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Abstract—Loosely coupled and highly cohesived microservices running in containers are becoming the new paradigm for application
development. Compared with monolithic applications, applications built on microservices architecture can be deployed and scaled
independently, which promises to simplify software development and operation. However, the dramatic increase in the scale of
microservices and east-west network traffic in the data center have made the cluster management more complex. Not only does the
scale of microservices cause a great deal of pressure on cluster management, but also cascading QoS violations present a substantial
risk for SLOs (Service Level Objectives). In this paper, we propose a Microservice-Oriented Topology-Aware Scheduling Framework
(MOTAS), which effectively utilizes the topologies of microservices and clusters to optimize the network overhead of microservice
applications through a heuristic graph mapping algorithm. The proposed framework can also guarantee the cluster resource utilization.
To deal with the dynamic environment of microservice, we propose a mechanism based on distributed trace analysis to detect and
handle QoS violations in microservice applications. Through real-world experiments, the framework has been proved to be effective in
ensuring cluster resource utilization, reducing application end-to-end latency, improving throughput, and handling QoS violations.

Index Terms—Cloud Computing, Distributed Tracing, Microservices, Service Scheduling.

✦

1 INTRODUCTION

C LOUD services have recently begun to make a signifi-
cant shift in architecture from monolithic to hundreds

or thousands of loosely coupled microservices [1]. Each
microservice can be implemented, deployed, and updated
independently without affecting the integrity of the whole
application. Therefore, more and more teams are adopting
microservice architectures to improve the scalability, porta-
bility, maintainability, and availability of their applications
[2], [3]. The microservice architecture is a design method-
ology for building a Web service with a suite of small
services. Each service communicates with other services
using lightweight mechanisms, e.g., an HTTP resource API
or a remote procedure call (RPC) [4], which completely
changed the assumptions that traditional cloud systems are
designed with. It also means that microservices present both
opportunities and challenges when it comes to improving
utilization and optimizing the quality of service (QoS).

The main difference between microservices architecture-
based applications and traditional monolithic applications is
that monolithic applications in the data center only generate
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north-south traffic [5], and cloud service providers are more
concerned with load balancing of user request traffic. Mi-
croservices architecture-based applications tend to generate
more east-west traffic in the data center, which is caused by
inter-invocations between microservices. For this scenario,
there is space for futher optimization in the data center.
The invocation dependencies in microservice applications
can be described as a tree-like topology that provides a
good opportunity for optimal deployment of microservice
applications [6].

However, most of the cloud data centers use straightfor-
ward schemes to make resource allocation decisions [7], [8].
They often overlook the relationship between the allocated
resources and the overall performance of each individual
microservice. As a result, it may cause a waste of valuable
resources on some critical microservices. There are some
approaches (e.g., over provisioning [9], recurrent provision-
ing [10]) in large-scaled cluster that tend to allocate more
CPUs and memory to microservices using performance
models [11], heuristic methods [12], or machine-learning
[13], [14] algorithms. However, such approaches have two
limitations. Firstly, they ignore the characteristics among mi-
croservice applications, which indicate that the topological
dependencies of microservices cannot be utilized. Secondly,
they ignore the highly dynamic characteristics of microser-
vices and clusters. These approaches not only cannot handle
the dynamic Service Level Objectives (SLO) violation prob-
lems, but also their performance may be degraded when
microservices change [15].

Due to the large amount of east-west traffic in microser-
vice applications, a straightforward idea of scheduling opti-
mization is to consider the topology of microservice appli-
cations. That is, placing the microservices that constitute the
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application next to each other to reduce the communication
cost between microservices and the network interference
from other services. However, such kind of solution often
leads to the aggregation of microservices on the hosts, and
the resource managers in the data center are constrained
to allocate resources rationally to improve the resource
utilization.

