
Data or Index: A Trade-Off in Mobile Delay
Tolerant Networks

Hong Yao†, Han Zhang†, Jie Wu∗, Huanyang Zheng∗, Changkai Zhang†, Deze Zeng†
†School of Computer Science, China University of Geoscience, Wuhan, China
∗Department of Computer and Information Sciences, Temple University, USA

Email: {dr.hyao, sylarjohn, cug09evan, dazzae}@gmail.com, {huanyang.zheng, jiewu}@temple.edu

Abstract—Acquiring content through mobile networks is a
basic and general topic. Mobile nodes have two different ways
of obtaining data. The first method is to download data quickly
through 3G/4G networks, which are expensive. The second way
is to get data from other nodes by means of delay tolerant net-
works (DTN), which are much cheaper, but are time-consuming.
Throwboxes deployed in DTN act as fixed ferry nodes. The index
records the historical encounter information, in order to give
the mobile nodes predictive abilities regarding future encounter
events. We try to compare the effectiveness when we replace
some space for the data to index. We bring forward an index-
based buffer space management mechanism for throwboxes, by
which mobile nodes can have the chance to fetch data at a lower
total cost. Preliminary simulations demonstrate that the buffer
space allocation strategy is affected by some system parameters,
and that replacing some space for data with an index can
lower the system total cost significantly in most cases. Simulation
results also show that the index-based buffer space management
mechanism outperforms other mechanisms which only store data
items or hold an index of static size.

Index Terms—Mobile networks, delay tolerant networks,
throwbox, index.

I. INTRODUCTION

The rapid growth of all kinds of mobile devices (high-
end smart phones, tablets, vehicles equipped with networking
devices, etc.) leads to a mobile data explosion. According
to Cisco forecasts [1], we are now facing the “mobile data
apocalypse”; by 2018, mobile data traffic will increase by
13 times, and will climb to 15 exabytes per month. Mobile
data offloading seems to be the most promising solution at
this moment. On the other hand, a lot of mobile data flows
are not delay-sensitive, e.g., messaging, file transfer, data
dissemination. And, the authors in [2] indicate that delayed
transmissions can achieve substantial gains, especially when
the tolerant deadline is longer than 1h (up to a 29% traffic
gain increase). In [3], the authors further analyze the problem
and give some expressions to choose the optimal deadline. In
this paper, we explore a new way to offload the mobile data
by using DTN as a collaborative entirety.

Delay Tolerant Networks (DTN) [4] performs the so-called
store-carry-forward paradigm to deliver messages in an end-to-
end fashion, although a continuous end-to-end communication
path may never exist between sender and destination devices.
However, since the mobile node has a high node mobility,
a low cache capability, and a limited energy, sharing data

between nodes may not be efficient enough. An alternative
approach is to equip the DTN with dedicated fixed nodes,
called throwboxes [5], and to locate them at some strategic
geographical positions so as to help the mobile nodes in
exchanging data. In other words, throwboxes are stationary
wireless nodes with significantly improved storage and energy
capabilities that simply act as fixed relays. Differ from the
previous delayed-offloading schemes, throwboxes use the data
cached in each mobile node as the data recourses. Once a
data request is received, throwboxes will try to fetch the
data from other mobile nodes instead of downloading it from
the Internet. Traditional offloading strategy and the deadline-
driven mechanism make mobile nodes always try to wait
fetching data from throwboxes until the deadline. Obviously,
the scheme mentioned above could offload the maximum data
traffic. But the disadvantage is quite clear, either. For some
data request which can hardly be fetched before deadline,
mobile nodes also have to wait till the deadline. A lot of
waiting time is unnecessary and wasted.

To address this issue, we bring index into throwboxes.
Index is a table file recording the historical contact infor-
mation between mobile nodes and throwboxes. Throwboxes
can use this knowledge to predict future contact event and
give mobile nodes prediction about whether they can fetch
the data from throwboxes. We notice that the mobility of real
mobile users follows some social characteristics rather than a
random mobility model. Many mobility models [7]-[9] capture
these characteristics from several real traces. This important
discovery proves that the contact event between throwboxes
and mobile nodes is predictable. With the prediction, mobile
nodes can make a wise choice to avoid the meaningless
waiting. However, the added index file shares the limited buffer
with the data. Some data space must be sacrificed for storing
the index file. So, here comes the problem: is it worthy to
add the index file into throwboxes although it may reduce the
hit rate of users fetching data from throwboxes? Our initial
motivation is to find out the effect of replacing some of the
data space with the index file. We define that the total cost
of the data fetching is formed by the time consumption and
transmission cost. And how to balance data space and index
file space, to achieve the minimized total cost, under different
network conditions, is the objective of this work.

In order to quantify the influence that different proportions

1

of data space and index space have on the system, we
build a utility function to make a comprehensive evaluation
about the system performance under different situations. Then,
based on the theoretical analysis, we propose an index-based
buffer allocation mechanism. This allocation mechanism gives
throwboxes the ability to adapt to some different network
environments and to automatically choose the best strategy
to allocate the buffer storage. Thus, it can achieve a better
performance than the existing buffer management mechanism
and some simple approaches that add an index into the buffer.

The key contributions of this paper are summarized as
follows:
• We add an index file to the throwboxes, making throw-

boxes able to not only store data items, but also to
give mobile nodes suggestions about how to fetch the
requested data in a min-cost way.

• We propose a novel future event prediction algorithm.
Differing from the traditional approach, we set the data
contact event as the prediction target instead of the mobile
node’s contact event.

• We present a index-based buffer allocation mechanism to
balance the data file space and index file space to achieve
the minimize total cost.

