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Abstract—Serving the ever-growing demand for computation, storage, and networking resources for multi-tenant in cloud computing is
an important mission of Data Center Networks (DCNs). In this paper, we study the dynamic request updating problem, and our
objective is to maximize the elasticity of cloud-based DCNs while achieving rapid response to multi-tenants. We use virtual clusters
under the hose communication model to denote requests. Instead of using heuristic algorithms as the existing work does, this paper
introduces a novel two-stage dynamic request updating framework with elastic resource scheduling strategy. In the first stage, we
propose a multi-tenant fast initial provisioning scheme to realize the real-time response and analyze its optimality and complexity.
Additionally, we provide a deep reinforcement learning-based dynamic updating strategy to enhance the elasticity of virtual clusters
that are being used or scaling during the second stage. We train a fully connected neural network by creating a new feasible action set
to realize the reduction, and it approximates the policy based on a proposed aggressive objective selection method to improve training
speed while avoiding high dimensions caused by large scales of tenants and DCNs. Extensive evaluations demonstrate that our
scheme outperforms baselines in terms of both elasticity and efficiency.
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1 INTRODUCTION

W ITH the ever-increasing demand of cloud services,
the data center network (DCN) has become an effi-

cient and promising data processing infrastructure for cloud
computing. As reported in the public data of Microsoft
Azure [1], the demand and deployment size of the tenant
is very bursty and unpredictable in terms of memory, cores,
and bandwidth. One fundamental challenge of DCNs is to
serve the varying needs of multi-tenant without requiring
frequent provisioning changes. This paper proposes an elas-
tic resource provisioning scheme to deal with the scaling
without load redistribution during a run time. In order
to simplify the description of the resource provisioning
problem, we use virtual clusters to denote the requests of
multi-tenant, and each virtual cluster is an abstraction of a
set of virtual machines (VMs), which has the requirements
on both computing and communication resources [3]. We
use the notion of elasticity to measure the potential growth
of multi-tenant in terms of computing and communication
resources at the same time, which is defined as the degree
of a system that is able to adapt to the workload changes
by provisioning and releasing resources in an autonomic
manner [5], [6], [8]. We consider the virtual clusters with
hose model under constraints, and our objective is to maxi-
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Fig. 1. An illustration of the dynamic request updating in multi-tenant
cloud-based DCN.

mize the elasticity while achieving rapid response to multi-
tenants in the DCNs.

We give an example that illustrate our work in this
paper, some assumptions and notations are not explicitly
stated and will be explained in a later section. As shown
in Figure. 1, we consider a multi-level tree-based network
with m physical machines as the data center architecture.
The capacity of each physical machine is slotted, and each
slot can only host one virtual machine. We assume that
several virtual clusters are running in the operating data
center, which are distributed on different servers resulting
in variations in the remaining resources. We separate the
scenarios of resource requesting of virtual clusters into two
categories which are initial provisioning for new newcomers
and dynamic updating for those already in use. Here, we
desire to find a provisioning strategy for virtual clusters that
achieving quick response while also supporting maximum
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elasticity without resorting to reassignment. This problem
is non-trivial due to the following unique challenges: (i)
It is nontrivial to implement fast provisioning and offer
a quick response to numerous customers when several
newly arrived virtual clusters arrive simultaneously (# of
n). (ii) The initial position is vital for the flexible growth of
subsequent resources for virtual clusters. It is nontrivial to
improve their elasticity under the high dimensions caused
by the concurrent requests from enormous amount of virtual
clusters and the huge volume of the cloud-based data center.
(iii) Additionally, due to fluctuations in demand, tenants
who have already provisioned resources in the data center
may request resource scaling during the operation. For
instance, in Figure. 1, tenant V1 initially requests 2 VMs, but
when the demands varies over the span of the operating
period, the number scales to 4. It is challenging to deal with
the dynamic scaling of requests that can realize adaptability.

In this paper, we introduce a novel dynamic updat-
ing framework with elastic resource scheduling. Instead of
using heuristic algorithms or simple deep reinforcement
learning as the existing work does, we deal with the re-
source provisioning problem of multi-tenant and realize the
dynamic adjustment for the elastic updating requests at the
same time, which consists of two stages. In the first stage,
we try to find a feasible provisioning scheme for the multi-
tenant with a rapid response by relaxing partial constraints.
In the second stage, we attempt to updating the virtual
clusters of multi-tenant that have been provisioned by using
deep reinforcement learning, so as to improve the elasticity.
However, due to the large scale of the scenario, we need
to design an efficient solution that improving the training
speed of the neural network in high-dimensional space. Our
contributions can be summarized as follows:

• We investigate the virtual clusters provisioning prob-
lem in multi-tenant cloud-based DCNs with hose
model, and we propose to maximize the elasticity
by considering the limitation on computation and
communication resources.

• We make a theoretical and experimental study of
the commonly used methods that are appropriate
for provisioning of virtual clusters, and we analyze
the insights that produce high complexity and slow
convergence.

• We introduce a novel dynamic updating framework
with elastic scheduling that make it possible for
multi-tenant cloud-based DCNs to provide scalable
resources in two stages. We construct a heuristic
rapid provisioning scheme in the first stage to realize
the real-time response to multi-tenant virtual clus-
ters, and we prove the optimality under the single
computation resource constraint.

• Based on that, we present an online dynamic updat-
ing method based on deep reinforcement learning
to enhance the adaptability of virtual clusters that
are running or scaled during the second stage. In
order to avoid the high dimensions caused by the
large scales of tenants and the DCNs, we train a fully
connected neural network by creating a new feasible
action set to realize the reduction and it approximates
the policy based on a proposed aggressive objective

selection method to improve training speed.
• We conduct various evaluations with several state-

of-the-art algorithms under different topologies on
the basic setting that refers to the observations. The
results are shown from different perspectives to pro-
vide conclusions.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys related works. Section 3 describes the model,
problem formulation, and motivation. Section 4 investigates
the problem by proposing an efficient framework. Section 5
presents the evaluations. Section 6 concludes the paper.

2 RELATED WORK

Recently, the main research point of virtual cluster provi-
sioning in DCNs includes reliability, energy consumption,
traffic changing, and congestion control. However, with the
explosion of increasing types and scales of the requests by
users, the problem of elasticity in the data center has also
been focused. The solutions are mainly divided into three
categories introduced in the following.

2.1 Elastic Scheduling by Extending Resources
With the explosion of increasing types and scales of requests
by users, the problem of elasticity in the DCN has been fo-
cused. There have been a few recent work on elastic resource
provisioning by extending physical resources. Rui et al. [7]
and Naskos et al. [9] showed a probability model and a
cost-aware method to analyze the bottleneck in multi-layer
cloud applications, and they proposed a method to meet the
elastic scaling of the data center. Farokhis et al. [10] designed
a two-layer traffic-aware transmission algorithm, which can
effectively solve the problem of virtual machine placement
and ensure the large-scale elastic scaling of potential user
resources. Lin et al. [11] provided a unified framework that
integrates the representation of the logic graphs to maintain
regular and reliable operation of data center networks and
transmit data between servers. Fan et al. [12] presented
an adaptive path-finding algorithm for establishing virtual
links between any two nodes in the data center network.
Wang et al. [13] realized the elastic scaling of cloud-based
DCN by adjusting the size of CPU and memory. Chowdhury
et al. [14] analyzed the problem of elastic management
based on virtual cluster service, separated resource allo-
cation from service management, and provided the ability
of elastic service to adapt to dynamic workload changes.
The above works realized the elastic resource provisioning
by adding new instances (VMs, containers or application
instance modules, etc.) or adjusting the size of the instance
in itself during the runtime, which can solve the problem
of the insufficient physical resources caused by the dynamic
scaling. However, it is difficult to avoid the low utilization
and high cost caused by the uncertainty of requesting types
and scales.