In summary, how to effectively use the topology infor-
mation embedded in microservice applications to reduce
service communication overhead, improve resource utiliza-
tion in deployment, and handle dynamic SLO violations is
a hard problem, and we mainly aim to tackle this problem
in this paper. The main contributions of this paper can be
sumarized as follows:

• Topology-aware scheduling algorithm: We analyze the
characteristics of microservice and define the profile
of microservice applications. And we identify the key
parameters that affect the deployment of microser-
vice applications and define the profile of cluster.
Based on these, we use a deploying model to de-
scribe the deployment of microservice applications,
and futher propose a new algorithm (MOTAS) that
aims at improving resource utilization by reducing
resource fragmentation and improving application
stability by reducing communication interference.

• Scheduling framework: To address two main dynamic
problems that affect the SLO of microservice ap-
plications, we propose a topology-aware schedul-
ing framework. In the framework, we extend the
static topology-aware scheduling algorithm to the
dynamic level. We propose a rescheduling mecha-
nism to support the structural changes of microser-
vices and minimize the impact of redeployment on
applications. And we introduce a distributed track-
ing system to analyze the critical paths of microser-
vice request responses. Based on the monitoring and
analysis of critical paths, the automatic reconciliation
of affected microservices can be achieved to guaran-
tee the performance of microservice applications.

• Evaluation: We perform an evaluation in a real clus-
ter environment to verify the effectiveness of the
scheduling framework in terms of resource utiliza-
tion and SLOs of service. By comparing it with the
First Fit scheduling strategy and Kubernetes default
scheduling strategy, we prove that our topology-
aware scheduling strategy has better performances in
reducing service response time, improving through-
put, and increasing cluster resource utilization. Fur-
thermore, by injecting SLOs violations manually, we
prove that our scheduling framework can effectively
optimize the deployment of microservices for dy-
namic abnormalities of clusters and ensure the qual-
ity of service of applications.

This paper is organized as follows. We introduce the
background in Section 2, and formulate the problem as
a multi-objective optimization model in Section 3. The
topology-aware scheduling algorithm and framework are
presented in Section 4 and Section 5, respectively. We evalu-
ate the performance of the proposed scheduling framework

Fig. 1. Typical Topology of Microservice Application

in Section 6, and discuss the related work in Section 7. In
Section 8, we conclude the paper.

2 BACKGROUND

Microservices split monolithic applications into a large
number of small microservice applications. The dramatic
expansion of the number of services poses a very big
challenge for service deployment and management. First,
the invocations between microservice applications rely on
HTTP requests or remote procedure calls, and the bottleneck
of end-to-end response latency of microservice architecture
applications is more serious on the network than mono-
lithic applications. According to statistics [16], the network
communication time overhead in microservices accounts
for more than 30% of the overall time overhead of the
application at lower loads, and can even account for more
than 55% at high loads, making it necessary to optimize the
microservice scheduling deployment from the network.

On the other hand, cluster users utilize cluster resources
in the form of multiple users and multiple tasks in order to
improve the utilization of cluster resources. The interference
between workloads often leads to degradation of SLOs [17],
[18], [19]. Especially in the mixed online and offline task
deployment environment, a large number of offline tasks oc-
cupy bandwidth, and resource contention eventually leads
to degradation of SLOs of some online services.

A typical microservice architecture usually consists of
multiple layers, mainly including the access layer, appli-
cation layer, and data layer. Requests are initially received
by the access layer, which implements authentication, load
balancing, and traffic management. And then the requests
are forwarded to the application layer. The application layer
consists of multiple microservices, each of which constitutes
an independent functional unit, and completes the response
of requests through collaborative invocations among them.
The data layer includes databases and caches, which interact
with some services in the application layer to complete data
reading and writing operations.

Therefore, the degradation of the SLOs of a single mi-
croservice can lead to a great impact on the overall per-
formance of microservices architecture-based applications.
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Preventing online service network bandwidth contention at
the service deployment level is also a good way to improve
service quality and user experience.

