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Abstract

The dual-cube is a newly proposed topology for inter-
connection networks, which uses low dimensional hyper-
cubes as building blocks. The primary advantages of the
dual-cube over the hypercube are that, with the same node
degree n, the dual-cube contains 2n�1 times more nodes
than the hypercube and, with the same amount of nodes, the
dual-cube has approximately 50% less links than the hyper-
cube. This paper was focused on the investigations of the
structural self-similarity and the Hamiltonian property of
the dual-cube. It was shown that a dual-cube can be recur-
sively constructed from lower dimensional dual-cubes and,
conversely, a dual-cube can be recursively decomposed into
lower dimensional dual-cubes. It was also proved that all
dual-cubes are Hamiltonian. There exist multiple Hamilto-
nian cycles on a dual-cube, among which, b(n � 1)=2c cy-
cles are edge-disjoint. It was illustrated that rings and lin-
ear arrays can be effectively emulated on dual-cubes. Some
strategies for track sharing in efficient VLSI layout design
were also discussed.

1. Introduction

In the past two decades, a variety of interconnection
networks have been suggested for parallel computing ar-
chitectures, many of which are extensions or variations of
the hypercube [15]. Hypercubes possess many appealing
properties [6, 10, 17], such as regularity, rich connectiv-
ity, high bisection width, logarithmic node degree and di-
ameter, ease to embed other common structures, and effi-
cient routing. Several hypercube-based machines have been
built [1, 18], from Caltech’s Cosmic Cube (1983), Mark
II (1984), and Intel’s iPSC/1 (1985) to more recent Silicon
Graphics’ Origin 2000 (1996) and Origin 3000 (2000). The
Origin 2000 and 3000 series servers utilize the so-called cc-
NUMA (cache coherent non-uniform memory) architecture
to link up multitudes of routers and nodes by emulating a

multidimensional hypercube.
However, a primary disadvantage of the hypercube ar-

chitecture is the cost of increasing size. The number of
nodes 2n in an n-dimensional hypercube grows rapidly as
n increases, making VLSI/WSI implementation difficult for
large systems. To overcome such a shortcoming, many
hypercube-like architectures have been proposed. Among
them, to name a few, there are incomplete hypercubes [8],
reduced hypercubes [22], cube-connected cycles [13], hi-
erarchical cube networks [5], folded hypercubes [4], uni-
directional hypercubes [3], spanning bus connected hyper-
cubes [12], augmented binary hypercubes [9], balanced
hypercubes [21], Fibonacci cubes [7], extended Fibonacci
cubes [20], and enhanced Fibonacci cubes [14].

Recently, Li et al [11] proposed an interconnection net-
work called dual-cubes. An n-dimensional dual-cube is
comprised of 2n (n� 1)-dimensional hypercubes as build-
ing blocks, also referred to as clusters. The clusters are fur-
ther grouped into two classes. Each node in a cluster has
only one external link to a node in another cluster of differ-
ent class.

The dual-cube was found to share many properties of the
hypercube and increase tremendously the total number of
nodes in the systems with a limited node degree. For a fixed
node degree of n, a dual-cube contains nodes as much as
2n�1 times that of a hypercube. Since the integrated cir-
cuit (IC) technology limits the number of links per node,
the effort is very meaningful to increase the total number of
nodes while keeping the node degree small. This apprecia-
ble property motivated the current study on the dual-cube
as a variation and an improvement of the hypercube, which
is still used by the industry in building high performance
supercomputers, such as the most recent SGI Origin 3000
series.

Some basic topological properties of the dual-cube can
be found in [11], such as degree, diameter, cost, average
node distance, and bisection width. This paper is focused on
the dual-cubes structural self-similarity, i.e., recursive con-
struction and decomposition, and embeddability of other
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structures. Some primitive considerations on optimal VLSI
layout design of the dual-cube are also presented.

The rest of the paper is organized as follows: Section 2
introduces a formal definition of the dual-cube and the nota-
tions used. Section 3 investigates topological self-similarity
of the dual-cube. Section 4 studies the Hamiltonian prop-
erty of the dual-cube. Section 5 discusses some consider-
ations on efficient VLSI layout design. Finally, Section 6
concludes the paper and describes some future work.