• We conduct extensive simulations to evaluate the index
based mechanism. The results clearly show that the index-
based buffer allocation mechanism significantly outper-
forms the traditional data-only mechanism.

The remainder of the paper is organized as follows. We
introduce the system model in Section II, and then we in-
troduce the data encounter prediction approach in Section III.
The buffer space allocation mechanism is presented in Section
IV. Simulation results which are presented in Section V prove
our theory. Finally, we review the related work in Section VI
and conclude the paper in Section VII.

II. SYSTEM MODEL

In this section, we introduce the system model, including
network model and delivery model. Before that, let’s see a
typical example of vast throwbox-equipped DTN applications.
When mobile nodes request a data, it will try to get it from
other mobile nodes that carrying the data through throwboxes’
help. The mobile node will wait throwboxes to fetch the data
from other mobile nodes until the deadline of the requested
data. If the requested data wasn’t fetched till deadline, mo-
bile node will fetch it from Internet via cellular networks.
This mode was widely used because it could minimize the
transmission cost. So we consider our system model this way
either.

A. Network Model

We consider a mobile network with a node set N = Nt∪Nn,
where Nt and Nn donate the set of throwboxes and mobile
nodes, respectively. All the mobile nodes independently and
randomly move on a two-dimensional plane. Throwboxes are
distributed on some spots of the plane. We assume that all the
throwboxes are fully connected. All the data stored in both

Cellular Network

Base Station

Location with a

Throwbox

Other Location

Mobile Users

Fig. 1. The network model

mobile nodes and throwboxes form a data set M . Each data
is with equal size and can be completely delivered within one
encounter. Mobile nodes randomly request data i ∈ M . The
data is stored in throwboxes and mobile nodes. Each throwbox
has a limited buffer. We consider all distributed buffers form
into an uniform one, because of they are fully connected. The
size of the big buffer is denoted as B and we define that s
represent the size of the index file, then B − s represents the
size of buffer space stored data.

Mobile nodes have two choices to fetch the requested data,
(i) fetch the data through cellular network with transmission
cost cc at any location; (ii) fetch the data from throwboxes via
Wi-Fi with transmission cost cd, when mobile nodes are in a
location near the throwbox, as shown in Fig. 1.

B. Utility Model

Based on the basic network model, we present the utility
model as follows. Each success data fetching contains a
benefit, denoted by W (t). The benefit decreases linearly as
time t elapses. The initial benefit of a data is denoted by W ,
while the initial benefits of different data are different. The
distribution for the initial benefits of different data follows
the truncated normal distribution, the mean value of which is
denoted by W . Simulations in Section V show that we can
use the mean value of W to estimate the buffer management
strategy. The decreased benefit value within each unit time
interval is defined as the benefit decay coefficient, denoted by
ζ. Formally, the benefit satisfies the following formula:

W (t) = W − t · ζ (1)

The utility is defined as the benefit minus the transmission
cost, denoted by U(t). Let c denote the total cost incurred by
message forwarding until time t, then the utility satisfies:

U(t) = W (t)− c (2)

and (2) can be changed into:

U(t) = W − (tζ + c) (3)

The utility decreases monotonously with respect to the
delay. We define the td, which makes the utility equal zero, is
the deadline of a data fetching. Assume that the total cost of a

2

data fetching including the time consumption and transmission
cost is denoted as: a = tζ + c. Our objective is to maximize
the utility. For each data request, the trade-off between delay
and transmission cost must be considered, which will guide
the node to make a proper choice to fetch the data. To do
so, we apply a buffer space allocation algorithm and a novel
data contact prediction algorithm on the throwboxes, which
are presented in following sections.

C. Delivery Model

A mobile node generates different data requests, each re-
quest with the deadline td. Once a data request is generated,
according to the comparison of deadline and estimated en-
counter time, mobile nodes now need to decide whether to
fetch the data in the cellular network. If the deadline is too
short to encounter a throwbox before the deadline, fetching
the data via cellular network will be a good choice. Otherwise,
mobile nodes can choose to wait and fetch the data via DTN.
If so, they will send the request to a throwbox when they
enter the communication range of the throwbox. Depending on
whether the throwbox stores the requested data or not, there
are two different modes for the mobile nodes to get the data
from throwbox:

1) Direct Mode: If any throwbox holds the requested data,
the mobile node will be replied with the requested data
immediately.

2) Indirect Mode: Otherwise, the throwbox replies an esti-
mation about how long it will take to get the requested data
from DTN, and the probability. Then, the node can make a
decision whether to fetch the data via cellular network right
now. If the mobile node chooses to fetch the data via throwbox,
the throwbox then disseminates a data fetching command to
all throwboxes. Then, the throwboxes encounter a mobile node
with the requested data will hold the data. After throwboxes
hold the requested data, the mobile node can get the data
later, when it will encounter a throwbox next time. If the
estimation is longer than the deadline, mobile node can choose
to download the data from remote center via cellular networks
immediately, avoiding the meaningless waiting.

The estimations replied by the throwboxes are calculated
based on the data contact prediction, which give mobile nodes
suggestions to make a proper choice to get the requested data.
To get the data in a lower price, and in a waiting time not too
long. We will present the details of data contact prediction in
the next section.