2.2 Elastic Scheduling by Designing Heuristic Strate-
gies
Quite a few works have been carried out on the elastic
resource provisioning problem by designing heuristic strate-
gies. Alfonso et al. [15] proposed an open-source virtual
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TABLE 1
Symbols and Definitions.

Symbols Definitions
G Topology of DCN, where G = {C,L}.
C Set of physical machines, where C = {Ci}.
L Set of physical links, where L = {Lij}.

ci, ĉi Total and rest available resource of Ci.
lij , l̂ij Total and rest available resource of Lij .
C(Lij) Set of physical machines under the link Lij .

V Set of virtual clusters, where V = {Vk}.
vk(h) The hth VM of virtual cluster Vk

τ
Ci
vk(h)

A boolean variable that indicates vk(h) placed on Ci.
E, Em, El Elasticity of G, physical machines, and physical links.

δi Estimated divided factor of Ci.
s, a State and action space.
Â Feasible action set.

cluster framework based on the DCN, which analyzed the
dynamic changes of virtual clusters in the running process
to minimize the cluster consumption and meet the comput-
ing demands of users. Kholidy et al. [16] and Guerrero et
al. [17] developed a prediction method based on swarm
intelligence, which realized the optimal allocation of multi-
dimensional resources requested by tenants using particle
swarm optimization algorithm and genetic algorithm. Qad-
doum et al. [18] proposed an elastic resource scheduling
strategy based on load prediction, and solved the prob-
lem of computing load fluctuation in big data streaming
computing platforms by designing a resource allocation
method based on a modified adaptive neural network.
Wang et al. [19] presented an elastic resource provisioning
scheme to help service providers pay less cost with users’
QoS guarantee in clouds. Gao et al. [30] put forward a
congestion-aware scheduling scheme to determine the pri-
ority of flows based on the latest network congestion in data
center networks. Tran et al. [31] designed heuristic traffic-
aware virtual network function placement and migration
algorithms to minimize the total network traffic in policy-
preserving data centers. Fei et al. [32] present a method of
elastic resource provisioning using data clustering in cloud
service platform. Mina et al. [33] proposed a non dominated
set construction algorithm based on task fluctuation to
realize the multi-objective dynamic scheduling strategy of
elastic cloud resources. Most of the above researches adopt
centralized deployment, which prefers to use heuristic or
meta-heuristic algorithms to construct resource allocation
architecture and realizes elastic allocation of cloud data
center resources by software architecture adjustment.

2.3 Elastic Scheduling based on Reinforcement Learn-
ing
Reinforcement learning (RL), as one of the paradigms and
methodologies of machine learning, uses agent learning
strategies in the interaction of the environment to achieve
specific goals [20], [29], [34], [35]. Deep reinforcement learn-
ing combines the perception ability of deep learning with
the decision-making ability of reinforcement learning. In
recent years, deep reinforcement learning has been success-
fully applied in the game, robot control, simulation, opti-
mization, and scheduling [21]. There are many applications
of the resource provisioning problem in the cloud data cen-
ters. Bitsakos et al. [22] used the deep Q-network algorithm

of deep reinforcement learning to optimize the allocation
of elastic resources in DCN with current multidimensional
states of virtual clusters as the input. Liang et al. [23] pro-
posed a method based on advantage actor critical deep re-
inforcement learning, which effectively updates parameters
by designing an adaptive scheduling algorithm to realize the
resource provisioning in the cloud-based DCNs. Liu et al.
[24] developed a reinforcement learning-based framework
that adopts neural networks with an overall consideration
of data movement and analytical latency, and they trained
with a variant of q-learning to solve the data placement
problem. Nouris et al. [25] proposed and implemented a
controller based on RL, which can not only realize the rapid
expansion of resources in the cloud data center, but also save
costs by shutting down redundant servers. Chen et al. [26]
developed a two-set deep reinforcement learning system to
solve the problem of traffic elastic expansion in the cloud
data center. By collecting flow information on the terminal
host, the data center traffic can be controlled online. Ying
et al. [27] proposed a scheduling program based on deep
reinforcement learning, which used a cross-entropy method
to train a fully connected neural network to realize VM
migration before resource updating. Due to the complexities
of applications and the scaling of DCNs may generate
huge state and action spaces, applying deep reinforcement
learning methods directly on the virtual cluster provisioning
for multi-tenant will result in a slow convergence rate or
even be unable to converge.

3 MODEL AND PROBLEM FORMULATION

In this paper, we study the dynamic virtual cluster updating
problem in multi-tenant cloud-based data center network
through online scheduling, which attempts to realize rapid
respond and high elasticity. In this section, we start with
the descriptions of data center model and the virtual cluster
model. The problem is also formulated.

3.1 Data Center Network Model
In this paper, the substrate topology of the data center
network is defined as tree-structured, i.e. G = {C,L}. Let
C denote the set of physical machines, where C = {Ci}. We
use |C| to represent the total number of physical machines
in G. Here, we choose Ci to denote the ith machine. The
capacity of Ci is ci, and the remaining resources is ĉi. Based
on our data center topological structure, we use L to denote
the set of physical links, where L = {Lij}. Here, Lij denotes
the jth link on the ith level, and the capacity of Lij is lij in
G. For each link being used, we use l̂ij to represent the
remaining available communication resources.

3.2 Virtual Clusters
We use virtual clusters to denote the demands of multi-
tenant, which is denoted by V = {Vi}. Each virtual clus-
ter represents the requirements on both computing and
communications resource which consists of a set of vir-
tual machines (VMs) and one virtual switch [3], where
Vk = {vk(h)}. Let vk(h) denote the hth VM of virtual cluster
Vk. We use |Vk| to denote the total number of VMs in Vk,
and we suppose that each VM has BkGbps unit bandwidth
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(a) The elasticity within 104 itera-
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Fig. 2. Illustration of a slow convergence condition based on a straight-
forward deep reinforcement learning method.

demand between VMs and the virtual switch of virtual
cluster Vk. The total number of VMs in set V is denoted
as |V|, where |V| =

∑n
k=1 |Vk|. In this paper, we consider

the virtual clusters with hose model which means that each
customer specifies a set of endpoints to be connected with a
common endpoint-to-endpoint performance guarantee [5].
Virtual clusters are independent from one another and only
interact with the inside VMs, there is no interaction between
external virtual clusters. Here, we use communication de-
mand to indicate the maximum bandwidth resources that
each VM may simultaneously communicate with the other
virtual machines in its own cluster. The communication
demand of these components will be 0Gbps since VMs
that are housed on the same physical machine do not
use link bandwidth resources when communicate with one
another. We use f(Vk, Ci) to indicate the communication
demand of VMs provisioning on machine Ci for virtual
cluster Vk which deployed across different machines. For
each virtual cluster, we use a boolean variable τCi

vk(h)
to

indicate that whether vk(h) placed on Ci.
∑

h∈Vk
τCi
vk(h)

de-
notes the number of VMs belonging to Ci. Therefore, we
have that the total communication demand of Vk on Ci is
f(Vk, Ci) = min{

∑
h∈Vk

τCi
vk(h)

, |Vk| −
∑

h∈Vk
τCi
vk(h)

} · Bk.
Taking V3 as an example shown in Figure. 1, which is
made up of four VMs, each VM in V3 is able to commu-
nicate with the other three. We supposed that each VM
has a B3 = 1Gbps unit bandwidth demand of V3, then
f(V3, Cm−1)=min{2, (4− 2)}=2 ·B3=2Gbps is the result.