2. Definition of the dual-cube

The most basic and perhaps the most important property
that the dual-cube inherits from the hypercube is the binary
coding scheme of the nodes, which is beneficial for the im-
plementation of the communication primitives. A node in
an n-dimensional (n � 2) dual-cube, abbreviated as n-dual-
cube and denoted as DCn hereafter, can be expressed as

0 ^ Ci
n ^N j

n

or
1 ^N j

n ^ Ci
n (1 � i; j � 2n�1)

where ^ denotes the concatenation of binary strings. For
simplicity, we will omit the symbol ^ in the following con-
text. In the above notation, the first bit, namely 0 and 1,
represents class ID and Ci

n and N j
n refer to cluster ID and

node ID, respectively.
The set of nodes in DCn can be expressed as

DCn = f0Ci
nN

j
n; 1N

j
nC

i
n; 1 � i; j � 2n�1g

For n = 2, we have C1
2 = 0,C2

2 = 1,N1
2 = 0, and

N2
2 = 1. Thus,

DC2 = f000; 001; 010; 011; 100; 11 0; 101; 111g

Two nodes in DCn are connected if and only if they dif-
fer in exactly one bit and either of the following two condi-
tions is satisfied: (1) The difference occurs in node ID, or
(2) The difference occurs in class ID. Links satisfying the
first condition are intra-cluster ones, whereas those satisfy-
ing the second condition are inter-cluster ones. The 2-dual-
cube is shown in Figure 1.
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Figure 1. A 2-dual-cube, DC2.

We can also see that the nodes connected by intra-cluster
links constitute hypercubes, that is, each cluster in an n-
dual-cube is an (n� 1)-dimensional hypercube, denoted as
HCn�1.

3. Topological self-similarity of the dual-cube

Self-similarity of an interconnection network is desirable
when deriving substructures and designing VLSI/WSI lay-
outs. It is also the basis of some algorithms, such as divide-
and-conquer. An important property of an n-dual-cube is
that it can be constructed recursively from lower dimen-
sional cubes. The set of nodes of DCn (n � 3) can be
written as

DCn =f00Ci
n�10N

i
n�1; 00C

i
n�11N

i
n�1; 01C

i
n�10N

i
n�1;

01Ci
n�11N

i
n�1; 10C

i
n�10N

i
n�1; 10C

i
n�11N

i
n�1;

11Ci
n�10N

i
n�1; 11C

i
n�11N

i
n�1; 1 � i � 2n�1g

with C1
2 = 0,C2

2 = 1, N1
2 = 0, and N2

2 = 1.
For example, DC3=f00000, 00001, 00100, 00101,

00010, 00011, 00110, 00111, 01000, 01001, 01100, 01101,
01010, 01010, 01110, 01111, 10000, 10001, 10100, 10101,
10010, 10011, 10110, 10111, 11000, 11001, 11100, 11101,
11010, 11011, 11110, 11111g.

Separating each cluster into two parts, one with the first
bit of the node ID being 0 and the other with the first bit of
the node ID being 1, an n-dual-cube can be divided into four
subgraphs. An example is given in Figure 2 for the case of
n = 3, in which a subgraph is enclosed by the dotted lines.

Obviously, if we remove the links between the four sub-
graphs and remove the first bits of the cluster ID and the
node ID, we will obtain four identical disjoint (n� 1)-dual-
cubes. This property is summarized in the following propo-
sitions:
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Figure 2. Separation of a DC3 into four sub-
graphs.

Proposition 3.1 Any n-dual-cube (n � 3) can be divided
into four (n� 1)-dual-cubes.