III. DATA CONTACT PREDICTION

In this section, we introduce the data contact prediction
algorithm. Differ from other contact prediction schemes, we
take the contact between a data item and the throwboxes
as the major prediction object. The data contact prediction
algorithm only pays attention on when and which data contact
the throwboxes and it doesnt need to know which mobile user
carried what data. The reason why we record data contact
events rather than node contact events is that the key point
which mobile users care about is fetching the requested data

TABLE I
CONTACT HISTORY RECORDS

Data Items Contact Times
1st 2nd · · · kth

Data 1 t11 t12 · · · t1k
Data 2 t21 t22 · · · t2k
· · · · · · · · · · · · · · ·

Data i ti1 ti2 · · · tik
· · · · · · · · · · · · · · ·

Data M tM1 tM2 · · · tMk

t1 t2 t3 …… tk-1 tk tk+1

T1 T2 Tk-1 Tk

Fig. 2. Data contact timeline

before the deadline, they dont care where the data is. Due to
this characteristic, the data contact pattern is not only affected
by the mobile nodes mobility pattern but also affected by other
elements such as data distribution and so on. Thus, traditional
future contact prediction algorithms dont suit this well and
we will give our solution below. The data contact prediction
includes two parts: history record collecting and future contact
prediction.

A. History Records Collecting

When a mobile node carrying data item i contacts with a
throwbox, we consider this contact event as a data contact
of item i. Throwboxes will record the name of the data and
the current time. If the mobile node has two or more data
items, Throwboxes will record the information of all data.
Then throwboxes use these records to build a data contact
table. The data contact table is stored as an index file in the
big buffer. The time span between any two neighboring time
spot is the off-line time. Table I gives an example. Then, the
time span in contact table can be used as input to predict the
time of the next data contact. Using the time stamp in the
contact table as input, throwboxes can predict the time of the
next data contact as below.

B. Future Contact Prediction

We introduce a novel algorithm to predict future data
contact: time-window based predict algorithm. Fig. 2 shows
an example about one data item’s contact timeline (a row in
the data contact table), where the time spot is denoted as t
and tk represents the time spot of the kth data contact. The
off-line time is denoted as T . Time-window based prediction
uses the former k − 1 off-line times to predict the kth off-
line time Tk. J = {T1, T2, ..., Ti, ..., Tk−1} represents the set
of one data item’s off-line time from the first data contact
to the kth. We consider the maximum off-line time in set J
is TMax, TMax > ∀Ti ∈ J and we take ∆t as the minimum
decrease meta, where ∆t = TMax

k .Then we use ∆t to build an
arithmetic progression K = {∆t, 2∆t, ..., i∆t, ..., k∆t}.Every
item in K is a candidate predicted off-line time. By comparing

3

the candidate predicted off-line time with every historical off-
line time, we can find a most reliable value. (4) uses these
candidates of K as an input to calculate the reliability R(i∆t)
of each candidate predicted off-line time:

R(i∆t) =

∑k
j=1 aj

k
, aj =

{
0 i∆t ≤ Tj
1 i∆t > Tj

, i ∈ [1, k] (4)

where aj is an indicator and equals to 1 only when the
candidate is larger than the off-line time Tj .Then we compare
R(i∆t) with a threshold Rth, and take the minimum R(i∆t)
of all R(i∆t)s that larger than the threshold as Rm:

Rmin = min{R(i∆t)|R(i∆t) > Rth}, i ∈ [1, k] (5)

The threshold Rth can be used to control the preferred
R(i∆t), we take the Rth = 0.5 here. Under this setting, the
calculated i∆t is close to the median value of all the off-line
time Ti. We take the i∆t whose reliability is Rmin as the final
predicted off-line time PTk:

PTk = {i∆t|R(i∆t) = Rmin} (6)

In reality, the data encounter frequency can change
dynamically because the mobile nodes don’t hold the data
items all the time, the total copies of one data item is
not static. To quickly adapt to such dynamic factors, we
improve the basic method by a time-window technique.
Its principle is to segment the whole timeline into a
series of smaller time windows and to place the highest
emphasis on the most recent records while gradually
decreasing the emphasis on the preceding ones. Suppose
the timeline was divided into s time windows, and the set
of the data items’ off-line time also was divided into small
sets:{T1, T2, ..., T k

s
},{T k

s+1, T k
s+2, ..., T (m+1)k

s
},...,{T (s−1)k

s +1

, T (s−1)k
s +2

, ..., Tk}, and the accuracy calculated of the mth
time window is expressed as:

Rm(i∆t) =

∑ (m+1)k
s

j=mk
s +1

aj

k
, aj =

{
0 i∆t ≤ Tj
1 i∆t > Tj

(7)

Now, (4) can be improved and expressed as a weighted
average of Rm(i∆t) over s time windows:

R(i∆t) = ω1R1(i∆t) + ω2R2(i∆t) + ...+ ωsRs(i∆t)

=

s∑
m=1

ωmRm(i∆t) (8)

where ωm is the weight of the time window. Different weight-
selection methods (e.g., linearly or exponentially decreasing
weights) would discard the history data at different rate. Here,
we simply give the mth time window the weight of:

ωm =
m∑s
i=1 i

(9)

Lots of prediction algorithms’ accuracy rate grows extreme-
ly slow after they have enough historical records, which means
there is a convergence state. Through test and analysis, we
find that the convergence accuracy of the time-window based

tr tdt1 t2

Case 1

Case 2

Case 3

Case 4

Case 5

Fig. 3. Data fetching timeline

TABLE II
SYSTEM PARAMETERS

parameters explanation
cc transmission cost of cellular network
cd transmission cost of DTN
tr the time of users generate a data request
t1 the time of users meet a throwbox for the first time
t2 the time of users fetch a data from throwbox
td the deadline of a data request

prediction is 80% and the convergence size of the index is 40
(more details will be shown in section V). So we define the
index file that only record one data item’s 40 latest contact
information as the data index meta, suppose the size of data
index meta is k, then the size of the index file stored all data’s
index is Mk.