The topology graph of a microservice application can
be obtained by portraying a large number of strong de-
pendencies in the microservice application. The topology
graph of a microservice application can be described as a
directed graph, and the service topology graph provides
room for deployment optimization. The abstract model of
microservice application invocation is shown in Fig. 1 (the
topology in Fig. 1 is simplified to some extent for ease of
representation), where the vertices of the graph represent
a microservice and the edges represent the communication
relationships between microservices.

We set an associated weight for each edge of the mi-
croservice invocation relationship, which is used to mark
the communication volume. The weights of the edges are
normalized according to the total available bandwidth of the
physical link, where zero indicates no communication and a
greater-than-zero weight indicates the communication level.
The greater the communication level, the more susceptible
the communication to interference from other applications’
communication.

The topology of physical clusters is often ignored in the
design of many scheduling strategies. In fact, microservices
are distributed on different hosts; when a user sends a
request, it may require dozens or hundreds of microservices
distributed on different hosts to work together to complete
the response.

At such a cluster scale, the SLOs of the application
become unreliable. The reasons include: first, a large number
of network calls occupy a significant portion of the time
overhead [20], and the forwarding queues in the network
switches amplify the performance instability [21]; second,
although the replications of microservices improve the over-
all reliability of the application, exceptions in the individual
services still can cause overall application performance to
degrade [16].

Take the container orchestration service Amazon EKS
[22] as an example. A typical cluster architecture designed
for an application is shown in Fig. 2: Microservices are
run in the form of containers in different hosts (Node);
the ”Node” in the EKS is composed of an Amazon EC2
instance i.e., a Virtual Machine (VM), provides the basic
environment and resources for container services. Nodes are
organized into node groups, and a cluster contains multiple
node groups, which are distributed on physical machines
within the cluster. The physical machine can run multiple
nodes (VM) through virtualization and is distributed among
different racks (Racks) under the Availability Zone (AZ).
These system components work together from the bottom
to build the physical environment where the microservice
applications run.

The network topology of the container orchestration
system in Fig. 2 can abstractly describe the tree topology
shown in Fig. 3, which consists of multiple layers. The apex
of the tree structure indicates the availability zone (we only
discuss the system architecture under a single availability
zone here), and the next layer below it is the aggregation
layer where the rack indicates the rack facilities of the
aggregation layer. The racks are connected to the core switch

Fig. 2. Illustration of an Container Orchestration System (Amazon EKS
as a sample)

through the aggregation layer switch. The next layer is the
physical machine layer, using the symbol PM to indicate
the set of all physical machines in the physical machine
layer. The physical machines are connected to each other
through the access layer switch. The next layer denotes the
virtual machine layer, using the symbol VM to denote the
set of all virtual machines in the virtual machine layer. The
virtual machine vm ∈ VM constitutes the environment for
microservice operation. The leaf node of the tree topology
is the microservice ms, which is scheduled by the container
orchestration system to the corresponding vm.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Service Profile

For an application built on microservice architecture, we de-
scribe its summary information and formalize the summary
information as a service profile.

As the typical microservice architecture shown in
Fig. 1, we represent the service profile as a tuple
< MS,MS DEP >.

An application contains multiple microservices to pro-
vide services to users. We use the symbol MS to denote the
set of all microservices contained in a microservice appli-
cation. The total number of microservices is M. Since mi-
croservices constitute a directed graph, we use the symbol
MS DEP to describe the topological dependencies in a mi-
croservice application, and the set of MS DEP contains the
information of all edges in the directed graph. For example,
if there is a call between microservice msi and msj, the in-
vocation can be described as (msi,msj, transij) ∈ MS DEP,
where msi denotes the caller, and msj denotes the callee. The
traffic in the route is represented using transij .

The service profile includes not only the topology di-
agram of the microservice, but also the resource require-
ments. We use REQi to describe the requirements of msi
on physical resources (e.g., CPUs requirements, memory
requirements, storage requirements).

