, the relative errors are considered.

We illustrate how the features are used in our solution
by using the following example. Consider userA who is
physically at locationα (locα); however, userA reportslocβ
to the server because of the accumulated noise. Without some
physical reference, we cannot detect the error or measure
the magnitude of the error. However, if another userB, who
encountered withA before, and who has higher measurement
accuracy thanA, comes acrossA, we can determine the
relative error ofA to B, and we can also compute the error’s
magnitude. Since the noise is proportional to time, the server
can further correct the previously reported trails. Based on
our error model, in a long period of time, the systematic error
parameters can be regard as fixed ones since we assume that
they change very slowly according to time. Therefore, when
users encounter each other many times in such period, the
system can estimate their relative errors and further adjust their
trajectories.

Our proposed method consists of three steps to reduce error:

1) at each smartphone, the application will apply the
Kalman filter to eliminate random noise. Considering
that the Kalman filter only requires an individual user’s
historical moving pattern, rather than some global infor-
mation, it is more efficient to apply the Kalman filter
at the user side. After filtering, users will report their
moving trails and encounter information to the central
server;

2) at the server side, the server will first coarsely adjust the
data by previously estimated relative error parameters,
then it will detect any false positive cases and false
negative cases by using the reported data. After that,
the server will slightly adjust the reported locations of
users to eliminate those detected inconsistency; during
the path correction, the server will also make some
hypothesis about the direction of corrections in false
positive conditions. Next, the server will use the new
upcoming encounter to verify and adjust the hypothesis;

3) after correcting each user’s trail, the server will compute
the relative error parameters of each user from multiple
encounters, and it will also refine the estimated parame-
ters based on new adjusted data. When users report their
locations at the next observing time step, the server will
first use the parameters to coarsely adjust the position
and then will make a slight correction.

When there is no AP present, steps (2) and (3) are carried
out by our proposedanchor-free error reducing algorithm
(AFER); when there are APs present, steps (2) and (3) are our
proposedaccessorial anchor-based error reducing algorithm
(AAER).

5

A. Accessorial anchor-based error reducing algorithm
(AAER)

When there are APs present, the chance of encounters
is increased, and the APs can be used as fixed references
for relative error parameter estimation. The procedure of
AAER is shown by Algorithm 1. The details about line2
of Algorithm 1 can be found in Section VII: B. At each time
step, after collecting all of the trails from users, the server
will recursively use a hypothesis-based mass-spring (HBMS)
adjustment algorithm to estimate each user’s real position, as
shown in Algorithm 2. The HBMS algorithm will be discussed
in Section VII: C. In HBMS, the reported position will be
adjusted by different adjustment vectors, which seems likea
position being pushed and pulled by some force. In this paper,
theadjustment force

−→
F represents the adjustment vector being

used during a position adjustment.
There are two types of adjustment force used in our algorith-

m: false positive-caused adjustment force and false negative-
caused adjustment force. Since the adjustment direction in
false positive is uncertain, we use two hypotheses to temporar-
ily store the possible adjustment positions. Later, we use the
encounter information to further adjust the hypotheses andto
eliminate the wrongs.

Algorithm 1 The AAER algorithm
1: for Each sampling timeT do
2: Find of false positive and false negative by mutual

encounter and APs
3: Use HBMS algorithm to adjust the reported trajectories
4: Record the adjusted positions

Algorithm 2 The HBMS algorithm
1: Verify previous direction hypothesis by current encounter
2: Adjust by new false negative and estimated relative errors
3: Set up new false positive direction hypothesis
4: for Each hypothesisdo
5: Compute adjustment force and adjust trajectories
6: if Find a new false positive case from historic datathen
7: Set up new false positive direction hypothesis
8: Update current error parameters

B. Anchor-free error reducing algorithm (AFER)

When there are no APs present, we use AFER to correct
the errors. Consider that if all of the users have exactly the
same error parameters, the cooperative trajectory mapping
system can still be used well even if there are huge errors
when comparing to the real data; if the majority of the users
have same error, we just need to adjust the other users by
changing their data according to the majority of the users.
Hence, our goal is to find out the relative errors among users
by their multiple times of encounters. Since the encounter-
based error parameter may not be very accurate, considering
that the parameters could slightly change, we further use the

adjustment force to refine the estimated error parameters and
to eliminate the inconsistency.