IV. BUFFER SPACE ALLOCATION

Helping mobile nodes downloading data via DTN can
reduce the total transmission cost. On the other hand, a
complete data historical record means a large index file.
Because of the limited buffer size, a large index file means less
space to store data item. In order to achieve a better system
performance, an efficient buffer space allocation strategy is
needed imminently to consider the trade-off. In this section,
we use the total cost utility function introduced in Section II
to make a comprehensive evaluation about the system total
cost under different situations. Then we propose a buffer
space allocation mechanism to manage the buffer space in
throwboxes.

A. Data Fetching Process

Complete process of one success data fetching is shown in
Fig. 3. All the parameters are listed in Table II. Based on
the network and delivery model, a complete process of data
fetching could be any one of the following five situations:
• Case 1: Due to some reasons (traffic jam, too short dead-

line, etc.), mobile node couldn’t encounter any throwbox
before the deadline, which means its impossible to fetch
the data via DTN. Under this circumstance, spending time
to wait is meaningless. The best choice is to download
the data via cellular networks immediately. So, the total
cost in this case is A1 = trζ + cc.

• Case 2: If mobile node chooses not to fetch the data via
cellular networks at tr, then encounter a throwbox before
the request deadline at t1. Once the throwbox’s buffer

4

stores the requested data, mobile node can complete this
transmission by downloading it from the throwbox. So,
the total cost in this case is A2 = t1ζ + cd.

• Case 3: If mobile node meets a throwbox at t1 but
the throwbox doesn’t have the data. Then, throwbox
will reply a time prediction which is t2, and let mobile
node to choose waiting for throwboxes to fetch it, or
fetching it via cellular networks immediately. If mobile
node chooses not to wait, then the total cost of this data
fetching is A3 = t1ζ + cc.

• Case 4: After meeting the throwbox for the first time, the
mobile node could wait and continue moving. At time
t2, mobile node fetches the data via DTN from another
throwbox in indirect mode successfully. Then, the total
cost is A4 = t2ζ + cd.

• Case 5: Similar to case 4, mobile node chooses to wait
to fetch the data in indirect mode. However, a wrong
time prediction make it could’t fetch the data via DTN
before the deadline. Mobile node has to fetch the data
via cellular networks at deadline td with the total cost
A5 = tdζ + cc.

B. Utility Function Optimization

By analysing the data fetching progress, we present the
optimal size of the index file to achieve the maximum utility.

Theorem 1: Let s denote the size of the buffer space that
stores the index, then its optimal configuration s, can be solved
to maximize the data utility.

Proof: To a request of data i, the utility is the remaining
benefit when the transmission is finished. Thus, the system
total benefit of m success data fetching for a certain time can
be presented as:

Utotal =

m∑
j=1

(Wj − aj) (10)

where j represents the jth data fetching. Since mobile nodes
request the data randomly, the access probability of each data
i ∈M is equal. Due to the distribution for the initial benefits
of different data follows the truncated normal distribution with
a mean value W , the sum of m success data fetching’s initial
benefits can be calculated as

∑m
j=1Wj = m ·W . Then (4)

can be changed into:

Utotal = m ·W −
m∑
j=1

aj (11)

So, our objective can be converted to minimizing the total
cost

∑m
j=1 aj . Based on the five data fetching cases, the total

cost of one success fetching process a random data i can be
presented as:

ai = P0A1 + (1− P0)(P1A2 + (1− P1)Ax) (12)

where P0 is the probability that the data request deadline
comes before mobile nodes encountering a throwbox, and P1

is the probability that requested data is existing in the buffer

of throwboxes. If requested data is not in the data buffer, then
the cost Ax can be presented as:

Ax = P2Ay + (1− P2)A3 (13)

where P2 is the probability that the requested data is existing
in the index file of throwboxes, in other words, a predicted ti
can be delivered. Ay is the cost after the predicted ti is given
and Ay can be presented as:

Ay = P3(P4A3 + (1− P4)A4) + (1− P3)A5 (14)

where P3 is the accuracy of the predicted off-line time and P4

is the probability that predicted data contact delay is within the
request deadline. Simultaneously considering (12) (13) (14),
the average total cost of one successful data downloading can
be presented as:

ai =P0A1 + (1− P0)(P1A2 + (1− P1){P2{P3(P4A3

+ (1− P4)A4) + (1− P3)A5}+ (1− P2)A3})
(15)

In order to calculate the time cost and transmission cost
synthetically, we transform all the cost into the form of cd.
Suppose that:{

tr = m1cd, t1 = m2cd, t2 = m3cd, td = m4cd

cc = m0cd
(16)

where m0, ...,m4 are controllable parameters, by changing the
value of m0, ...,m4, the system can modify the weight of time
and transmission cost in the total cost and adapt the delay-
sensitive or the transmission-cost-sensitive environment. Then,
we can get:

A1 = m0cd

A2 = (m2 + 1)cd

A3 = (m2 +m0)cd

A4 = (m3 + 1)cd

A5 = (m4 +m0)cd

(17)

Simultaneous (15) and (17), we can change the problem into
calculating the minimized coefficient of cd. The size of data
index meta is k (as we explained in Section III) and suppose
the size of the index buffer space are denoted as s. So, P1 and
P2 can be presented as:

P1 =
B − s
M

,P2 =
s

Mk
, s ∈ (0, s∗) (18)

where s∗ represents the maximum storage space that index can
use, and s∗ = min{B − 1,Mk} ensures that there is at least
one space to store the data item. P0, P3 and P4 are known
constant. Suppose that F (s) represents the coefficient function
of (15):

F (s) =
ai
cd

(19)

Then after merging similar terms, F (s) can be presented as:

F (s) = αs2 + βs+ γ (20)