3.2 Cluster Profile

Taking Amazon Cloud’s EKS as an example, the profile
of the container orchestration cluster is represented as
< N,LINK >, where the symbol N denotes the set of all
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Fig. 3. Topology of Cluster

working nodes in the container orchestration system. An el-
ement nx ∈ N denotes a working node. CAPx and ALLOCx

denote the total amount of resources and allocated resources
in each dimension of node x. Respectively the symbol
LINK denotes the set of cluster communication links, where
linkl ∈ LINK constitutes the detailed description of the
links. In the quadruplet (epl1 , epl2 , costl,bandl), we use epl1
and epl2 to locate a link with two endpoints. Since different
links have different communication costs and bandwidth,
we use costl to denote the communication overhead of the
link and bandl to denote the available bandwidth. The main
notions are listed in TABLE 1.

3.3 Optimization Objective

In this section, we take resource fragmentation, network
overhead and network contention into account. And we
build a multi-objective optimization model for microser-
vices deployment.

Resource fragmentation is a key factor that affects the
resource utilization of a cluster. The core purpose of our
scheduling algorithm in this paper is to reduce the gener-
ation of resource fragments on work nodes. Therefore the
mathematical model for the overall resource fragmentation
of the cluster is defined as in Eqs. (1)-(3). We use existi,x
to denote that service msi is deployed on node nx. Since
the service is sensitive to one resource but not to others,
in Rx we assign different weights α to different resources,
summing to 1.

FRAG =
∑

nx∈N

√∑D
d=1 (γ

d
x −Rx)

2

D
(1)

γd
x =

allocdx + existi,x · reqi
capdx

(2)

Rx =
D∑

d=1

αdγd
x

D
(3)

In Eq. (4) we describe the cost of communication. Eq. (5)
describes the interference of network, and in both equations
(msi,msj) ∈ DEP, linkl ∈ LINK(msi,msj), msj is the down-
stream service of msi.

COST =
DEP∑

(msi,msj)

LINK∑
linkl

costl (4)

INTER =
DEP∑

(msi,msj)

LINK∑
linkl

transij
bandl

(5)

3.4 Constraints
For the above three models, we want to achieve a low frag-
mentation rate, low communication overhead, low network
interference, and optimize for these three objectives simulta-
neously. Eqs. (6)-(10) are the constraints of our optimization.

allocdx + reqdi < capdx, ∀nx (6)

DEP∑
(msi,msj)

transij < bandl,

∀linkl ∈ LINK(msi,msj)

(7)

existi,x =

{
balance, if msi on nx,
0, if msi not on nx

∀msi,∀nx (8)

N∑
x=1

existi,x = 1, ∀msi (9)
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TABLE 1

Symbols in the Deployment Model

Microservice

MS
The set of all microservices contained

in the application

MS DEP All dependencies between microservices

(msi, REQmsi )
(msi,REQmsi ) ∈ MS indicates

services msi and its resource requirements

reqdi ∈ REQi The demand for resource d by msi

(msi,msj , transij)

(msi,msj, transij) ∈ MS DEP means

msi invokes msj, and transij indicates

the traffic generated by service call

DM(msi) = msj msj is the upstream service of msi

Work Node

N The set of all work nodes

(CAPx, ALLOCx)

nx = (CAPx, ALLOCx) ∈ N

describes the available and allocated

resources of the work node nx

capdx Total available resource of d on nx

allocdx Allocated resource of d on nx

Links

LINK The set of all link in the cluster

(epl1 , epl2 , costl, bandl)

linkl = (epl1 , epl2 , costl, bandl) ∈ LINK

describes the endpoints, cost and

bandwidth of linkl

balance =

{
1, MAXγx −MINγx ⩽ T ,
0, MAXγx −MINγx > T

∀nx (10)

Eq. (6) restricts the amount of allocated resources from
exceeding the maximum limit. Eq. (7) limits traffic from
exceeding the maximum bandwidth. And Eqs. (8) and (9)
mean there will be only one instance for one service, and
it’s located on node nx. The Eq. (10) sets a threshold value
T. Scheduling that breaks the threshold cannot take effect,
which is to ensure the balance of node resource allocation
and prevent the generation of large resource fragmentation.