Algorithm 3 The AFER algorithm
1: for Each sampling timeT do
2: Find out false positive and false negative error
3: Use the HBMS algorithm to adjust the reported trajec-

tories
4: Record the adjusted positions

Algorithm 3 depicts AFER. The second line in algorithm 3
will be discussed in Section VII: B. The details of the
HBMS algorithm will be discussed in Section VII: C. The
adjustment’s force still has two types of errors, the false
positive-caused adjustment force and the false negative-caused
adjustment force; they can be computed in the same way
as previously stated. The only difference is that, instead of
using the distance among users and APs, we use the distance
between users. We use error parameters, which were calculated
previously, to make an initial estimation at the beginning of
each time step. If both of the error parameters of two users are
known, the server will use the latest corrected parameter. Then,
we make an error cancellation based on the newly reported
data.

Unlike AAER, we assume that there is at least one error-
free random walker and the identity of this user is known
by the central server. The reason for having this assumption
is that in order to avoid tortuosity of the constructing map
we need to find some physical references. Consider that there
are several users moving in a large region by following some
moving patterns. Without the physical references, it is possible
that the final constructed map is contorted while sub-regions’
maps are relatively accurate.

V. A LGORITHM DETAILS

In order to use AFER and AAER, we first need to determine
the noise model. Then, we will discuss several auxiliary func-
tions. By the end of this section, we will have an additional
discussion.

A. Noise Model

The accelerometer and compass each have their own re-
spective noise model. Table I contains the notations used. We
first consider the accelerometer. There are two types of errors:
the systematic errors and the random errors. The systematic
error is proportional to the moving time or moving distance.
Moreover, the magnitude of the systematic error may change
over time. For example, consider a person walking continu-
ously for a couple of hours. The size of their average step
at the beginning will be different from that towards the end.
We usek(t) to represent a systematic error which may slightly
change over a long period of time. We letλ denote the random
noise, which follows the normal distribution.L represents the
reported displacement, andl is the real displacement.

L = l + k(t)× l + λ (3)

6

 l

K*l

!

L

(a) Sensor error (b) Error change pattern

Fig. 5. Sensor error and the change pattern of its magnitude.The left figure
illustrates the symbols that we used in our noise model; the right figure shows
the change pattern of the error magnitude according to different parameter
values.

The readings from an electronic compass,Θ, can be regard-
ed as the sum of real data (θ), random noise (δ), and systematic
noise (∆θ). This systematic noise may also change with time.

Θ = θ +∆θ(t) + δ (4)

To demonstrate the effect of slightly modified noise, we
temporarily ignore the random noise. Assume thatp = k(t)+

1. The accumulated error
−→
E in a time period can be computed

by:

The amount of
−→
E : |

−→
E | = l×

√
p2 − 2p cos(∆θ) + 1 (5)

The direction ofψ: cos(ψ) =
p cos(∆θ)− 1√

p2 − 2p cos(∆θ) + 1
(6)

Based on our assumption of the noise model, Fig. 5(a), we
use simulations to generate the change pattern of the error
magnitude as shown in Fig. 5(b), when∆θ varies from−π
to π and k changes from−0.2 to 0.2. If one of the noise
parameters is relatively large, both of the errors cannot be
neglected.

The random noise,λ and δ, can be eliminated by letting
each user’s smartphone apply the Kalman filter to process the
data before uploading to the server. This can be accomplished
since the random noise follows the normal distribution, and
the moving pattern of a user can be computed by the user’s
smartphone itself. The Kalman filter is a set of mathematical
equations that provides an efficient computational (recursive)
means for estimating the state of a process in a way that
minimizes the mean of the squared error [27].