3.3 Problem Formulation

This paper focuses on the virtual cluster provisioning prob-
lem in multi-tenant DCNs. We use E to denote the com-
binational elasticity of the DCN, which is expressed as a
percentage and used to represent the usage of the minimum
remaining resources, which is shown in equation (1). We aim
at minimizing the combinational elasticity by considering
both computational and communication resources. Here we
use Em to represent the elasticity of the physical machines,
which results from calculating the minimum scalable ca-
pacity of the physical machines. Similarly, we use El to
represent the elasticity of physical links which is shown in
equation (2). In equation (3), we use λ and φ to represent
coefficients reflecting different computational and commu-
nication resource requirements. The constraints during the
virtual cluster provisioning are shown in equations (4) and
(5), which means that the total consumption of computation
and communication resources cannot exceed the capacities

of physical machines and links. Here, equation (5) is the
communication demands of virtual clusters on link lij ,
where

∑
h∈Vk

τCi
vk(h)

denotes the number of VMs belonging
to Ci. Equation 6 is the communication demand of the
virtual cluster Vk on Ci. We use the notion of elasticity to
measure the potential growth of multi-tenant in terms of
both computing and communication resources [5], [6]. The
problem formulation is shown as follows:

maximize E = min{λEm, φEl} (1)

s.t. Em = min
i
{1− ĉi

ci
}, El = min

i,j
{1− l̂ij

lij
} (2)

0 ≤ λ ≤ 1 and 0 ≤ φ ≤ 1 (3)

ĉi ≤ ci and l̂ij ≤ lij (4)

l̂ij =
∑

Ci∈C(Lij)

∑
Vk∈Ci

f(Vk, Ci) (5)

f(Vk, Ci)=min{
∑
h∈Vk

τCi
vk(h)

, |Vk|−
∑
h∈Vk

τCi
vk(h)

} ·Bk (6)

3.4 Motivation

3.4.1 High time complexity under DP
Based on the problem formulation in Equations (1) to (4), the
numbers of variables and constraints are large which means
that the virtual cluster provisioning problem in multi-tenant
DCNs cannot be efficiently solved by the simplex or eclipse
methods. A dynamic programming (DP) scheme has been
proposed in [3], and the time complexity is proved to be
O(2h ·

∏|V|
j=1(|Vj |+1)h−j), where h is the height of the DCN.

We take the data center of Alibaba [4] as an example, which
is constructed by 4034 physical machines. We suppose that
there are only two tenants with two virtual clusters, and
each one only contains a single VM. According to the
calculation method, the time complexity under DP will be
higher than 24036, which is huge.

3.4.2 Slow convergence under high dimension
To avoid the high complexity brought by the DP method, we
consider to use deep reinforcement learning, such as deep
Q-learning (DQN), to solve the virtual cluster provision-
ing problem in multi-tenant DCNs. We suppose the state
space st = [ĉ1, ĉ2, ..., ĉi, ..., ĉm, |V̂1|, |V̂2|, ..., |V̂j |, ..., |V̂n|],
where ĉi denotes the remaining resource of ith phys-
ical machine and |V̂j | denotes the number of remain-
ing VMs of jth virtual cluster. The action space is
at =

[
s1(1)|, ..., s1(m), s2(1), ..., s2(m), ..., sn(1), ..., sn(m)

]
,

where si(j) is a boolean variable that denotes whether the
VM provisioning on the jth physical machine. Based on that,
the maximum times of calculation is C(

∑n
j=1 |V̂j |,

∑m
i=1 ĉi).

The reward mechanism is defined in Algorithm 2, which is
r = (E(St+1) − Ē)/(Ē + ξ). We take 6-layer topology as
an example as shown in the sub-figure (a) of Figure. 2, and
the capacity of the physical machine is defined as ci = 8.
We suppose that there are only two virtual clusters V1 and
V2, where the number of VMs are |V1| = 5 and |V2| = 5,
respectively. The result is shown in Figure. 2(a). We can
see that the elasticity of the DCN is close to convergence
when the number of iterations reaches 104. In addition, the
range of the elasticity fluctuates greatly in the iterations
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Fig. 3. The overview of DUES

from 6×103 to 104. We enlarge the value of elasticity within
300 iterations in Figure. 2(b), which has no tendency of
convergence and fluctuates sharply. Thus, we can see that
the convergence time will be extremely slow if the deep
reinforcement learning method is used to directly search for
and learn the best solution of the virtual cluster provisioning
problem for multi-tenant.

4 DYNAMIC UPDATING FRAMEWORK WITH ELAS-
TIC SCHEDULING

In this section, we show the detail of our novel online dy-
namic updating framework with elastic scheduling (DUES)
which constructed by two stages to realize the rapid re-
sponse and high elasticity.

4.1 Overview
The main idea of DUES is to realize real-time response to
multi-tenant requests for provisioning and upgrading while
maximizing the elasticity of the cloud-based DCN. The
overview of DUES, which comprises of two stages, is shown
in Figure. 3. In the first stage, we propose a heuristic scheme
to realize the fast provisioning for multi-tenant and analyze
its optimality and complexity. We take the arriving requests
of multi-tenant virtual clusters as the input, and the output
is the initial provisioning scheme which also converts to the
input of the second stage. In the second stage, we propose a
online dynamic updating strategy based on deep reinforce-
ment learning to improve the combinational elasticity of the
cloud-based DCN. Since the main drawback of the simple
deep reinforcement learning method is that it will result in
huge state and action spaces when applied to the virtual
cluster provisioning problem, we introduce a new definition
which is the feasible action set. Based on that, we train a
fully connected neural network to realize the reduction and
it approximates the policy based on a proposed aggressive
objective selection method to improve training speed. The
detailed description are shown as follows.

4.2 Stage 1: Fast Initial Provisioning
In this subsection, we introduce a multi-tenant fast initial
provisioning scheme (MFIP) for virtual clusters which is

shown in Algorithm 1. The insight of our scheme is to iden-
tify the partition for virtual clusters based on the computing
resource of the DCN. The input in Algorithm 1 is the set
of virtual clusters V, and the output is the fast provisioning
scheme Xf . In lines 1 and 2, we first check the feasibility of
virtual clusters by comparing |V| with ĉ. Here, we use ĉ to
represent the total remaining resources where ĉ =

∑m
i=1 ĉi.

If the remaining computing resources can accommodate the
virtual clusters of V, where |V| ≤ ĉ, Algorithm 1 continues.
Otherwise, the requests of set V will be rejected. In lines 3
to 5, we start to calculate the estimated number of accom-
modation based on the computing capacities of each server
in G. Here, we introduce a new definition of the estimated
divided factor.