5

1
*

2
s *s0

2

2

0s

*s s
2

s

case 2: 0
2

case 1: 0 *
2

s

 case 3: s*

2

Fig. 4. Different optimal s when α ≥ 0

1
*

2
s *s0

2

2

1
case 1: *

2 2
s

1
case 2: *

2 2
s

0s *s s

Fig. 5. Different optimal s when α < 0

where α, β, γ are formed by parameters B, M , k, P0, P3, P4,
m0, m1, m2, m3, m4. The derivative of F (s) can be presented
as:

F ′(s) = 2αs+ β (21)

So, when α ≥ 0, F (s) achieve the minimum if:

s = − β

2α
(22)

so we can know that the optimal s satisfies:

s =

− β

2α , 0 < − β
2α < s∗

0 , 0 > − β
2α

s∗ ,− β
2α > s∗

(23)

and when α < 0, F (s) achieve the maximum if:

s = − β

2α
(24)

so we can know that the optimal s satisfies:

s =

{
0 ,− β

2α >
1
2s
∗

s∗ ,− β
2α ≤

1
2s
∗ (25)

All the cases are shown in Fig. 4 and Fig. 5.
With all the parameters mentioned above, the utility function

can evaluate the system total utility, and give the optimal index
file’s size s. By analyzing (22)(23)(25), we can find out that the
system will be more likely to give index more buffer space if

the requested data has a longer deadline, the throwboxes have
a larger buffer space or the size of index meta is smaller. In
other words, the optimal size of index s is mainly affected by
the probability that predicted data contact delay is smaller than
the request deadline P4, the throwbox buffer size B and the
index meta size k. P4 is affected by the data’s initial benefit.
Thus, the system will prefer to store a larger index if the
mean initial benefit is higher. Meanwhile, if the k becomes
smaller, the system also should enlarge the index to achieve
the maximize remaining benefit. The trade-off between data
and index is determined by different network conditions.

In mobile networks, the system runs in a distributed and
self-organized way. So, at the very beginning of operation,
the system will have a warm up phrase to recognize the
networks’ characteristic, including the number of data M ,
the probability that request deadline comes before mobile
nodes encountering the first throwbox P0, the accuracy of
the predicted off-line time P3 and the P4 mentioned above.
Other parameters, the throwbox buffer size B and the index
meta size k are determined by the throwbox. And the weight
coefficient m0, ...,m4 are determined by system’s setting. In
order to make sure that throwboxes can allocate the buffer
space precisely to achieve the minimum system cost, we
further design a buffer space management mechanism.

C. Buffer Space Management Algorithm

Base on the theoretical analysis above, we develop the
index-based buffer space management algorithm, as shown
in Algorithm 1. The index-based buffer space management
guarantees that throwboxes will choose the best way to allocate
the buffer space to make sure the system total cost is the
minimum. Index-based buffer space management includes four
phrases: strategy-choosing phrase, fill-up phrase, adjustment
phrase and static phrase.

1) Strategy-Choosing Phrase:
At the very beginning of the system’s operation, throwboxes

must determine the storage strategy. Steps 1-2 calculate the
s using (22) according to the corresponding parameters, then
comparing the s and s∗ to choose the optimal s which achieves
the maximum system benefit, and use the optimal s to guide
the later phrase.

2) Fill-Up Phrase:
After choosing the strategy of buffer space allocation, the

throwboxes’ buffer needs to be filled up as soon as possible.
Steps 4-9 show that if the optimal s = 0, then throwboxes
will store the data item into the buffer until it is full, instead
of recording any contact information. After the buffer is full
of data, the system goes to the static phrase. If the optimal
s = s∗ or s = − β

2α , then whenever a mobile node holding
some data items encounter a throwbox, throwbox will record
the data contact information into index file, and fetch the data
items into the buffer if these items have no copies in the buffer
(steps 10-14). This procedure will continue until the buffer is
full, after that, system goes to the next phrase.

3) Adjustment Phrase:

6

Algorithm 1 Buffer space management algorithm
Input: System parameters: M ,B,k,P0,P3,P4,m0, ..,m4;

1: With all the parameters, calculate the s using (22);
2: According to different α, compare the s and s∗ to deter-

mine the optimal s;
3: for each data i contact event do
4: if optimal s = 0 then
5: if bdata < B then
6: if data i /∈ bdata then
7: fetch data i into the buffer;
8: else
9: break;

10: else
11: if bdata + s < B then
12: record this contact information into index file;
13: if i /∈ bdata then
14: fetch data i into the buffer;
15: else
16: if s < s then
17: delete the data item with the lowest initial ben-

efit and record this contact information;
18: else
19: delete the oldest contact information and store

this new one;

Once the buffer is full, system using steps 16-19 to delete
one data item and use the empty space to store the upcoming
data contact information. After a while, the empty space will
be used up and another data item will be deleted as before. As
the time goes by, more and more data contacts were recorded
into the index file and the file become larger and larger. This
phrase will end as long as the index file reaches the size of
optimal s and system will go to the static phrase.

4) Static Phrase:
In this phrase, the proportion of data buffer and the index

file will not change anymore. The replacement strategy of
new data contact records and new data items are same as the
strategy in adjustment phrase.

Notice: In this paper, we use a closed network model to
evaluate the index-based buffer space allocation algorithm, but
it doesn’t mean the index-based buffer allocation mechanism
only apply the closed network model. If the network condition
is dynamical, the mechanism can be easily modified to adapt
by doing the observation continuously and revise the optimal s.
Then the fourth phrase, static phrase, is no longer last forever
but turns to the strategy-choosing phrase when the observed
parameters are changed. With this design, the mechanism was
endowed a high portability and usability.

V. EVALUATION AND DISCUSSION

In this section, we present our simulation to evaluate the
performance of buffer space allocation algorithm under various
settings. The evaluation methods, settings, and results are
presented as follows.