B. False Positive and False Negative Error Detection

At each reporting time, the server will obtain users’ reported
relative positions and their distance from nearby users. Inorder
to detect the false negative error, the server needs to compare
two records: the encounter readings and trajectories. From
there, the server derives an error vector (the error’s magnitude
and direction). For the false positive error, the actual distance
between users is unknown (the distance is measured by the
signal strength of bluetooth) since they are not within the

TABLE II
TABLE OF NOTATION FOR AUXILIARY FUNCTIONS

Smax the maximum speed
(xb, yb) / (xe, ye) beginning or end location of a displacement
tb / te beginning or end time of a displacement
d length of a displacement
(x(A, t), y(A, t)) the location of userA at time t

R sensing range

sensor range of each other. We temporarily use the sensor
radius of bluetooth to represent the actual distance.

However, there is a special case when dealing with the
false positive error. If the encounter sampling time is different
from the cycle time when reporting data, then the server
needs to determine whether two spatial encounter trails have
physically encountered each other at some point in time.
However, because the instantaneous velocity of a user may
vary, we should consider all of the possible moving conditions
of a user. In order to simplify the solution, we add a new
dimension time to the traditional X-Y coordinates. Table II
contains the notations that are used in the remaining parts of
this paper.

Given a specific distance, there are multiple ways in which
a user can move. For instance, the user can first move at his
maximum speed to finish the reported displacement and then
stop and wait at the end. Alternatively, the user can also wait
first at the beginning and then move to complete the distance
just on time. Therefore, there are two trajectory boundary
functions:

x− xb
xe − xb

=
y − yb
ye − yb

=
t− (te − d/Smax)

d/Smax

(7)

x− xb
xe − xb

=
y − yb
ye − yb

=
t− tb
d/Smax

(8)

Assuming that we have two users,A andB, both report
one displacement in a time interval fromtb to te. The initial
position of A is (x(A, tb), y(A, tb)), and the end of the
displacement is(x(A, te), y(A, te)). Similarity, we haveB’s
displacement from(x(B, tb), y(B, tb)) to (x(B, te), y(B, te)).
Hence, at a given timet, usersA and B should definitely
encounter with each other if their reported trajectories satisfy
the following formula:

(x(A, t)− x(B, t))2 + (y(A, t)− y(B, t))2 ≤ R2 (9)

After simplification, we can get:

R2(a2 + c2)− (ad− bc)2 ≥ 0 (10)

where,

a =
(x(A, te)− x(A, tb))− (x(B, te)− x(B, tb))

te − tb
(11)

b = −a× tb + x(A, tb)− x(B, tb) (12)

c =
(y(A, te)− y(A, tb))− (y(B, te)− y(B, tb))

te − tb
(13)

d = −c× tb + y(A, tb)− y(B, tb) (14)

7

Hence, a pair of spatial intersected trajectories without any
corresponding encounter record may or may not be the false
positive case. In our solution, the false positive only refers
to the cases, where the reported data indicates definitely
encountered while having no corresponding encounter records.
Clearly, the probability of having a false positive case is much
less than that of having a false negative case.

C. Hypothesis-based Mass-spring Adjustment (HBMS)

The HBMS is used to estimate the optimal positions of
users. HBMS first computes the adjustment force in false
positive and false negative cases, respectively, which will be
discussed in Section VII: C-1. Since the adjustment direction
of false positive is unknown, the HBMS algorithm will make
two hypotheses about the correction’s direction. Then, HBMS
will recursively reposition each user’s position based on the
hypothesis. The details of a recursive reposition can be found
in Section VII: C-2. In order to enhance the efficiency of
HBMS, we first use some error parameter, which has been
computed in previous steps, to make a coarse correction
which will be introduced in Section VII: C-4. Then, we refine
the positions of users based on the detected relative errors.
After finding the optimal position, HBMS will update the
error parameter of users’ trails. Wrong hypotheses will be
eliminated later in Hypothesis Verification, which can be found
in Section VII: C-3.

1) Adjustment Force:assume that there are two users,i
and j, who are neighbors. In the false negative case, by
using reported trails, we can compute the relative distance
d̃ij between users, and we can also obtain the real physical
distancedij through RSSI readings. The adjustment’s force
−→
F−

ij can be calculated as:

−→
F−

ij = −→u × (d̃ij − dij), (15)

where−→u is the unit vector from locationi to j. Since the
trajectories of users are relatively adjusted, the adjustment
forces will be associated with the users, whose trajectories
have not been updated for a long time or have only been
adjusted according to a small portion of users’ data.