Definition 1 (Estimated divided factor). Let δi denote the
estimated divided factor of Ci and δi = ĉi/

∑m
i=1 ĉi,

where ĉi denotes the rest available physical resources.

In line 3, we first initialize the group partition with esti-
mated divided factors. Then we calculate the capacity of
each group, which is the maximum amount of provisioning
VMs on server i, i.e, gi = δi ·|V|. The value of gi is an integer
that rounds down with gi = ⌊δi · |V|⌋ to avoid overflowing,
which involves reducing to the nearest integer even if the
fractional part is larger than or equal to 0.5. We suppose
that if an upward value or rounding method is used to
obtain the value of gi, it is possible that the total avail-
able resources on the servers of the groups will be higher
than the total number of requests, resulting in an overflow
error where the free position information exceeds the total
number of requests. Here, we highlight the potential impact
through using a straightforward example. We suppose that
there are only 3 available servers left in the data center,
and each has ĉ1 = 2, ĉ2 = 10, and ĉ3 = 8 remaining
resources, respectively. We assume that the total amount of
requests is |V| = 15 altogether of virtual clusters at this
time, we will obtain g1 = 2, g2 = 8, and g3 = 6, where∑i=3

i=1 gi = 16 > |V| regardless of whether rounding up or
normal rounding is used, which results in overflow. In line
6, we update the number of VMs of multi-tenant virtual
clusters |V| = |V| −

∑m
i=1 gi. In lines 7 to 9, we resize some

groups for the rest of the queries in V. If |V| ̸= 0, which
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means there are remaining VMs that cannot be covered, we
choose the physical machine with the maximum available
resources by argmaxCi∈C ĉi and increase the estimated
number of accommodations by gi = gi + 1 in lines 8 and
9. Then, we update the total number of requests in line
10. In line 11, we update groups in set g with descending
order based on their sizes, where g := descending(g). Then
we start the provisioning process, which chooses request Vj

with maximum argmaxVj∈V Nj and matches Vj into group
gi. If the number of VMs |Vj | is over the estimated number
of accommodation in gi, we place a part of VMs according
to the size of gi. Then we update gi = 0 and remove gi
from set g. Otherwise, we update set g with gi = gi − |Vj |.
After that, we update g := descending(g) in line 19. Line 20
returns the provisioning scheme Xf . The time complexity of
Algorithm 1 is O(m2 · |V|).
Theorem 1. The total communication demand of virtual

clusters V with MFIP is minimum in G under the single
constraint ĉi ≤ ci.

Proof: There are two steps in MFIP, which are initializing
the estimated groups of G and the identifying partition
for multiple virtual clusters. In the first step, the groups
are estimated by considering converting multiple virtual
clusters to a single one. The partition of each group is found
by calculating the capacities based on the physical machines
in G that is optimal, which has been proved in [28]. Thus,
we only need to prove that the identifying partition for V
obtained the minimum total communication demand. We
suppose that the set of estimated groups g = {gi} has been
updated with descending order. If the demands of all virtual
clusters in V with the same order are lower than groups in
g, the total communication demand of virtual clusters V will
be 0 which is minimum. If there is existing Vi ⊆ V larger
than the size of group gi, where |Vi| > |gi|, Vi ⊆ V will be
divided into several parts. We discuss the case as follows.

We suppose that the fast provisioning Xf is (Vi →
gi)|Vi|>|gi|, the total communication demand is min{|Vi| −
|gi|, |gi|}. Assuming that the provisioning with minimum
communication demand (MCD) of Vi is group gj , then we
have (Vi → gj)|Vj |>|gj |. The total communication demand
will be min{|Vi| − |gj |, |gj |}. Here, we prove by contradic-
tion which assumes that |gi| > |gj |, then we have four
possible scenarios. (i). min{|Vi| − |gi|, |gi|} = |Vi| − |gi|
under MFIP and min{|Vi| − |gj |, |gj |} = |Vi| − |gj | under
MCD. Since we suppose MCD has the minimum communi-
cation demand, then we have that |Vi| − |gj | < |Vi| − |gi|,
i.e. |gi| > |gj |, which contradicts with the assumption
|gj | < |gi|. (ii). min{|Vi| − |gi|, |gi|} = |Vi| − |gi| under
MFIP and min{|Vi| − |gj |, |gj |} = |gj | under MCD. Sup-
pose the group that provisioning the Vi \ gj request is
gk, where the rest capacity |Vi| − |gi| < |ĝk| < |gi|. The
total communication demand will be 2(|Vi| − |gi|). Since we
suppose MCD has the minimum communication demand
where |gj | < |Vi| − |gi|, then we have that |Vi| − |gj | > gi.
Since |ĝk| < |gi|, we have |ĝk| < |gi| < |Vi| − |gj |. The
MCD will be at least 2|gj |+2|gk|, however, |Vi|−|gi| < |ĝk|,
then we have 2|gj | + 2|gk| > 2|gj | + 2(|Vi| − |gi|), which
contradict with the assumption. For the remaining two
cases (iii) (min{|Vi| − |gi|, |gi|} = |gi| under MFIP and
min{|Vi| − |gj |, |gj |} = |gj |) and (iv) (min{|Vi| − |gi|, |gi|} =

Algorithm 1 Multi-tenant Fast Initial Provisioning Scheme
(MFIP)
Input: Set of multi-tenant requests V;
Output: Fast initial provisioning scheme Xf ;

1: if |V| < ĉ then
2: return False;
3: for each server in G do
4: Initialize group partition with the estimated divided

factor δi;
5: Calculate the capacity of each group gi;
6: Update the virtual clusters |V| := |V| −

∑m
i=1 gi;

7: while |V| ≠ 0 do
8: Choose the physical machine with argmaxCi∈C ĉi;
9: Update gi := gi + 1;

10: Update |V| := |V| − 1;
11: Update g := descending(g);
12: for each group gi in G do
13: Choose request Vj with argmaxVj∈V |Vj |;
14: Matching Vj into group gi;
15: if |Vj |>gi then
16: |Vj | := |Vj | − gi;
17: Update gi := 0 and remove gi from set g;
18: else
19: Update set g with gi := gi − |Vj |;
20: Update g := descending(g);
21: return Initial Provisioning Xf ;

|gi| under MFIP and min{|Vi| − |gj |, |gj |} = |Vi| − |gj |),
the proof process is the same as (a) and (b). In summary,
the total communication demand of virtual clusters V with
MFIP is minimum under the single constraint ĉi ≤ ci. ■

4.3 Stage 2: Online Dynamic Updating Strategy

In this subsection, we propose an online dynamic updating
strategy based on deep reinforcement learning. The main
idea is to realize the dynamic updating requests from multi-
tenants inside each equal time slot after dividing continuous
time into equal slices. This process intends to identify the
bottleneck of the DCN for each time slot in the context of
the fast initial provisioning Xf and choose VMs to readjust
based on an aggressive upgrading strategy for the objective
selection. Here, it is worth noting that when a request is
produced at a certain time slot, it is necessary to verify
beforehand whether the tenant is already located in the data
center. If the tenant is already in the data center, it goes
directly to the second stage of dynamic online updating;
if not, it must go through the first stage of fast initial
provisioning. We define the bottleneck as follows.
Definition 2 (bottleneck). The bottleneck b∗ is a vector

representing the location of physical machine or link
with the minimum elasticity of G.