Proof: An n-dual-cube consists of 22n�1 nodes. An
(n � 1)-dual-cube consists of 22n�3 nodes. Obviously, the
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size of an n-dual-cube is four times that of an (n� 1)-dual-
cube. Therefore, we only need to prove that each subgraph
obtained by the process described above is a (n � 1)-dual-
cube. The nodes in an n-dual-cube are labeled by the set of
(2n � 1)-bit binary numbers. By removing the first bit of
the cluster ID, we get two sets of (2n� 2)-bit binary num-
bers. Further removing the first bit of the node ID, we will
get four sets of (2n� 3)-bit binary numbers. Furthermore,
while removing the intra-cluster links between nodes with
distinct first-bit node ID, all the inter-cluster links remain
unchanged. The adjacency of nodes in each subgraph still
satisfies the two linking conditions. Therefore, each of the
subgraph is a (n� 1)-dual-cube. 2

In the above discussion, we give privilege to the first
bits of the cluster ID and the node ID, i.e., we insert one
bit before the first bits of the cluster ID and the node ID
of DCn�1 to construct DCn, and divide DCn into four
DCn�1’s by removing the intra-cluster links between nodes
with identical binary number in the first bit of the node ID.
As a matter of fact, this is not a necessary condition. We
can operate on any bit of the cluster ID or node ID, which
leads to the following two propositions.

Proposition 3.2 There are (n � 1)2 different ways in
which we can construct an n-dual-cube from an (n � 1)-
dual-cube.

Proof: Both the cluster ID and the node ID have n � 1
bits. We can insert one bit in front of the ith bit (1 � i �
n� 1 ) of the cluster ID and the jth bit (1 � i � r � 1 ) of
the node ID of DCn�1, as long as the same rule is followed
in all nodes. Altogether, we have (n � 1) � (n � 1) =
(n � 1)2 different ways. The n-dual-cube constructed this
way is unique. 2

Proposition 3.3 There are n� 1 different ways in which
we can divide an n-dual-cube into four (n� 1)-dual-cubes.

Proof: Each node ID has n � 1 bits. We can remove
the intra-cluster links between nodes with identical ith-bit
(1 � i � n� 1) in the node ID. 2

As an example, another way of separating DC3 is illus-
trated in Figure 3.

4. Hamiltonicity of the dual-cube

The Hamiltonian property is one of the major require-
ments in designing the topology of networks. It enables a
network to embed a ring structure, to implement the pop-
ular and new routing technique of ring routing, and to use
ring-based multicast algorithms. Here we will first prove all
dual-cubes are Hamiltonian and then show how to emulate
rings and linear arrays on the dual-cube.

Theorem 4.1 For any n � 2, a DCn is a Hamiltonian
graph.

Proof: Let fB1; B2; B3; � � � ; B2kg be a sequence of k-bit
Gray codes with k = n� 1 and B1 = 0(k). The superscript
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Figure 3. Separation of a DC3 into four DC2’s.

k in the parenthesis designates k consecutive 0’s. We know
thatB1 andB2k differ in only one bit according to the prop-
erty of the Gray code.

A node in DCn is represented by either 0BiBj or
1BiBj . Without loss of generality, we start from node
0B1B1 to construct a Hamiltonian path inDCn. By the def-
inition of a dual-cube, we can construct the following path:
f0B1B1; 0B1B2; � � � ; 0B1B2k ;
1B1B2k ; 1B2B2k ; � � � ; 1B2kB2k ;
0B2kB2k ; 0B2kB1; � � � ; 0B2kB2k�1;
1B2kB2k�1; 1B1B2k�1; � � � ; 1B2k�1B2k�1;
0B2k�1B2k�1; 0B2k�1B2k ; � � � ; 0B2k�1B2k�2;
1B2k�1B2k�2; 1B2kB2k�2; � � � ; 1B2k�2B2k�2;
� � � ; � � � ; � � � ; � � � ;
0B2k�2B2k�2; 0B2k�2B2k�1; � � � ; 0B2k�2B2k�3;

1B2k�2B2k�3; 1B2k�1B2k�3; � � � ; 1B2k�3B2k�3;
0B2B2; 0B2B3; � � � ; 0B2B1;
1B2B1; 1B3B1; � � � ; 1B1B1g

where links within each row are intra-cluster ones and links
between two rows are inter-cluster ones. It is obvious to see
that the above path traverses every node in DCn and there
is a link between nodes 0B1B1 and 1B1B1. Thus, the path
is a Hamiltonian circle. 2