In the false positive case, we cannot obtain the real distance
dij or the adjustment direction. As shown in Fig. 6, the
real path can be located at either the same side of the error
path or the other side. Therefore, we need two hypotheses to
respectively store the adjustments.

−→
F+

ij = ±−→u × (R − dij) (16)

The synthesized force of a node in a hypothesis is the sum of
the forces gotten from all of the nodes’ neighbors. We have
to mention that we cannot guarantee the accuracy of the false
positive adjustment; what we do just eliminates some obvious
errors during the process of map construction. Moreover, aswe
have mentioned in Section VII.B, the false positive cases are
much harder to detect than false negative cases; the amount of
false positive-caused adjustment force is much less than that
of false negative. Hence, there are only a few hypotheses.

Real path

(b) Correct adjust direction

Real path

Reported path

AP/User B

(a) False adjust direction

Adjusted path

Adjusted path

Reported path

Adjust vector

Adjust vectorUser A User A
AP/User B

(d) False adjust direction

Real p
ath

Reported path

AP/User B

(c) Correct adjust direction

Adjusted path

Adjusted path

Reported path

Adjust vector

Adjust vector
User A User A

AP/User B

Real p
ath

Fig. 6. The possible adjustments in the false positive case.The server receives
a reported trajectory from user A and detects that the false positive case has
happened. Since the server cannot get any information aboutthe real path
(the error-free path), the server needs to check both adjustment directions.

2) Recursively Reposition:changing one user’s path will
also impact the historic path of other users. In other words,a
false positive adjustment at timet may cause the happening
of another false positive case at some time between last
adjusted time and current time. As a result, the estimated
position adjustment should be accomplished recursively: once
a new false positive been detected in the historic data, new
hypotheses will be generated to eliminate the errors.

3) Hypothesis Verification:the position hypothesis can be
verified by using follow-up encounters with other users. In
AAER, the hypothesis can be checked by using encounters
with other users whose paths were just adjusted or had
encountered an AP. In AFER, if one hypothesis incurs too
many false-encounters at a later time, the hypothesis will be
eliminated. This idea comes from the fact that if all of the
users have the same error in their sensor device, the relative
position relationship may still be correct. Although usingan
AP is not a prerequisite in the HBMS, using APs will allow
us to easily verify a hypothesis and estimate error parameters.
Moreover, in order to reduce the computing complexity, the
hypotheses will be deleted if they can not be verified in a
period of time.

4) Error Parameter Estimation:we can quickly determine
the relative error parameters of users if we can find a group
of n different users who directly encountered each othern
times, which will allow us to generaten linearly independent
equations. This is because the systematic error parameters
change slightly through time. For example, assume that the
central server finds out that usersA andB encountered each
other twice in a period of time, then the relative errors between
them can be estimated. However, since the systematic error
may change with time, the estimated relative error parameter

8

Real path

AP

(b) Guessed path with right encounter

at next time step

Real path

Reported path

AP

(a) Guessed path without right encounter

at next time step

Guess path
1

Guess path 2

Reported path

Adjust vector

Adjust vector

Adj
us

te
d

pa
th

Adj
us

te
d

pa
th

d1d1

d2

d3

Fig. 7. The verification of a hypothesis.

at current time may not be accurate in future. Hence, the
estimated relative error parameters should be updated. There
are two ways to update the parameter: either by multiply
encounters in future, or by the detected inconsistency of future
data, which causes adjustment force.

In order to quickly find the optimal location during the
HBMS, at the beginning of each time step’s adjustment,
we can use the prior estimated relative error parameters to
coarsely adjust the trails in advance. After each time period,
we compute the time interval between the nodes’ (involved
in the false encounter) previous adjustment times and current
times. Then, we calculate the ratio of the adjusted amounts
to the corresponding time interval and update the estimated
parameters. At the next time step, we first use the parameter
to coarsely adjust the trails, and then we apply the HBMS.