The core component of the agent is to design a policy where
it provides the probability distribution over the action space
a and the state space s.

4.3.1 Deep Reinforcement Learning Formulation
In order to describe the environment of the DCN concisely
and correctly for the agent, the state space should include
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Algorithm 2 Reward Updating Mechanism
Input: Variable num;
Output: Reward r(st, at) and termination variable Γ;

1: if E(st+1) ≤ E(st) then
2: num := num+ 1;
3: if E(st+1) > E(st) then
4: r := (E(st+1)− Ē)/(Ē + ξ);
5: else if E(st+1) = E(st) then
6: r := E(st+1)− E(st);
7: else
8: r := −1;
9: if num ≥ Ψ then

10: Γ := ture;
11: else
12: Γ := false;
13: return Reward r(st, at) and termination variable Γ;

the knowledge of the usage on the physical resources, the
status of requests from multiple tenants, and the informa-
tion of the updating virtual cluster. So the state is designed
as follows.
Definition 3 (state). The state st is a vector consisting of

st = [h1,h2, ...,hm]t, where hi denotes the provisioning
list on server ci at time slot t. The provisioning list hi

records the number of virtual clusters placed on this
server, where hi = [v1, v2, vi, ..., vk].

We consider realizing the dynamic updating by training the
agent which needs to choose a destination physical machine
for each adjusting VM. The action at is designed as follows.
Definition 4 (action). The action space at = [C1,C2, ...,Cm]t

is the updating action, where Ci = 0 or Ci = 1 means
that the target location of adjustment is on Ci or not at
time slot t.

The objective of the agent is to find a provisioning
scheme for multi-tenants that maximizes the elasticity of the
DCN. For each episode, we decide the provisioning of VMs
for the tenants by choosing an action. After that, the agent
will get a reward r(st, at) at time slot t with state st after
executing action at. In our problem, the value of this reward
cannot determine the final elasticity until all requests of
tenants are provisioned. The reason is that the virtual cluster
only communicate with VMs on their own, which means
that although we make the adjustment decision for VMs
one by one, the final elasticity is determined until all virtual
clusters finish provisioning. Here is the specific definition.
Definition 5 (Reward). The reward r is decided by the value

of elasticity which defined in three cases, where

r :=


(E(st+1)− Ē)/(Ē + ξ) E(st+1) > E(st)

E(st+1)− E(st) E(st+1) = E(st)

−1 E(st+1) < E(st)

(7)

The updating mechanism of the reward shown in Al-
gorithm 2, we initialize a variable num to record the times
that the elasticity decreases after adjusting the VMs in one
episode. The output of this function is the reward after
choosing action at and the value of the termination variable
Γ. In line 1, we first compare the value of elasticity under the

Algorithm 3 Feasible Actions Set Construction Function
Input: Fast initial provisioning Xf ;
Output: Feasible actions set Â;

1: Calculate E under the fast initial provisioning Xf ;
2: Find the location of the bottleneck with minimum elas-

ticity;
3: if E = ECi

m then
4: Remove the bottleneck Ci from set Â = {A/Ci};
5: else
6: Remove the physical machines in set C(Lij) under the

bottleneck link Lij from set Â = {A/C(Lij)};
7: return Feasible Actions Set Â;

state st and st+1. If E(st+1) ≤ E(st), it means that the elas-
ticity after choosing action at will decrease, we will record
it using num := num + 1. After that, we start to define the
reward updating mechanism under different cases. In lines
3 to 4, when there is an increment that E(st+1) > E(st),
the reward will be defined as r := (E(st+1) − Ē)/(Ē + ξ),
where Ē is the baseline elasticity after the fast provisioning
Xf . ξ is a factor that avoid the denominator obtaining zero,
where 0 < ξ ≤ 1. In lines 5 to 6, if the E(st+1) = E(st), the
reward will be defined as r := 0. Otherwise, the reward will
be defined as r := −1 under the E(st+1) > E(st) case in
lines 7 to 8. Since the reward of one action cannot determine
the final result, the reward value r := −1 cannot represent
that the total provisioning order which is bad. However,
if the bad cases continue to happen, which means that the
agent always chooses the action with r := −1, this episode
will be terminated when num ≥ Ψ. Here, we use Ψ to
denote a threshold that is determined by the structure of the
DCN, which is less than or equal to the number of physical
machines, i.e., Ψ ≤ |C|. Line 13 returns the reward r(st, at)
and the termination variable Γ.

4.3.2 Construction of Feasible Actions Set
In order to reduce the high dimensions caused by the large
scales of tenants and the DCNs, we introduce a definition of
the feasible action set.
Definition 6 (Feasible Actions Set). Let Â indicate the fea-

sible action set of V, which only include the target VMs
that have positive effect on optimize the combinational
elasticity of G.

Based on that, we further propose a method to construct a
feasible action set Â. The main idea is to remove the invalid
optional targets which exist under the bottleneck to improve
the learning speed of the agent. The detail description is
shown in Algorithm 3. In line 1, we first calculate the
elasticity E under the fast initial provisioning Xf , and we
find the location of bottleneck. If the bottleneck is located on
the physical machine E = ECi

m , where ECi
m is the elasticity of

Ci, i.e., ECi
m = 1− ĉi

ci
. Then, we remove the optional target Ci

from set A, where Â = {A/Ci}. If the bottleneck is located
on the physical link E = ELij

l , where ELij

l is the elasticity
of Lij , i.e., ELij

l = 1− l̂ij
lij

. Then, we remove set CLij
under

the bottleneck link Lij from set Â = {A/C(Lij)}. Here, we
use C(Lij) to denote the set of physical machines under the
physical link Lij . Line 7 returns the feasible action set Â.
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Algorithm 4 Aggressive Objective Selection Algorithm
Input: State s under the fast initial provisioning Xf ;
Output: VM that needs to be adjusted vk(h);

1: Same as Algorithm 3 in lines 1 to 2;
2: if E = ECi

m then
3: Select VM vk with the maximum communication de-

mand on Ci to adjust;
4: else
5: Choose the physical machine Cw in set C(Lij) under

bottleneck link ELij

l with minimum elasticity ECw
m ;

6: Select VM vk(h) with the maximum communication
demand on Cw to adjust;

7: return VM that needs to be adjusted vk(h);

4.3.3 Aggressive Objective Selection

In a given episode, the agent choose an action from the
set Â that is detailed in Algorithm 3. This action can only
determine the destination that we can adjust the VMs,
however, which VM is selected to be adjusted cannot be
determined by the action at. Here, we design an aggressive
adjusted objective selection algorithm to recognize which
VM is being adjusted based on its current policy. Then the
environment will return a reward rt to the agent and transit
to st+1. In Algorithm 4, the input is the state s under the
fast initial provisioning Xf and the output is the VM vk
that is selected to be adjusted. In lines 1 to 2, we initialize
the elasticity E under the fast provisioning Xf and find the
bottleneck same as Algorithm 3. If the bottleneck is located
on Ci where E = ECi

m , we select VM vk with the maximum
communication demand on Ci to adjust in line 3. Otherwise,
if the bottleneck is located on Lij where E = ELij

l , we choose
the physical machine Cw under bottleneck link Lij with
minimum elasticity ECw

m in line 5. Based on that, we select
VM vk with the maximum communication demand on Cw

to adjust. Line 7 returns the VM vk that needs to be adjusted.