Minimize FRAG+ COST + INTER

s.t. Eq · (6)− (10)
(11)

The objective in Eq. (11) is to minimize the deployment
fragments, cost, and interference under the constraints of
Eqs. (6)-(10).

4 TOPOLOGY-AWARE SCHEDULING ALGORITHM

It is difficult to find the optimal solution to a multi-objective
optimization problem directly, especially in the environment
of cluster scheduling, which is affected by the dynamics of
the environment and the results of scheduling decisions are

effective. This means that the global optimal solution is often
degraded by the changes of the environment. Therefore,
this paper proposes a topology-aware scheduling strategy
for microservices based on a heuristic graph partitioning
algorithm. For the deployment of microservices, the policy
only goes to a Best-Effort approach to find the optimal
solution, in which the resource usage of each working node
and the resource demand of microservices are considered
to filter out the working nodes that are not suitable for the
scheduling of that microservice. The the final scheduling lo-
cation is confirmed by the evaluation of resource utilization,
communication overhead, and network interference.

Algorithm 1 MOTAS Algorithm
Require: Q: priority queue for applications;

MS: microservice application to be scheduled;

N: work nodes;

DEP: dependencies of microservices;

LINK: topology of nodes with cost and capacity;

1: while Q ̸= ∅ do

2: MS← Q.pop()

3: p← recursiveGraphMapping(MS, DEP, N, LINK)

4: if p ̸= ∅ then

5: doPlacement(p)

6: else

7: Q.add(MS)

8: end if

9: end while

As shown in Algorithm 1, we maintain a priority queue
for microservice applications, which supports the schedul-
ing of microservice applications in the order of priority. We
invoke a recursive mapping algorithm during the schedul-
ing process to determine the mapping relationship from
microservice applications to hosts. The recursive mapping
algorithm will be described in Algorithm 2. In addition, we
also introduce the idea of Gang Scheduling [23], where the
actual execution of the container placement instruction is
done only after all microservices in the application have
been scheduled. This is because microservice applications
usually contain many microservices; if scheduling is per-
formed at the granularity of a single microservice, when
some important microservices do not meet the scheduling
conditions and cannot be deployed, other microservices
will keep waiting for these services. The resources will be
occupied for a long time, which results in a great waste
of resources. Gang scheduling deploys microservices at the
application granularity, which guarantees that all microser-
vices of the application can be scheduled and deployed in a
complete manner.

The design of Algorithm 2 is based on the idea of the
heuristic Fiduccia Mattheyses algorithm [24], which contin-
uously partition the set of working nodes by recursion to
divide different network partitions and finally determines
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Algorithm 2 Recursive Mapping Algorithm
Require: MS: microservice application to be scheduled;

N: work nodes;

DEP: dependencies of microservices;

LINK: topology of nodes with cost and capacity;

Ensure: p: placements;

1: if |MS| = 0 then

2: return nil

3: end if

4: if |N| = 1 then

5: return p← (MS, N)

6: end if

7: (N0, LINK0, N1, LINK1)

← nodePartition(N, LINK)

8: result

← svcPartition (MS,N0, LINK0, N1, LINK1)

9: if result = failed then

10: return nil

11: end if

12: (MS0, MS1)← result

13: p0 ←MOTAS(MS0, DEP, N0, LINK0)

14: p1 ←MOTAS(MS1, DEP, N1, LINK1)

15: return (p0 + p1)

the placement of microservices. In the partitioning of the
nodes, we consider the number of physical links and the
communication cost between the worker nodes, aiming
to reduce the communication overhead between different
network partitions. In the specific design of the algorithm,
two functions are called in each recursion. Among which
nodePartition() adopts the Fiduccia Mattheyses algorithm
for partitioning the physical topology, and we add the
consideration of link communication cost on the basis of
dealing with the minimum partition, which requires the
partition line to pass through edges with the minimum link
communication cost.