D. Historical Error Cancellation

Users may not have any encounters in a period of time.
Also, the reported trajectory in this time period may not be
accurate. Once we know how to adjust the instant position,
the historical positions could also be corrected. We name the
process of applying error cancellation to the historical reported
positions ashistorical error cancellation.

Assume that, at timet, the server finds out an adjustment
vector. The existing solution [1] is to reposition the historical
trails by using a proportioned adjustment vector, which we
have mentioned in the background part of our paper. However,
this adjustment is not true if the compass contains systematic
errors. In Fig. 8, suppose that the systematic error for a
compass isπ/4, which means that moving directly north
should be reported as moving towards north-east. If we use
the existing cancellation algorithm, the adjustment vector in
the middle will be parallel to the instantaneous adjustment
vector, which is incorrect, as shown in Fig. 8(b). We cannot
simply apply the direction of the current adjustment vectorto
users’ historical trajectories.

Our solution is shown in Fig. 8(a). During the adjustment,
the server should first compute the degree of the error angle.
If the time interval between the instantaneous time and the
previous reposition is not too long, all of the points in the
trails should have the same error angle. Therefore, we shrink

Adjustment vector

R
eal trail

R
ep

or
te

d
tra

il

3 /4
3 /4

 /4

x

y

Adjustment

vector

Adjustment

vector

R
eal trail

R
ep

or
te

d
tra

il

3 /4 3 /4

 /4

x

y

Adjustment

vector

(a) (b)

Fig. 8. The historical error cancellation.

or expand the length of each reported displacement and then
rotate the reported trails with the computed error angle. The
details are as follows: suppose that at timet, the server detects
a false negative, and finds out that the real direct distance
from the user’s current location to last adjusted location is
L. However, according to the reported trajectory, this direct
distance isLN . Since the systematic error parameters only
slightly change with time, we can regard them as fixed.
Therefore, the displacement error parameter can be computed
by K = LN

L
− 1. By using this computedK, we first adjust

the length of each displacement, and then we rotate the whole
trajectory from the last adjusted place.

E. Additional Discussion

The adjustment results of false positive and false negative
should hold different weights because the false positive can
only correct the trails partially; the adjustment results of false
negative are much more accurate than those of false positive.
Therefore, one corrected false positive position can be further
adjusted by a new-found false negative. For example,t1 is the
latest time for false negative-based reposition, andt2 (t2 > t1)
is the nearest time for false positive-based adjustment. Ifat
t3 (t3 > t2 > t1) the server detects another false negative
case, the historical trails fromt1 to t3 can be adjusted. Thus,
the server should also store the originally reported positions
if a false positive adjustment was made. The reason that
we still use the case of false positive is that if a certain
application requests the built map at timet2, without applying
the false positive adjustment temporarily, there will be some
false intersections in the map, which will definitely changethe
relative position relationship of the intersection. As a result,
we use false positive for temporary adjustments and use false
negative for permanent repositioning.

VI. ROUTING APPLICATION: FRIEND LOCATOR

We describe a representative application that can make use
of a trajectory map. Friend locator is a typical applicationof
cooperative trajectory mapping: a server periodically collects
users’ trajectories and answers the routing request that helps
one user to find another. The response of the routing consists

9

3A

2 16/B

3

2

1A

B

C 1

B

C
6/A 5/C

3A

2 16/B

3

2

A

B

C

B

C
5/C

9/A

8/C

3/A

3/B

3/B

(a) Normal case trails

(c) Noise case trails

(b) Normal case routing

(d) Noise case routing

Fig. 9. The effect of measurement error during routing. Figs. 9(a) and
9(c) represent the reported trajectories. Figs. 9(b) and 9(c) represent the
corresponding routing graph. The digital stands for the length of a path and
the letter indicates who reported the path.

of the reported trails from several users whose trajectories
have spatial intersections with the others. In detail, the path
information consists of a series of directions and distances
(such as turn right, continue for 10 m, etc.). These directions
are obtained from the reported trails.