4.4 Dynamic Updating based on Deep Reinforcement
Learning (DU-DRL)

The overview of the dynamic updating strategy based on
deep reinforcement learning (DU-DRL) is shown in the right
part of Figure. 3. Algorithm 5 summarizes the specific steps.
The main idea is to use a deep reinforcement learning agent
to perform the dynamic adjustment VM of virtual clusters
to maximize the elasticity of the DCN in each time slot.
Before we conduct dynamic updates, we collect the status
of multi-tenant virtual clusters V to construct the set of
update requests V′. We prioritize processing for tenants who
requesting resource release V−. Then, we reinitialize the
resources of cloud-based DCN and update V′ = {V′ − V−}
which serves as input of Algorithm 5. We first initialize some
preliminary parameters which include setting the replay
memory D to capacity N and episode terminated variable
Γ to false. Meanwhile, we initialize the action-value func-
tion Q with random weight θ and the target action-value
function Q̂ with weights θ− = θ. In lines 2 to 4, we start to
train the agent by running a number of κ episodes with our
environment. During each episode, we initialize sequence S

Algorithm 5 Dynamic Updating based on Deep Reinforce-
ment Learning (DU-DRL)

Input: Set of updating requests V′;
Output: Provisioning scheme X;

1: Initialize D to N , Γ to false, Q with random weights θ,
and Q̂ with weights θ− := θ;

2: for episode from 1 to κ do
3: Initialize sequence s based on Xf of Algorithm 1;
4: Preprocessed sequence ϕ1 = ϕ(sXf

);
5: while Γ = false do
6: Build feasible actions set Â based on Algorithm 3;
7: With probability ε select a random action at ∈ Â;
8: Otherwise select at = argmaxaQ(ϕ(st), a; θ);
9: Choose the adjusted objective based on Algo-

rithm 4;
10: Execute action at in emulator and update r and Γ

based on Algorithm 2;
11: Set st+1 = st, at, xt+1 and preprocess ϕt+1 =

ϕ(St+1).
12: Store transition (ϕt, at, rt, ϕt+1) in D;
13: Sample random minibatch of transitions

(ϕj , aj , rj , ϕj+1) from D.
14: if episode terminates at step j + 1 then
15: Set yj = rj ;
16: else
17: Set yj = rj + γmaxa′Q̂(ϕj+1, a

′; θ−);
18: Perform a gradient descent step on (y −

Q(ϕj , aj ; θ))
2 with respect to the parameters θ.

19: Every C steps reset Q̂ = Q;
20: return Provisioning scheme X;

TABLE 2
Step-by-step calculation for the example of DUES.

Xf (0 → C1), (2V2 → C2), (3V1 → C3), (4V3 + V4 → C4)
X (V4 → C1), (2V2 → C2), (3V1 → C3), (4V3 → C4)

based on the fast initial provisioning Xf and preprocess it
with ϕ1 = ϕ(sXf

) in lines 3 to 4. The training process starts
from lines 5 to 20. The process of the adjustment starts from
choosing a physical machine from the built feasible actions
set Â that is produced by Algorithm 3. In line 7, the agent
selects a random action at ∈ Â with probability ε, otherwise,
it will select at = argmaxaQ(ϕ(st), a; θ) with the maximum
Q value in line 8. Since there is a queue of VMs from dif-
ferent virtual clusters provisioning on the chosen physical
machine, the agent needs to choose the adjusted objective
based on Algorithm 4 in line 9. At each time step, only one
of the VMs in this queue is adjusted. Then the agent executes
action at in the emulator and updates r and Γ based on
Algorithm 2. We set st+1 = st, at, xt+1, and preprocess
ϕt+1 = ϕ(st+1), and we store the transition (ϕt, at, rt, ϕt+1)
in the replay memory D in line 12. After that, we sample
a random minibatch of transitions (ϕj , aj , rj , ϕj+1) from D.
In lines 14 to 17, the agent will calculate the reward after the
termination of the episode. The objective of our problem is
to maximize the elasticity of the DCN which is consistent
with the cumulative reward received by the agent. In line
18 to 19, the agent performs a gradient descent step on
(y − Q(ϕj , aj ; θ))

2 with respect to the network parameters
θ, and resets Q̂ = Q every C steps. The results are returned



9

-5
-4
-3
-2
-1
0
1

60 70 80 90

El
as

tic
ity

 (%
)

# of tenants

EDP GP Random MFIP

(a) 6-layer topology.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

60 70 80 90

El
as

tic
ity

 (%
)

# of tenants

EDP GP Random MFIP

(b) 7-layer topology.
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(c) 8-layer topology.
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(d) 9-layer topology.

Fig. 4. The elasticities of different DCNs with tenants ranging from 60 to 90 (first-stage).

in line 21. DUES fully considers the tight coupling be-
tween virtual machine placement and bandwidth resource
allocation for the requests of multi-tenant. When there are
resource scaling from tenants running in the data center, our
approach can eliminate erroneous optional targets that seem
plausible but are prone to elastic bottlenecks by building
up the set of feasible actions, which reduces the dimension
of the search space and accelerates the learning rate of the
agent. In addition, the strategy proposed in our framework
enables the agents to accommodate workload fluctuations
by recognizing which virtual machine is being adjusted
based on its current policy, which results in the rapid
allocation of resources under scaling. We use an example to
explain the details of DUES. We suppose that the topology of
DCN is 3-layer with four physical machines. The remaining
computation resource (C1 to C4) are ĉ1 = 2, ĉ2 = 5, ĉ3 = 7,
and ĉ4 = 10. The remaining communication resource of the
physical links (L1,1 to L2,4) are l̂1,1 = 15, l̂1,2 = 15, l̂2,1 = 5,
l̂2,2 = 10, l̂2,3 = 5, l̂2,4 = 1. There are four tenants with
virtual clusters V1 to V4, where |V1| = 3, |V2| = 2, |V3| = 4,
|V4| = 1. According to the Algorithm 1, the fast provisioning
Xf is shown in the first row of Table 2, and the elasticity
EXf

= 0. The upper link of C4 is the bottleneck which is
highlighted with underline. Then we construct the feasible
action set based on Algorithm 3, where Â = C1, C2, C3. We
adjust the VMs based on Algorithm 5, and the provisioning
X is shown in the second row of Table 2.

5 EVALUATIONS

In this section, we conduct extensive simulations and ex-
periments to study the elastic virtual cluster provisioning
in multi-tenant DCNs. We develop a prototype of our al-
gorithms using python, which consists of the construction
of the data center and the requests of multiple tenants.
After presenting the datasets and settings, the results are
shown from different perspectives to provide insightful
conclusions.

5.1 Basic Setting

We use python to build our prototype on workstation
Precision T7910 with Intel Xeon(R) E5-2620 CPU, NVIDIA
RTX5000 GPU, 128Gb memory, and 2Tb hard disk on Linux
operating system. We simulate a DCN of k-level binary
tree topology, where k ∈ {6, 7, 8, 9}. Each physical machine
resource is divided into slots, and each slot can only accom-
modate one virtual machine, which can be easily interpreted
to a real configuration. The physical machines have slot

TABLE 3
Hyperparameter Settings.

