ROBUST WIRELESS DELIVERY OF SCALABLE VIDEOS USING INTER-LAYER NETWORK CODING

Pouya Ostovari and Jie Wu

Computer and Information Sciences Temple University

Center for Networked Computing http://www.cnc.temple.edu

□ Introduction

- Multi-layer video coding
- □ Robustness multi-layer video streaming
- Evaluations
- Conclusions

Introduction

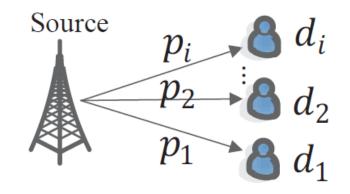
- □ Advances in technology
 - Smartphones and tablets
 - Internet is accessible everywhere
 - Video streaming is used widely and frequently

- □ Video streaming is a dominant form of traffic on the Internet NETFLIX
 - You Tube

- YouTube and Netflix:
 - Produce 20-30% of the web traffic on the Internet.

Introduction

□ A challenge in multicasting


- Different link conditions
- Loss rate, bandwidth

Scalable video coding

 Delivering video stream using different resolutions to satisfy different client needs/constraints

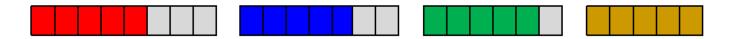
Multi-Layer Coding

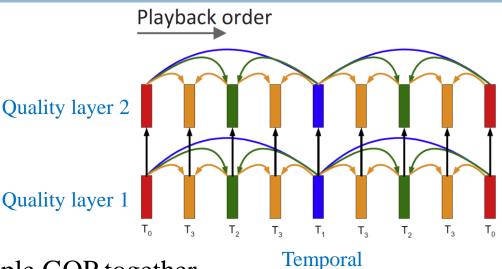
- Base layer
- Enhancement layers

(a) Original

ginal (

(b) Layer 1


(d) Layer 3


(e) Layers 1 & 2 (f

(f) Layers 2 & 3

Multi-Layer Video Streaming

- □ H.264/SVC coded
 - Temporal layers
 - Quality layers
 - Spatio layers
- Unequal error protection
 - Grouping the packets of multiple GOP together
 - Providing different levels of protection for different groups
 - Intra-layer network coding
 - Different heuristics are proposed
 - They focus on measuring the effect of each layer on the video quality

Inter-Layer Coding Strategies

 Random linear network coding (RLNC)

$$\alpha_1 L_1 + \beta_1 L_2 + \gamma_1 L_3$$

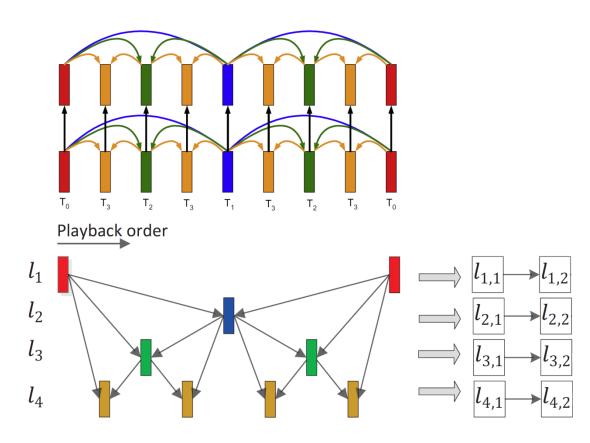
$$\alpha_2 L_1 + \beta_2 L_2 + \gamma_2 L_3$$

$$\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$$

Triangular codingPrefix coding

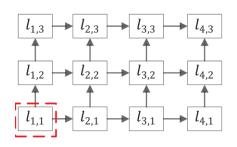
 $\alpha_1 L_1$ $\alpha_2 L_1 + \beta_2 L_2$ $\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$

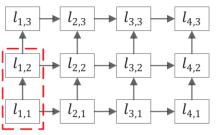
- Packets in lower layers are more important
 - Included in more coded layers
 - More chance to be decoded

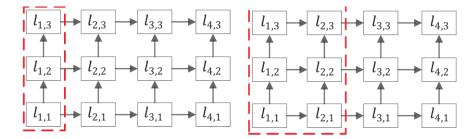

Advantage of Triangular Coding

- □ Coefficients are not shown for simplicity
- □ 6 transmissions in round-robin pattern
 - Blue cells are received

No coding	L1	L2	L3	L1	L2	L3	Unable to decode
Random	L1 +	L1 +	L1 +	L1 +	L1 +	L1 +	Unable to
linear coding	L2+L3	L2 + L3	L2 + L3	L2 + L3	L2 + L3	L2 + L3	decode
Triangular coding	L1	L1 + L2	L1 + L2+L3	L1	L1 + L2	L1 + L2+L3	Decodes 2 layers