TABLE III
EVALUATION SETTINGS

parameter name default range
number of mobile nodes Nn 100 100-120

number of data M 300 300-400
Deadline 20000 5000-45000

throwboxes buffer size B 75 60-100
index meta size k 0.05 0.01-0.1

A. Simulation Settings and Metrics

To study the performance of our approach, we use two
types of traces to conduct our simulations. The first trace is
generated by the ONE simulator [19]. We deploy 100 mobile
nodes in a small area of a real city: Helsinki, Finland. Mobile
nodes perform shortest path mapbased movement patterns on
the roads. The second trace is a large-scale dataset of real GPS
traces from around 320 taxies operational in the urban area in
Rome, Italy [20]. The traces span duration of a month, from
February 2014 to March 2014. There are average 100-120
taxies are in the street per day. The trace of a taxi is a sequence
of positions (in longitude and latitude) tagged with timestamp.
In the simulation, the virtual throwboxes are deployed in the
street in every two kilometer. Note that the deployment of
throwboxes may influence the delivery performance but it is
out of the scope of this paper. Each mobile node has a buffer
to store 5 data items, and generate a request of a random data
item from the set M . After fetching a data item, mobile nodes
will generate another data request immediately. At the initiate
stage of the system, mobile nodes store 5 data items randomly
selected from the set M and throwboxes have a short time
to warm up recognizing the basic information of the whole
network.

Through theoretical analysis in section IV, we can find out
that system performance is affected by some key parameters:
M , B, k and P4, where P4 is determined by data request
deadline. The number of data M affects the amount of data
items’ copies, a larger M means there are less data copies
in the network, which will reduce the hit rate of each data
item. Based on the scale of mobile nodes, the network can
only contain up to 500 data items (100 nodes × 5 data per
node), so we run the simulations under two different number
of data, M = 300, 400. Then we take P4, B and k as our main
objects of observation. Deadline is determined by the initial
benefit, The initial benefit W follows the truncated normal
distribution with the mean value W = 20000. In order to
simplify the simulation, we set different request deadlines to
represent the initial benefit. Considering the size of an index
file, we set the default index meta size as 0.05 while the size
of a data item is set as 1. We combine all throwboxes buffer
as one big buffer sized from B = 60 to B = 100 because of
the full connection. m0, ...,m4 only reflect the proportional
relation between time consumption and transmission cost, we
won’t discuss it in this paper. All of the evaluation variables
are shown in Table II.

In order to evaluate the effects of the index-based buffer
space management algorithm, we also implement a traditional

7

10 15 20 25 30 35 40 45 50 55 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Historical Contact Records

P
re

di
ct

io
n

A
cc

ur
ac

y

Time−window based prediction

Fig. 6. Prediction accuracy under different numbers of historical records

buffer management mechanism called data-only buffer space
management, where throwboxes use all storage space to store
the data item. Once a data request is delivered to the throw-
boxes, throwboxes will record it and try to fetch the data from
other mobile nodes. If the buffer is full, the oldest data item
will be replaced by the new one.

B. Results and Discussion

Firstly, to evaluate the accuracy of the time-window based
prediction, we run some tests and results are shown as Fig. 6.
We record every encounter time of a random data item i and
repeat the simulation with different number of contact records
for 100 times each. Fig. 4 shows that the prediction accuracy
is increasing as the historical records grow up until the
index records about 40 times contact information. Then, the
prediction accuracy stays around the 80%. So, the convergence
accuracy of the time-window based prediction is 80% and
the convergence size of the index is 40. So, in the following
simulations, throwboxes’ index only records 40 latest contact
information.

Then we conduct three groups of simulations to evaluate
the performance of the two buffer space allocation algorithms
(index-based, data-only) on the offloading ratio and data fetch-
ing delay. The offloading ratio is the proportion of successful
data fetching via DTNs in all the data requests. In the first
group of simulations, we set different mean initial benefits
to see the effect of the initial benefit’s value. Then, we vary
the size of the throwbox buffer in the second group. Finally,
we modify the size of index meta in the third group. In all of
the simulations, we record the data fetching tpye (via DTNs or
cellular networks) and delay of each accomplished data request
for a certain time period and calculate an average value.

1) Effects of the Throwbox Buffer Size:
Fig. 7(a) and Fig. 9(a) show the offloading ratio under

different throwbox buffer size. We can see that when the size
of the throwbox buffer increases, the offloading ratio of two
algorithms will increase and the offloading ratio of index-based
algorithm is always higher than the data-only algorithm. The
results demonstrate that about 20% of all the data requests
were offloaded by mobile nodes. As the size of the throwbox
buffer become larger, more data can be stored in the buffer,
which means a higher hit rate of the requested data, a higher
hit rate reduce chances to fetch data via cellular networks. And

we also notice that the system performance is different under
different number of data items M = 300 and M = 400.
More data items means more diversity data requests, which
will reduce the request hit rate in the throwbox buffer. Fig. 8(a)
and Fig .10(a) give the average delay of all the data fetching.
As we had expected, the average data fetching delay of index-
based algorithm is much lower than the data-only algorithm.
This is due to the future contact prediction algorithm. A lot of
data requests with lower initial benefit were found, and these
requests which can hardly be offloaded are finished via cellular
networks immediately. Thus, the average delay reduces a lot
compare to the data-only algorithm.