The Hamiltonian circle in DC3 corresponding to the so-
called binary reflected Gray code f00, 01, 11, 10g is given
as follows: f00000, 00001, 00011, 00010, 10010, 10110,
11110, 11010, 01010, 01000, 01001, 01011, 11011, 10011,
10111, 11111, 01111, 01110, 01100, 01101, 11101, 11001,
10001, 10101, 00101, 00111, 00110, 00100, 10100, 11100,
11000, 10000g

Since there are many different ways to generate the gray
codes, the Hamiltonian circles in DCn are not unique. For
instance, we can construct another Hamiltonian circle in
DC3 based on the Gray code f00, 10, 11, 01g: f00000,
00010, 00011, 00001, 10001, 11001, 11101, 10101, 00101,
00100, 00110, 00111, 10111, 10011, 11011, 11111, 01111,
01101, 01100, 01110, 11110, 10110, 10010, 11010, 01010,
01011, 01001, 01000, 11000, 11100, 10100, 10000g.

For a large system of hundreds of nodes and links, the
possibility exists for the occurrence of faulty links. There-
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fore, it is desirable for applications based on Hamiltonian
cycles to build alternative cycles. Furthermore, if there exist
edge-disjoint Hamiltonian cycles in the dual-cube, the ef-
fectiveness and fault-tolerability will undoubtably improve.

Theorem 4.2 A dual-cubeDCn can be decomposed into
bn�12 c edge-disjoint Hamiltonian cycles.

Proof: We know that each cluster in a dual-cube DCn

is a hypercube HCn�1. It has been shown that there exist
bn2 c edge-disjoint Hamiltonian cycles on a hypercubeHCn

[16]. For example, two edge-disjoint Hamiltonian cycles on
HC4 are illustrated in Figure 4. From the proof of Theorem
5.1, we can observe that the Hamiltonian cycle on a dual-
cube is actually the sequential head-tail interconnection of
the Hamiltonian subcycles on hypercubic clusters. Now, the
claim of theorem 2 becomes obvious. 2

Figure 4. Edge-disjoint decomposition of a
HC4 into two Hamiltonian cycles.

Theorem 4.3 A ring of even length 4 � k � 22n�1 can
be embedded into a DCn, except for the case k = 6 and
n = 3, with dilation, congestion, load all one and expansion
22n�1

k
.

Proof: It is easy to observe that, as in a hypercube, a ring
of odd length cannot be embedded into any dual-cube.

Since each cluster in a DCn is an HCn�1, a ring of even
length 4 � k � 2n�1 (n � 3 ) can be embedded within any
cluster of DCn.

We now prove the case where the embeddings contain
inter-cluster links. According to the definition of a dual-
cube, there are no direct inter-cluster links between nodes
of the same class and there is only one inter-cluster link
between two nodes of different classes. Therefore, we need
at least 4 clusters (2 clusters of class 0 and 2 clusters of class
1) to form a ring. It is then easy to verify the exceptional
case.

A ring of length 2i+2, i = 1; 2; 3; � � � ; n � 1, can be
embedded as follows:

For i < n� 1,

f0B1B1; 0B1B2;
1B1B2; 1B2B2;
...

...
0B2i�1B2i�1 ; 0B2i�1B2i�1+1;
1B2i�1B2i�1+1; 1B2i�1+1B2i�1+1;
0B2i�1+1B2i�1+1; 0B2i�1+1B2i�1 ;
1B2i�1+1B2i�1 ; 1B2i�1+2B2i�1 ;
...

...
0B2i�2B2i�2 ; 0B2i�2B1;
1B2i�2B1; 1B1B1g

For i = n� 1,
f0B1B1; 0B1B2;
1B1B2; 1B2B2;
0B2B2; 0B2B3;
1B2B3; 1B3B3;
...

...
0B2i�1B2i�1; 0B2i�1B2i ;
1B2i�1B2i ; 1B2iB2i ;
0B2iB2i ; 0B2iB1;
1B2iB1; 1B1B1g

where links within each row are intra-cluster ones and links
between two rows are inter-cluster ones.

In the above construction, the ring only traverses one
intra-cluster link of two adjacent nodes. From the topology
of a hypercube, there exist 1 to 2n�1 links between two ad-
jacent nodes. Therefore, by replacing the intra-cluster link
with more intra-cluster links up to 2n � 1, we can expand
the above rings to contain up to 2n+i links. Obviously, the
intervals [2i+2; 2n+i] (i = 1; 2; 3; � � � ; n � 1) contain all
even numbers from 8 to 22n�1.