The implementation details of the application are as follows.
When user A sends a routing request to the server, the server
first computes the spatial intersections of the users’ trails,
which we term inner routing nodes. The distance between
each pair of inner routing nodes is the length of the path that
the user covered. We term the current position of a user as
the outer routing node, which is linked with one, and only
one, inner routing node. Every edge in the routing graph is
also associated with actual walking trajectories, which consist
of several displacements and turning angles. After gettingthe
spatial intersections of the paths, the server builds a routing
graph. Then, we apply Dijkstra’s shortest path algorithm tothe
graph. After we obtain the shortest path of the routing graph,
the server will return it to the requester.

Algorithm 4 The friend locator algorithm (server side)
1: Compute spatial intersection based on collected trails
2: for Each pair of intersectiondo
3: if The intersections are directly connected by a user’s

trails then
4: Add an edge between the intersections
5: Set the length of the real trail as the weight of the

edge
6: Associate the real trajectory with the edge
7: Apply shortest path algorithm on the routing map
8: Find the real trajectories, which are associated with the

shortest path
9: Return a list consisted of moving directions and displace-

ments

However, the quality of this application is restricted by the
measurement error of the sensor devices. Those error paths

Algorithm 5 The friend locator algorithm (user side)
1: Send a routing request to the server
2: Receive a list consisted of moving direction and displace-

ments
3: for Each tuple of the listdo
4: if User cannot find a corresponding paththen
5: Resend routing request
6: else
7: Move as the list guided
8: if All of tuples in list have been taken but the user does

not arrive the destinationthen
9: Resend routing request

40 60 80 100 120 140 160
0

50

100

150

X direction
Y

 d
ir
e
c
ti
o
n

real trajectory of a user

the reported trajectory

(a) User’s real & reported trails.

−20 0 20 40 60 80 100 120 140 160
−20

0

20

40

60

80

100

120

140

160

X direction

Y
 d

ir
e
c
ti
o
n

(b) Reported trails of10 users.

Fig. 10. An example of simulation used data.

may cause both false positive intersections and false negative
intersections. Fig. 9 shows the effect of the measurement error
on the length of the shortest routine path. We can illustratethis
using the example in Fig. 9. There, we have three users, A,
B, and C. The arrow lines represent the paths of users, and
the triangles between the paths are the spatial intersections.
Fig. 9 (a) is the noise-free example, and Fig. 9 (b) is the
corresponding routing graph. Suppose that user A wanted to
be guided to C. The shortest path is shown as the bold line in
Fig. 9 (b). However, assume that there is an error undetected
in Fig. 9 (c), such that the inner routing node1 is missing. The
shortest path will become Fig. 9 (d) with its distance changed
from 19 to 30.

VII. PERFORMANCEANALYSIS AND EVALUATION

A. Experimental Goals

We use Matlab to perform our simulation experiments. We
are interested in the following questions.

1) The relationship between the length of the observation
time and the accuracy of our algorithm.

2) User density and the accuracy of our algorithm.
3) AP density and the accuracy of our algorithm.
4) The distribution of error parameters and the accuracy of

our proposed detection algorithm.

B. Evaluation Metric

The metric we used to evaluate our algorithm isInaccuracy.
This is computed by using the shortest path algorithm based
on the adjusted trajectories of users. If there is an error inthe
routing, such as returning a non-existing path, the user will

10

first search nearby places: if the user find a similar path as
routine indicated, he will continue following the navigation; if
the user can not find the path, he will send the routine request
again from the last existing intersection. Since the realistic
walking length of the user must be shorter or equal to the real
shortest path, we use the ratio of the additional length to the
shortest length to measure our methods and others. Thus:

Inaccuracy =

∣∣∣∣∣
d̃ij − dij
dij

∣∣∣∣∣ , (17)

whered̃ij represents the total length of the real walking path,
anddij is the length of the real shortest path.

C. Simulation results

We first synthetically generate a15× 15 grid map and set
the distance between neighborhood as10 distance units. Then,
we randomly generate the noise-free moving trajectories of
every user. The speed of each user varies from1 distance unit
per second to10 distance units per second. We convert the
coordinates of trajectories to sensor readings, which consist
of displacement and the moving direction. The shape of noisy
trajectories is shown in Fig. 10. The parameters of the noise
are also generated randomly. The distribution of the parameter
follows normal distribution.