2) Effects of the Dedline:
Fig. 7(b) and Fig. 9(b) show the offloading ratio under

different initial benefit. Initial benefits determined the deadline
of each data request, so we choose to change the deadline to
observe the system performance. We can see that when the
deadline increases, the offloading ratios of the two algorithms
are all increased. But the increasing rate of the data-only
algorithm is very low and increasing rate of the index-based
algorithm is much higher at the beginning and gradually low
down. This is due to the difference of the delivery model of
the two algorithms. To the data-only algorithm, due to lack of
network global information, data items in throwboxes buffer
doesn’t change since the buffer is full. A longer deadline only
enlarges the possible encounter chances between mobile nodes
and throwboxes. It can increase the hit rate in throwboxes
buffer but the efficiency is quite low. Differ from the data-
only algorithm, a longer deadline gives the throwboxes more
opportunities to help requester to fetch the data from other
mobile modes, which can raise the offloading ratio efficiently
especially when the deadline is short. When the deadline is
long enough for most data requests can be fetched from other
mobile nodes, the increasing rate reduces.

The initial benefit’s influence to average delay is represented
in Fig .8(b) and Fig 10.(b). As we can see, when the deadline
is short, the gap between the two algorithms is quit narrow.
But as the deadline increased, the gap is wider and wider.
The reason is that when the deadline is short, mobile nodes
can hardly have chance to meet the throwboxes more than
once, so the index-based algorithm can barely help mobile
nodes to fetch data. But when the deadline enlarges, the
advantage of index-based algorithm shows up and lots of
requests were offloaded before the deadline coming. However,
a longer deadline can’t give the data-only algorithm the same
benefits, so the gap becomes wider.

3) Effects of the Index Meta Size:
The number of data index that can add by replacing a data

item is determined by the size of the index meta. Fig. 7(c)
and Fig. 9(c) show that as the size of the index meta become
larger, the offloading ratio is reducing. This is because when
the size of index meta is small (e.g., k = 0.01), replacing a
data item can store 100 more data index into the buffer and the
space of 3 data items can store all the data index if the number
of data is 300, this kind of replacing is very efficient. When
the size of index meta is increasing, replacing data items with

8

60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

Size of Throwbox Buffer

O
ffl

oa
di

ng
 R

at
io

 (
%

)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(a) Offloading Ratio vs. Size of Throwbox Buffer

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

10

20

30

40

50

60

70

Deadline (s)

O
ffl

oa
di

ng
 R

at
io

 (
%

)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(b) Offloading Ratio vs. Deadline

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
30

35

40

45

Size of Index Meta

O
ffl

oa
di

ng
 R

at
io

 (
%

)

Index−Based,M=300
Index−Based,M=400

(c) Offloading Ratio vs. Size of Index Meta

Fig. 7. System average offloading ratio under generated traces.

60 65 70 75 80 85 90 95 100
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

4

Size of Throwbox Buffer

D
el

ay
 (

s)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(a) Delay vs. Size of Throwbox Buffer

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

5

6
x 10

4

Deadline (s)

D
el

ay
 (

s)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(b) Delay vs. Deadline

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75
x 10

4

Size of Index Meta

D
el

ay
 (

s)

Index−Based,M=300
Index−Based,M=400

(c) Delay vs. Size of Size of Index Meta

Fig. 8. System average delay under generated traces.

index is still useful but not that significantly. The average delay
showed in Fig .8(c) and Fig .10(c) also give the same results.
A smaller index meta size gives throwboxes more space to
store data items and it can bring a shorter delay. The results
also give us a hint that finding a good way to minimize the
size of the index meta can improve the performance of the
index-based algorithms.

VI. RELATED WORK

This section reviews the related work in the literature
and highlights the differences among them. We mainly pay
attention on two aspects of related work, including throwbox-
equipped DTN and future events prediction.

A. Throwbox-Equipped DTN

In the mobile DTN with throwboxes equipped, the existing
works mainly focus on the capacity and delivery delay of the
routing algorithm. Throwboxes based DTN are first proposed
in [5] where the gain on the network throughput of deploying
throwboxes is studied. This work use throwboxes in mobile
DTN to create a greater number of encounter opportunities,
consequently improving the performance of the network. In the
later works [9][10], simulation results and real deployments
have demonstrated that importing a number of throwboxes
into the DTN can indeed improve the routing performances
and overall throughput. Besides, some other studies focusing

on analytical models for delay distribution [11] and design-
ing/evaluating routing strategies [12] for throwbox-based DTN
are also presented. Meanwhile, Banerjee et al. [13] consider
the problem about energy efficiency of each throwbox node
for throwbox-based DTN. However, all the works mentioned
above treated throwboxes as fixed data buffers. The main
difference between our work and previous work is that we
implement a contact prediction mechanism on throwboxes,
by sacrificing some data storage, and treat throwboxes as
both data buffers and forecast equipment. To the best of
our knowledge, this is the first work that makes throwboxes
become multifunctional and this significantly reduces the total
system cost.

B. Future Events Prediction
In existing prediction-based schemes, mobile nodes’ mobil-

ity and contact is estimated based on a history of observations.
A representative case is using utility-routing [14] [15], where
each node maintains a utility value for every other node that
is updated using the time between contacts. Mobile nodes
consider the utility value as the predictor of two nodes’
future likelihood of encounter. LeBrun et al. [16] propose a
routing algorithm for VANET that use the current position
and trajectories of nodes to predict their future position and
calculate the distance to the destination. In [17], Burns et
al. propose a prediction scheme that uses past frequencies

9

60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

Size of Throwbox Buffer

O
ffl

oa
di

ng
 R

at
io

 (
%

)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(a) Offloading Ratio vs. Size of Throwbox
Buffer

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

10

20

30

40

50

60

70

Deadline (s)

O
ffl

oa
di

ng
 R

at
io

 (
%

)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(b) Offloading Ratio vs. Deadline

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
25

30

35

40

45

Size of Index Meta

O
ffl

oa
di

ng
 R

at
io

 (
%

)

Index−Based,M=300
Index−Based,M=400

(c) Offloading Ratio vs. Size of Index Meta

Fig. 9. System average offloading ratio under real traces.