It is further noticed that, when n � 3, the intervals
[2i+2; 2n+i] (i = 1; 2; 3; � � � ; n � 1) intersect each other,
which implies that the embedding of a ring into DCn is not
unique. 2

Theorem 4.4 A linear array of arbitrary size 1 � k �
22n+1 can be embedded into DCn with dilation, conges-
tion, load all one and expansion 22n�1

k
.

Proof: It is directly implied by Theorem 4.1. 2

5 VLSI layout of the dual-cube

In a wafer scale integration (WSI), all the processors of
a multicomputer are placed on a silicon wafer. They are
arranged in a specific pattern on the wafer surface and are
connected by on-wafer wiring. On-wafers wires are allowed
to run only horizontally and vertically. A track is defined as
a continuous horizontal or vertical line on which wires are
placed without overlapping each other. If all the processors
(nodes) in a multiprocessor system are arranged in an array,
then all the tracks are one-dimensional. To have an efficient
layout, we need to minimize the number of tracks.
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Before discussing the VLSI design for the dual-cube, we
will first investigate the relation between the dual-cube and
the hypercube. As mentioned earlier in Section 2, a cluster
in an n-dual-cube is an (n � 1)-hypercube. Looking into
the structure of a dual-cube in more detail, we can obtain
the following proposition:

Proposition 5.1 A DCn can be embedded into an
HC2n�1.

Proof: A DCn has 22n�1 nodes, each of which is rep-
resented by a (2n � 1)-bit binary number. Two nodes are
adjacent if and only if they differ in exactly one bit in class
ID or node ID. On the other hand, an HC2n�1 has 22n�1

nodes, each of which is also represented by a (2n � 1)-bit
binary number. Two nodes are adjacent if and only if they
differ in one bit. Obviously, a DCn has the same amount
of nodes as an HC2n�1. But the former has fewer links.
Therefore, a DCn can be embedded into an HC2n�1. 2

For a node degree of n, there are a total number of 2n�1n
links in the hypercube and 22(n�1)n links in the dual-
cube. Therefore, with the same number of 22n�1 nodes, the
dual-cube contains 22(n�1)n links, while the hypercube has
22(n�1)(2n� 1) links. The total number of l inks decreases
by nearly 50%. This proposition implies that an efficient
VLSI layout of a DCn will contain much less number of
tracks than that of a hypercubeHC2n�1.

From the proof of Theorem 4.1, we can see that, in a
Hamiltonian cycle of an n-dual-cube, clusters of class 0 and
class 1 are arranged consecutively in an alternating pattern,
which divide the Hamiltonian cycle into 2n sections. Each
section corresponds to a Hamiltonian cycle of an (n � 1)-
hypercube. Intuitively, an efficient arrangement of both the
inter-cluster links in each section and the intra-cluster links
crossing sections will lead to an overall efficient VLSI lay-
out for a dual-cube.

Chen et al. [2] proposed an efficient layout of hyper-
cubes using one-dimensional tracks and calculated the num-
ber of one-dimensional tracks required for a given N -node
hypercube, where N = 2n and n is the dimension of the
hypercube. In their approach, a Hamiltonian path is con-
structed first, where nodes are arranged in a linear order
using the binary reflected Gray code. Then, the N -node
hypercube is divided two N

2 -node subcubes. The addresses
of two connected nodes, one from each of these two sub-
cubes, differ in the most significant bit. In the above se-
quence the first eight nodes belong to one subcube and the
remaining eight nodes are in the other subcube. The number
of tracks required in connecting nodes among two subcubes
is measured by the bisection width of this division, i.e. N

2 .
The above process can be repeated at each N

2 -node subcube
utill all the subcubes are divided into 1-node subcubes. The
total number of tracks required is the sum of the bisection
width at each division. It was shown that the exact number
of tracks used is N � logN .

Later, Wu [19] showed that, for the same layout, the
number of tracks used can be reduced to 2N�1

3 if n is odd
or 2N�2

3 if n is even. The basic idea used in Wu’s approach
is to share wires in bisections 2k � 1 and 2k.