In order to guarantee that the routing request can always be
responded to, we only use the trails which are connected. The
encounter sensors’ sampling times are the same as users’ trail
reporting times. For the consideration of generality, eachdata
point in our simulation is the average result of5 simulations.
The shortest path algorithm used in our simulation is the
Dijkstra algorithm. Consider that if the relative positions of
users are correct, then the spatial intersections of their trails are
correct. In order to show the importance of the correct spatial
encounter, in our method, we use the routing paths, which
are consisted of spatially jointed trajectories. We compare
our results with a modified version of [1]. Note that in
their method the routing path is composed by several users’
trajectories, which are joined only at the physical encounter
places. Moreover, a special pruning algorithm is also used in
[1]. Since the pruning algorithm only affects the computing
speed rather than accuracy of routing, we do not use the
pruning algorithm. For ease discussion, we name the modified
solution as Modified Proportional Error Cancellation (MPEC).

The first tested factor is the length of the observations. We
choose different sample times from200 to 500. Each APs’
sensor range is set as6 distance units, and each encounter’s
sensor range is3. The initial positions of the users are
randomly deployed. Fig. 11 shows our simulation result. We
can see that our AP-free solution is related with observation
time, since as the time growing, there are more physical
encounters happened. However, since the error parameters
change with time, the AP-free solution can not eliminate all
the errors.

The second tested factor is the user density, as shown in
Fig. 12. We test5 to 11 users in the grid map. Although

150 200 250 300 350 400 450 500 550
0.0

0.5

1.0

1.5

In
a

c
c

u
ra

y

Number of observation

Our AP-free solution

Fig. 11. AP-free solution with time.

6 9 12
0

2

4

In
a

c
c

u
ra

c
y

Number of users

 Our AP based solution

MPEC

Fig. 12. User density vs. inaccuracy.

7 14 21
0

2

4

In
a
c
c
u

r
a
c
y

Number of APs

 Our AP based solution

 MPEC

Fig. 13. AP density vs. inaccuracy.

0.03 0.06 0.09
0

2

4

 Our AP based solution

MPEC

In
a

c
c
u

r
a

c
y

Deviation of noise parameter

Fig. 14. Error vs. inaccuracy.

the estimated error parameter can be updated when users
encounter each other, the error of a user at one time may
also be accumulated, which further impacts the quality of the
friend locator application.

AP density is our third consideration. In the grid map, we
randomly deploy5 to 20 APs. Intuitively, if the density of
an AP is large enough, the accuracy of the application will
still be high even if the error parameters may change with
time. Moreover, after encountering an AP, the estimated error
parameter can still be used for corrections in a period of time.
Fig. 13 is our simulation result when the error parameter is
0.08 for displacement error deviation and0.2 for compass.

Our last tested factor is the initial deviation of the error
parameters. During simulation, we first set up an initial error
in the sensors. Then, we let the noise slightly increase or
decrease along with time. The initial amount of errors may
have some significant impact on the spatial encounter-based
routing results, especially the structure of spatial intersections
of the reported trajectories, if they are not corrected in time.
However, since the routing results of MPEC only use physical
encounters, the errors only affect the real walking distance
of users, who follows the previous user’s trajectory. Fig. 14
shows our simulation results.

VIII. C ONCLUSION

In this paper, we consider the problem of accumulative
measurement errors in cooperative trajectory mapping. We use
a realistic noise model and propose an encounter-based error
cancelation algorithm that is effective against measurement
errors. Then, we use extensive simulations to validate our
solution. Our future work will consider some extensions. The
first one is how we can determine a malicious user, who always
reports wrong trails, from the normal user, who has relatively
large amounts of noise. The second extension is about reducing

11

the computing complexity of the HBMS algorithm. Finally, we
plan to build the system on a real platform such that we can
test the following items: the magnitude of the measurement
errors, the impacts of road structures, traveling patterns, and
battery drain on multi-sensors.