60 65 70 75 80 85 90 95 100
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 10

4

Size of Throwbox Buffer

D
el

ay
 (

s)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(a) Delay vs. Size of Throwbox Buffer

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

5

6
x 10

4

Deadline (s)

D
el

ay
 (

s)

Index−Based,M=300
Data−Only,M=300
Index−Based,M=400
Data−Only,M=400

(b) Delay vs. Deadline

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.45

1.5

1.55

1.6

1.65

1.7

1.75
x 10

4

Size of Index Meta

D
el

ay
 (

s)

Index−Based,M=300
Index−Based,M=400

(c) Delay vs. Size of Size of Index Meta

Fig. 10. System average delay under real traces.

of contacts, as well as the past contacts. Another prediction-
based generic algorithm for DTN routing is MobySpace [18],
which uses a high-dimensional Euclidean space constructed
upon nodes mobility patterns. The frequency of visits of nodes
to each possible location is recorded as the basis of the future
distance calculation in the Euclidean space. Most of these
prediction schemes focus on the contact or the geographical
positions of mobile nodes. The major difference between our
approach and previous works is we take the data as our
target of prediction. In mobile data downloading scenario,
mobile nodes don’t care where the requested data is. The
major concern is, when I can get it. The prediction methods
mentioned above cannot effectively address this concern.

VII. CONCLUSION

In this paper, we introduce a novel throwbox design by
adding an index file into the buffer, which modifies the
throwbox from a pure data buffer into a data transfer helper
with future prediction. Aiming at the trade-off between data
and index, we propose a utility function to evaluate the
system performance under different combinations of variables.
Theoretical analysis shows that replacing some data items
with an index file in the buffer can reduce the total cost
effectively in most cases. Simulations results also prove that
the index-based prediction plays an important role in reducing

the transmission cost of data fetching. Besides, simulations
further show that the index-based buffer space allocation
mechanism outperforms the simple index-added mechanisms.
Our future work will mainly focus on two aspe cts. The first
is to extend current system model to enable data transmission
among mobile nodes. Secondly, we will bring in real-world
trace into simulations to evaluate the system performance.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic
forecast update, 2013-2018,” Feb. 2014.

[2] K. Lee, J. Lee, Y. Yi, I. Rhee and S. Chong, “Mobile data
offloading: How much can WiFi deliver?,” IEEE/ACM Trans-
actions on Networking, vol. 21, no. 2, pp. 536-550, 2013.

[3] F. Mehmeti and T. Spyropoulos, “Is it Worth to be Patient?
Analysis and Optimization of Delayed Mobile Data Offloading,”
in IEEE INFOCOM, 2014.

[4] K. Fall, “A Delay Tolerant Network Architecture for Challenged
Internets,” in ACM SIGCOMM, 2003.

[5] W. Zhao, Y. Chen, M. Ammar, M. D. Comer, B. N. Levine,
and E. Zegura, “Capacity Enhancement using Throwboxes in
DTNs,” in IEEE MASS, 2006.

[6] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of
a mature campus-wide wireless network,” in ACM MobiCom,
2004

[7] L. Jeremie, F. Timur, and C. Vania, “Evaluating mobility pattern
space routing for dtns,” in IEEE INFOCOM, 2006.

[8] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Perfor-

10

mance analysis of mobility-assisted routing,” in ACM MobiHoc,
2006.

[9] M. Ibrahim, A. Al Hanbaliand and P. Nain, “Delay and resource
analysis in MANETs in presence of throwboxes,” Performance
Evaluation, vol. 64, no. 9-12, pp. 933-947, 2007.

[10] M. Ibrahim, P. Nain, and I. Carreras, “Analysis of relay proto-
cols for throwbox-equipped dtns,” in WiOPT, 2009.

[11] B. Gu, X. Hong, P. Wang, and R. Borie, “Latency analysis for
thrown box based message dissemination,” in IEEE Globecom,
2010.

[12] B. Gu and X. Hong, “Capacity-aware routing using throw-
boxes,“ in IEEE Globecom, 2011.

[13] N. Banerjee, M. D. Corner, and B. N. Levine, “Design and
field experientation of an energy-efficient architecture for DTN
throwboxes,” IEEE/ACM Tranactionss on Networking, vol. 18,
no. 2, pp. 554-567, 2010.

[14] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in
intermittently connected networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, no. 3, pp. 19-
20, 2003.

[15] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance
modeling of epidemic routing,” Computer Networks, vol. 51,
no. 10, pp. 2867-2891, 2007.

[16] J. LeBrun, C. Chuah, and D. Ghosal, “Knowledge based op-
portunistic forwarding in vehicular wireless ad hoc networks,”
IEEE VTC, vol. 4, pp. 2289-2293, 2005.

[17] B. Burns, O. Brock, and B. N. Levine, “Mv routing and capacity
building in disruption tolerant networks,” in IEEE INFOCOM,
2005.

[18] J. Leguay, T. Friedman, and V. Conan, “Evaluating mobility
pattern space routing,” in IEEE INFOCOM, 2006.

[19] Keranen, Ari, Jorg Ott, and T. Karkkainen, “The ONE simulator
for DTN protocol evaluation,” in Simutools, 2009.

[20] Raul Amici, Marco Bonola, Lorenzo Bracciale, Antonello
Rabuffi, Pierpaolo Loreti and Giuseppe Bianchi, “Performance
Assessment of an Epidemic Protocol in VANET Using Real
Traces,” in Mobile and Wireless Networking, 2014.

11