Figure 5 shows an example of wire sharing among con-
nections in bisections 1 and 2 (where k = 1). Because
nodes are arranged in a linear order using the binary re-
flected Gray code, all connections are symmetric with re-
spect to their corresponding bisection lines. It is clear from
Figure 5 that half of the connections in bisection 1 (between
point A and point B in the figure) can share tracks used for
connections in bisection 2. More specifically, one connec-
tion in bisection 1 shares the same track with two connec-
tions in division 2 (see Figure 5). Similar arguments can be
applied to connections in bisections 2k � 1 and 2k.

A B

bisection 1 bisection 2bisection 2

Figure 5. Wire sharing among connections in
bisections 1 and 2.

Theorem 5.1 The number of tracks (T ) for connecting
an array of nodes of a hypercube of size N = 2n is:

T =

�
2N�1

3 n is odd
2N�2

3 n is even

Proof: Based on the above arguments, half of connec-
tions in bisection (division) 2k�1 can share tracks used for
connections in bisection 2k; therefore, T tracks consist of

� 2n�1 � 2n�2 = 2n�2 tracks for bisection 1,

� 2n�2 tracks for bisection 2,

� 2n�3 � 2n�4 = 2n�4 tracks for bisection 3,

� 2n�4 tracks for bisection 4,

�
...

� 2n�(2k�1)� 2n�2k = 2n�2k tracks for bisection 2k�
1,

� 2n�2k tracks for bisection 2k,

�
...

� 20 track for bisection n.
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We have

T = 2n�2 + 2n�2 + 2n�4 + 2n�4 + :::

+22k + 22k + :::

=
2� 2n � 1� (�1)n+1

3

=

�
2N�1

3 n is odd
2N�2

3 n is even 2

Figures 6 and 7 show a layout of a 4-dimensional hyper-
cube where 12 tracks are used using Chen et al.’s approach
and 10 tracks are used using Wu’s approach, respectively.
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Figure 6. Linear layout of a 16-node hyper-
cube using 12 tracks.
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Figure 7. Linear layout of a 16-node hyper-
cube using 10 tracks.

Wu’s approach can also be used in laying out inter-
cluster links in each hypercubic substructure of a dual-cube.
Intra-cluster links can share tracks with each other or with
inter-cluster links. Figure 8 shows a possible track sharing
for the case where the end nodes of two links are adjacent to
each other along the Hamiltonian path. As an example, an
efficient VLSI layout for a 3-dual-cube is illustrated in Fig-
ure 9 where 9 tracks are used. On the other hand, a hyper-
cube of the same number of nodes, 32 in this case, will need
21 tracks based on Theorem 5.1, as shown in Figure 10. It
should be noted that the nodes in the Hamiltonian paths of
the dual-cube and the hypercube are not in the same order.

6. Conclusions and future work

An n-dimensional dual-cube can also be viewed as an in-
complete (2n� 1)-dimensional hypercube with faulty links
between nodes whose binary codes differ in only one bit and

Figure 8. Track sharing among intra-cluster
links and inter-cluster links.

the difference occurs at positions 2 to n if the codes start
with 0 and at positions n + 1 to 2n � 1 if the codes start
with 1. It was shown that the dual-cubes have recurrent
structures. A higher dimensional dual-cube can be recur-
sively constructed from or decomposed into lower dimen-
sional dual-cubes. It was also proved that all dual-cubes
are Hamiltonian. Rings and linear arrays can be embed-
ded into a dual-cube. Compared with the hypercube of the
same node degree n or of the same amount of nodes, the
dual-cube has the appealing property of containing 2n�1

times more nodes or approximately 50% fewer links. Con-
sequently, an efficient VLSI layout of the dual cube has
significantly less number of tracks. All these desirable
topological properties presented in this paper, together with
many others, make the dual-cube a promising interconnec-
tion network for potential application in building large par-
allel computing systems.

Future work on dual-cubes includes the development of
detailed strategy for designing efficient VLSI layout, the
evaluation of the architectural complexity, and the investi-
gation of some application issues in parallel computing.
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