ACKNOWLEDGMENT

This research was supported in part by NSF grants ECCS
1128209, CNS 1065444, CCF 1028167, CNS 0948184, CCF
0830289, and REU 1156574.

REFERENCES

[1] I. Constandache, X. Bao, M. Azizyan, and R. Choudhury, “Did you
see Bob?: human localization using mobile phones,” inACM MobiCom,
2010.

[2] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” inIEEE INFOCOM, 2010.

[3] P. Mohan, V. Padmanabhan, and R. Ramjee, “Nericell: richmonitoring of
road and traffic conditions using mobile smartphones,” inACM SenSys,
2008.

[4] A. Repenning and A. Ioannidou, “Mobility agents: guiding and tracking
public transportation users,” inACM AVI, 2006.

[5] J. Froehlich, T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Harri-
son, and J. Landay, “UbiGreen: investigating a mobile tool for tracking
and supporting green transportation habits,” inACM CHI, 2009.

[6] S. Carmien, M. Dawe, G. Fischer, A. Gorman, A. Kintsch, J.Sullivan,
and F. James, “Socio-technical environments supporting people with
cognitive disabilities using public transportation,”ACM TOCHI, 2005.

[7] P. Bahl and V. Padmanabhan, “RADAR: An in-building RF-based user
location and tracking system,” inIEEE INFOCOM, 2000.

[8] Y. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm, “Accuracy charac-
terization for metropolitan-scale Wi-Fi localization,” in ACM MobiSys,
2005.

[9] N. Kayastha, D. Niyato, P. Wang, and E. Hossain, “Applications,
Architectures, and Protocol Design Issues for Mobile Social Networks:
A Survey,” Proceedings of the IEEE, vol. 99, no. 12, pp. 2130 –2158,
dec. 2011.

[10] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “VTrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” inACM SenSys, 2009.

[11] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
transit tracking using smart-phones,” inACM SenSys, 2010.

[12] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, L. Girod
et al., “Accurate, low-energy trajectory mapping for mobile devices,”
ACM NSDI, 2011.

[13] P. Maybeck and G. Siouris, “Stochastic models, estimation, and control,
Volume I,” IEEE Transactions on Systems, Man and Cybernetics, 1980.

[14] J. Farrell and M. Barth,The global positioning system and inertial
navigation. McGraw-Hill Professional, 1999.

[15] D. Titterton and J. Weston,Strapdown inertial navigation technology.
Peter Peregrinus Ltd, 2004.

[16] P. Gilliéron, D. Buchel, I. Spassov, and B. Merminod, “Indoor navigation
performance analysis,” inENC GNSS, 2004.

[17] G. Welch and G. Bishop, “An introduction to the Kalman filter,”
University of North Carolina at Chapel Hill, Chapel Hill, NC, 1995.

[18] R. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of Basic Engineering, 1960.

[19] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,J. Jansson,
R. Karlsson, and P. Nordlund, “Particle filters for positioning, navigation,
and tracking,”IEEE Transactions on Signal Processing, 2002.

[20] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[21] D. Niculescu and B. Nath, “VOR base stations for indoor 802.11
positioning,” in MobiCom, 2004.

[22] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala,
“Pinpoint: An asynchronous time-based location determination system,”
in ACM MobiSys, 2006.

[23] W. Chang, J. Wu, and C. Tan, “Encounter-based noise cancelation for
cooperative trajectory mapping,” inIEEE PerCom, 2012.

[24] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-free
distributed localization in sensor networks,” inACM SenSys, 2003.

[25] Smith, T.J. and Saroiu, S. and Wolman, A., “Bluemonarch: a system for
evaluating bluetooth applications in the wild,” inACM MobiSys, 2009.

[26] F. Fitzek, A. Kopsel, A. Wolisz, M. Krishnam, and M. Reisslein,
“Providing application-level QoS in 3G/4G wireless systems: a com-
prehensive framework based on multirate CDMA,”IEEE Transactions
on Wireless Communications, 2002.

[27] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Chapel
Hill, NC, USA, Tech. Rep., 1995.