Hyperparameter Settings
learning rate α 0.001

e-greedy ϵ 0.98
reward decay γ 0.9

replacing target iterations 200
replay memory D 6000

capacities ranging from 0 to 100, and each of them has a
1Gbps link to connect with a higher layer switch. Every
switch is connected by a higher layer that has double the
communication capacity of the current layer until it reaches
the core. The deployments and workload conditions in our
basic setting consider the observations from analyzing the
public data of Azure [1]. The number of VMs in each virtual
cluster ranges in [10, 20], and the core of VM is set to be
1. We consider the number of users ranging from [60, 90].
The settings of hyper parameters are listed in Table 3. We
test several groups of hyper parameters which include the
learning rate α = {0.0001, 0.0005, 0.001}, and the e-greedy
ϵ = {0.95, 0.96, 0.97, 0.98} and so as to others. We choose
the group of hyper parameters listed in Table 3 as the
experimental setting. In addition to the proposed scheduling
algorithms, five state-of-the-art algorithms are used, simple
DQN [29], DU-DRL with Random Provisioning (DU-RP),
DU-DRL with Equally Distributed Provisioning (DU-EDP)
[5], DU-DRL with Greedy Provisioning (DU-GP), and DQN
only with Stage 1 (DQN-S1).

• DU-RP: virtual clusters of multi-tenant are random
distributed during the fast initial provisioning stage,
and then adaptively updated based on the DU-DRL.

• DU-EDP: virtual clusters of multi-tenant are equally
distributed based on the algorithm proposed in [5]
during the fast initial provisioning stage, and then
adaptively updated based on the DU-DRL.

• DU-GP: virtual clusters of multi-tenant are greedy
provisioned based on the capacities of physical ma-
chines in the DCN during the fast initial provisioning
stage, and then adaptively updated based on the DU-
DRL.

• DQN-S1: virtual clusters of multi-tenant are provi-
sioned based on MFIP, and updated based on simple
DQN.

5.2 Experiment results of baseline algorithms
We first conducted a thorough analysis of the first stage and
verified its effectiveness in achieving optimal results within
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its given constraints under the DCN with topologies k = 6,
k = 7, k = 8, and k = 9. The results are shown in Figure. 4.
In the first stage, we have the following observations: (i).
The MFIP algorithm has the greatest elasticity value under
different topological configurations in the first stage. Among
the comparison algorithms, the GP algorithm has the worst
performance, mainly because the greedy algorithm selects
one of the computational and communication resources in
each decision process without considering the bottlenecks
and trade-offs. By comparison, the results of EDP and
Random algorithms are relatively better than GP, while the
EDP relies on the distribution of the remaining resources of
the underlying physical servers, and the Random algorithm
depends on the placement position of the servers selected
by the randomized method each time slot. (ii). The MFIP
algorithm has the maximum elasticity value in the first stage
for various sets of user requests with the same topology.
Since the physical resources are comparatively adequate
when the scale of the data center is large (k = 9), different
provisioning strategies will not have a significant impact
on elasticity, and the advantage of MFIP on the elasticity
is not particularly obvious when the request size is modest
(60, 70). However, the limited multi-dimensional resources
(k = 6) might result in significant differences in the elastici-
ties across various solutions as the number of user requests
increases (60 to 90).

Based on the results of the first stage, we evaluate the
elasticity value of the second stage as follows. We deploy
the algorithms on tree topology with 6 to 9-layers under
algorithms (DQN, DU-EDP, DU-GP, DQN-S1, DUES) on
each group of datasets and calculate the elasticities within
300 iterations. Among them, DU-RP, DU-EDP, and DU-
GP are based on the first-stage Random, EDP, and GP
methods, respectively. We conducted experiments on the
elasticity values of data centers with different topologies
(k = 6, k = 7, k = 8, and k = 9). The experiment results
are shown in Figures 5 to 8, and we have the following
observations: (i). For the same group of users, the elasticity
values obtained by different algorithms are quite different.
Figure. 5 (a) shows the elasticities under the five algorithms
for the number of 60 tenants with the 6-layer DCN. The first
three columns show the elasticities under the DQN, DU-
EDP, and DU-GP, which are all negative values. It means
that these three algorithms do not give an appropriate
solution for the virtual clusters of these 60 tenants. (ii).
The choice of strategy used for the fast provisioning has an
important influence on the final elasticity value. As shown
in Figure. 5 (a), DU-EDP and DU-GP are the strategies that
adding EDP and GP fast provisioning based on DQN. The
final elasticity values under these two strategies are lower
than simple DQN. However, the elasticity under the DUES
strategy is the highest. Therefore, we have that the choice of
strategies using for fast provisioning is very important for
the elasticity of the DCNs. For example, the strategy DU-
RP does not perform well in the first stage when k = 6,
but as k increases, the elasticity values show better results,
and the trend in the second stage mirrors that of the first
stage and relies on the results. In addition, the DU-GP
strategy could cause some crucial resources (such as certain
computing or communication resources) to become scarce
in the first phase. Such resource shortages could intensify

in the second phase and lead to lower elasticity values.
Based on the dependence between the second stage and
the first stage, we can clearly see that the performance of
the second stage is closely related to the resource allocation
strategy of the first stage. Efficient fast provisioning strate-
gies for the multi-tenant will make great improvements
to the final result, on the contrary, inefficient ones will
bring bad effects. (iii). The algorithm DUES has the highest
elasticity values among different topological configurations
in the second stage. Among the comparison algorithms, DU-
EDP performs poorly when the topology is k = 6 and
k = 7, but its performance improves when the topology
is k = 8 and k = 9 as shown in Figures 7 and 8. This
could be because the DU-EDP strategy can better balance
resource allocation in larger topologies, thereby avoiding
resource bottlenecks that occur in smaller topologies. The
algorithm DU-GP performs consistently poorly because it
prioritizes allocations based only on the elasticity values of
the computational resources in each decision process, with-
out considering bottlenecks and tradeoffs. The performance
of the DU-RP algorithm varies significantly due to the
randomness of the algorithm, leading to inconsistent results.
DU-DRL has an efficient effect on improving the elasticity,
especially when the occupancy of physical resources is not
close to saturation. Comparing sub-figures (a) and (d) of
Figure. 5, the difference between the last two columns of
60 tenants is much higher than 90. The average resource
utilization of the DCNs with 60 and 90 tenants is nearly
80% and 98% under the DUES. Then, the number of tenants
is large but not reaching saturation, and the impacts of
algorithms on the elasticities are higher. (iv). The trends of a
different group of multiple tenants with the same physical
topology are various. Compared with sub-figures (a) to (d)
of Figures. 5 to 8, we can see that a larger number of
tenants in one group will lead to lower elasticity for the
same physical topology. The reason is that more virtual
clusters demand more physical resources, which will lead
to an increase in the combinational utilization of the clusters
and thus lower the elasticity of the data centers. Thus, a
good provisioning scheme can support more virtual clusters
of tenants in the larger data center network. In summary,
compared with DQN, DU-EDP, DU-GP, and DQN-S1, DUES
has better performance in elasticity across the virtual cluster
provisioning in multi-tenant DCNs. The average elasticity
can improve 1.91 times compared with DQN-S1 under the
ranges of tenants [60, 90].

5.3 Experiment results under different DCNs

Based on the experiment results of baseline algorithms un-
der the 6-layer DCN, we conduct the experiments of DUES
to compare the elasticities under different topologies. For
each group of users, we collect five groups of results under
the same settings.