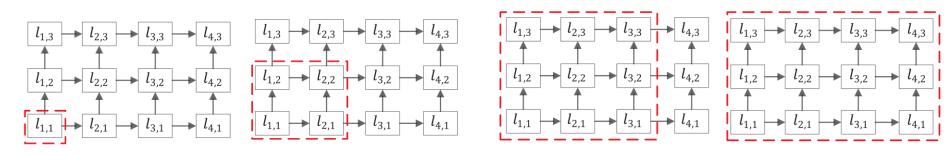

Two-Dimensional Inter-Layer NC


Performing inter-layer triangular NC on quality and temporal layers



Two-Dimensional Inter-Layer NC

Vertical triangular NC



Horizontal triangular NC

Diagonal triangular NC

Transmissions Distribution

- □ Fixed number of transmissions
- 1. Reference table creation
 - Considering all the possible distributions
 - Checking the possible outcomes
 - Calculating the layers that can be decoded
- 2. Searching in the reference table to find the best transmission distribution

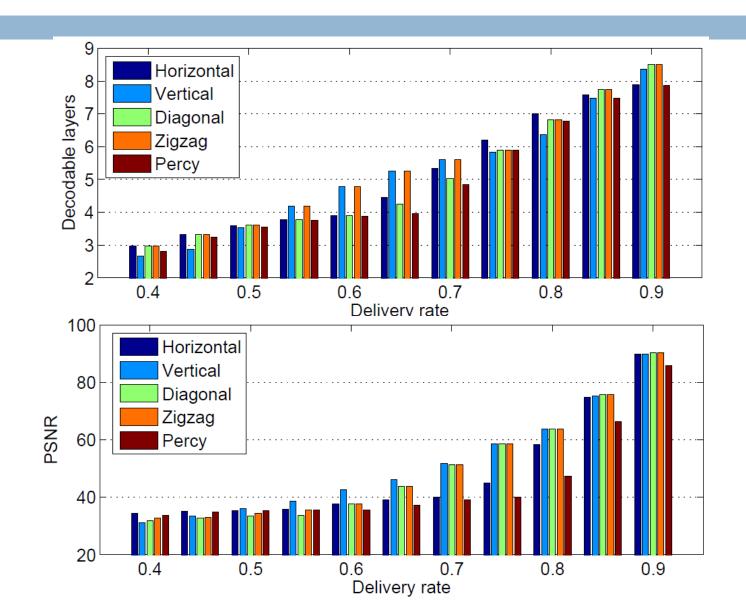
Evaluations- Setting

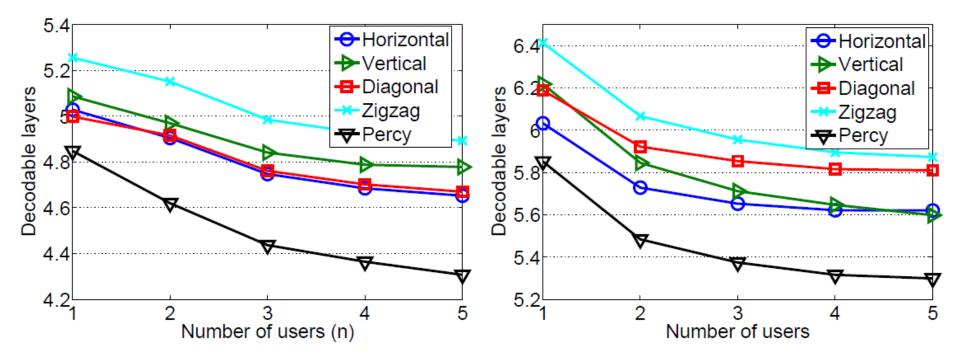
- Comparison with Percy method
 - Is performed among the spatio layers
- □ Bus video trace
 - □ 352×288 pixels, 30 frames
 - 4 temporal layer
 - 3 spatio layers

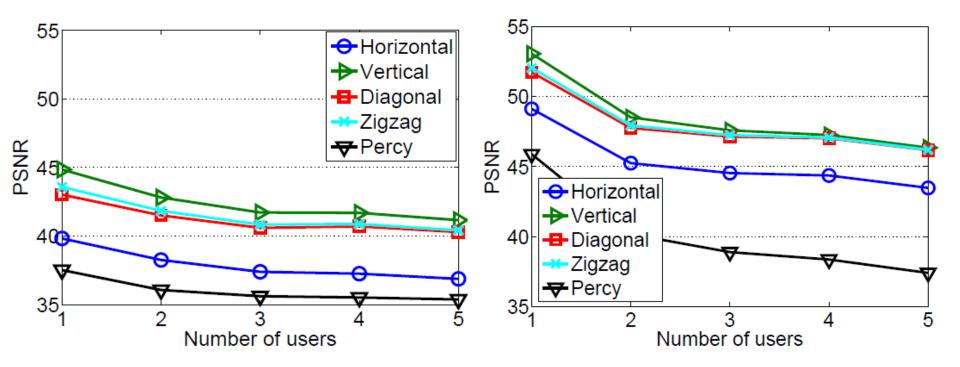
PSNR OF THE DECODED LAYERS

m n	1	2	3	4
1	31.24	32.85	34.30	35.62
2	31.72	34.12	36.97	40.6
3	39.51	49.4	67.11	99

Evaluations-Setting


Original video


Base spatio layer


Evaluations

Evaluations

Evaluations

Conclusions

- Challenges in multicasting
- Dependency in multi-layer videos
- Unequal error protection
- Two-dimensional triangular network coding
- □ Trace-driven evaluation

17

Thank you