5.3.1 Convergence
We investigate the convergence for the groups of tenants
(60, 70, 80, and 90) under physical topologies with different
layers (7-layer, 8-layer, and 9-layer). The results are shown
in Figures. 9 to 11. The gray parts are the ranges of the collec-
tion results, and the bright lines with different colors are the
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Fig. 5. The elasticities of 6-layer DCNs with tenants ranging from 60 to 90.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

DQN DU-RP DU-EDP DU-GP DQN-S1 DUES

El
as

tic
ity

 (%
) 

(a) 60 tenants.
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(b) 70 tenants.
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(c) 80 tenants.
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Fig. 6. The elasticities of 7-layer DCNs with tenants ranging from 60 to 90.
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(a) 60 tenants.
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(b) 70 tenants.
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(c) 80 tenants.
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Fig. 7. The elasticities of 8-layer DCNs with tenants ranging from 60 to 90.
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(a) 60 tenants.
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(b) 70 tenants.
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(c) 80 tenants.
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Fig. 8. The elasticities of 9-layer DCNs with tenants ranging from 60 to 90.

mean values. Additionally, we have the following observa-
tions: (i). The increasing number of tenants has an influence
on the convergence. As shown in Figure. 9, the elasticity of
the 7-layer data center is scaling with the increasing number
of iterations. For each group of tenants, the elasticity begins
to converge between 50 and 100 iterations and keeps at a
high level of around 300 iterations. The growth rate is slow
when the number of users is small, i.e. sub-figures (a) and
(b) of Figure. 9, while it is relatively fast when the number of
users is scaling. The reason is that the higher number of the
total virtual clusters provisioning in the data center greatly
decreases the rest of the available physical resources, which
leads to a reduction of the searching space. (ii). The elasticity
fluctuates within a relatively fixed range. There are many
different placement results in the learning process of DUES,
and the elasticities generated by these results will fluctuate
among several relatively fixed values in the convergence
process. As shown in the sub-figures (a), (b), and (c) of
Figure. 9, the fluctuation of elasticities is within the range
between 0.1 and 0.2. Compared with 8-layer and 9-layer,
the fluctuation of elasticities is within the range of 0.1 and

0.12, respectively. This range is correlated to the topology of
the DCN and the provisioning deviation of a few individual
VMs.

5.3.2 Elasticity
According to the convergence of the elasticities obtained
under the topologies with different layers, we assess the
average of the highest elasticities among the five groups of
results with (λ = 0.5, φ = 0.5) which are shown in Fig-
ure. 12. Additionally, we have the following observations:
(i). The final elasticities decrease with the increasing number
of tenants under the same t opology. As shown in sub-figure
(a) of Figure. 12, the increasing rates between the number
of tenants and the elasticities are similar, which is not the
case in the other three groups. Such as the 7-layer topology
group, the gap of the elasticity between 70 and 80 is not
large, however, when the number of tenants increases to
90, the value of the elasticity decreases sharply. Since the
sizes of the requested virtual clusters ranges in [10, 20], the
total amount of resources requested of the group with a
lower number of tenants may be close to the higher one,
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Fig. 9. The elasticity under 7-layer topology.
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(c) 80 tenants.
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Fig. 10. The elasticity under 8-layer topology.
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Fig. 11. The elasticity under 9-layer topology.
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Fig. 12. The elasticities under different DCNs.

which leads to a not large gap of these groups. (ii). With
the scaling of the topologies of the DCNs, the impacts of
algorithms on the elasticities are higher. However, when
the resources are sufficient to a certain level, the effect of
updating strategy on elasticity may be small as shown in
sub-figure (d) of 9-layer topology. Based on the experiment
results of benchmarks under the 6-layer DCN, the elasticity
depends on the localities of VMs requesting from different
virtual clusters, which means a provisioning scheme can
support more virtual clusters in a larger DCN. Compared
with the same column on Y -axis with sub-figures (a) to (d)

of Figure. 12, the elasticities are increasing with the scaling
topologies of the DCNs, which means more available re-
sources can be supported by the providers. Additionally, we
estimate the descent rates of several DCNs and compare the
average elasticities; the results are shown in Figure. 13. We
see that the fluctuations in elasticities decrease sharply when
the scales of the topologies are 6 and 7 layers. However,
the trend is flat when the scales of the topologies increase
to 8 and 9 layers. Thus, we find that the fluctuation rates
are inversely proportional to the scaling of the topologies.
In summary, DUES in multi-tenant DCNs shows better
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TABLE 4
Coefficient Setting.

group 1 2 3 4 5
(λ,φ) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3)

performance in terms of elasticity at different topologies.

5.3.3 Coefficient
In order to further analyze the impact of the coefficient
on the combinational elasticity, we experimented on two
distinct scenarios to confirm the efficacy of the introducing
coefficients, and we used λ and φ to represent coefficients
of physical machines and links, respectively. The setting
of coefficients is shown in Table 4. We first evaluate the
scenario where only compute resources are increased and
users in the data center request an increase of 1 virtual
machine. Due to the scaling of virtual machines between
different virtual clusters, the communication between them
is 0. Here, we assume that the current number of tenants
in the data center is 90, which can be represented as (90, 1).
The result is presented as follows. It is obvious that there are
differences in the results of elasticity at different coefficients,
and the result is shown in Figure. 14(a). Among them, the
elasticity value is highest under the coefficient (0.4, 0.6),
which indicates that the expansion of this group of queries is
focused on physical machines and the subsequent scalability
advantage is in communication resources. We then evaluate
the scenario where only one virtual cluster has a scaling
requirement. Since only the internal resources within one
cluster have grown, the communication resources account
for the main part where scaling in [45, 90] Gbps based on
the function f(Vk, Ci). Here, we assume that the current
cluster resource growth requirement is 90, which can be
represented as (1, 90). The result is shown in Figure. 14(b).
Among them, the elasticity value is the highest under the
coefficient (0.3, 0.7), which indicates that the expansion of
this group of queries is focused on physical links and the
subsequent scalability advantage is in computing resources.
Based on the above result, we have that the values of coeffi-
cients can more accurately reflect the various requirements
for different resource categories and optimize the allocation
by introducing coefficients to weigh the importance of Em

and El.

6 CONCLUSION

In this paper, we address the virtual cluster provisioning
problem in multi-tenant cloud data centers. We use elasticity
to measure the potential growth of multi-tenant in terms
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Fig. 14. The elasticities of the different scaling requirements in extreme
scenarios.

of computing and communication resources. We aim to
minimize the elasticity by designing a two-stage framework
DUES, which consists of two stages. In the first stage, we
first propose a fast initial provisioning MFIP scheme to
realize the rapid response of multi-tenant, and we prove
that MFIP is optimal under the single computation resource
constrain. In the second stage, we propose a dynamic
updating strategy DU-DRL based on deep reinforcement
learning to further improve the elasticity of virtual clusters
that are in use for scaling. Additionally, to avoid the high
dimensions caused by the large scales of tenants and the
DCN, we propose to train a fully connected neural network
by designing a new feasible action set to realize the reduc-
tion, and it approximates the policy based on the proposed
aggressive objective selection method in DU-DRL. Finally,
we conduct extensive evaluations under various scenarios
to demonstrate that our scheme outperforms existing state-
of-the-art methods in terms of both elasticity and efficiency.
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