However, since the topology of the working nodes is a
typical tree structure, the partitioning process of the work-
ing nodes using this algorithm often leads to the microser-
vices’ aggregation. Therefore, in the division of microservice
topology, resource utilization is also taken into account to
ensure that the principle of balanced resource allocation is
not violated in the case of single-point deployment.

The svcPartition() in Algorithm 2 is used to partition
the microservice topology, but the partitioning and selection
of microservices are more complex. This function will be
described in detail in Algorithm 3. There are two stopping
conditions for recursion: first, the MS set of the partitioned
microservice group is the empty set, implying that the group

of microservices is not involved in the deployment decision;
second, the set N of the partitioned working nodes contains
only one node, implying that the node is the node for service
deployment.

Algorithm 3 Microservice Partition Algorithm
Require: MS: microservice application to be scheduled;

DEP: dependencies of microservices;

N0: work nodes in part 0;

N1: work nodes in part 1;

LINK0: links in part 0;

LINK1: links in part 1;

Ensure: (MS0,MS1): partition of microservices;

1: while MS ̸= ∅ do

2: ms← travalInOrder(MS)

3: if isScheduled(ms) then

4: continue

5: end if

6: (N
′

0, LINK
′

0, N
′

1, LINK
′

1)

← filterBalanceNode(N0, LINK0, N1, LINK1)

7: (n0, cost0, n1, cost1)

← getMinCost(ms, DEP, N
′

0, N
′

1, LINK
′
)

8: (inter0, inter1)

← getInter(ms, DEP, n0, n1, LINK
′
)

9: (frag0, frag1)← getFrag(ms, n0, n1)

10: if score0 < score1 then

11: MS0.add(ms)

12: else

13: MS1.add(ms)

14: end if

15: end while

16: return (MS0,MS1)

Algorithm 3 first traverses the topology graph of mi-
croservice applications by means of hierarchical traversal,
and schedules the microservices in the order of microservice
application invocation to ensure that all other services that
depend on the service have finished scheduling at the time
of scheduling. The algorithm divides the microservice MS
into two sub-partitions: MS0 and MS1. Each of which can
contain either partial services or all services. The tasks in
MS0 will be placed in N0, while the tasks in MS1 will be
placed in N1. In order to reduce the subsequent computa-
tion overhead, the working nodes that violate the resource
balance provisions are first eliminated in the scheduling
based on the resource demand information of the services.
For the suitable nodes the minimum value of the obtainable
communication cost and the corresponding working nodes
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Fig. 4. Architecture of Topology-aware Scheduling Framework

are determined by the deployed services on them.
According to the optimization objectives in the deploy-

ing model, the measurement of resource fragmentation
and network contention is also included in Algorithm 3.
getInter() and getFrag() refer to the definitions given in
Eqs. (3) and (5), and the suitability of each sub-partition can
be evaluated by calculating the communication cost cost,
network interference inter and fragmentation rate frag.
Finally, the utility function score() is used to calculate the
utility of deploying service ms in this partition, and score()
is shown in Eq. (12), we still use α to denote the weight of
each variable, and the sum of α is 1.

score = αccost+ αffrag + αiinter (12)

5 TOPOLOGY-AWARE SCHEDULING FRAMEWORK

Due to the complexity of microservices, the topology is
difficult to define and illustrate artificially in large mi-
croservice applications. In addition, receiving the influence
of dynamism, the topology of microservice applications
and the cluster environment may change and lead to the
degradation of the quality of service of the application.
We introduce a distributed tracking system to analyze the
request information in the microservice system, obtain the
execution graph of each request, and classify and synthe-
size the request execution graph according to the division
of microservices to obtain the global topology description
information of the microservice application. And we design
the scheduling framework to respond to the quality of
service degradation problem of the application.

5.1 Topology-aware Scheduling Framework Architec-

ture
It is very difficult to locate all kinds of performance bottle-
necks in a microservice environments. To solve the dynam-
icity problem in microservice systems, distributed tracing
systems are applied to analyze and monitor complex ap-
plications under distributed systems, as well as to locate

Fig. 5. Architecture of Topology-aware Scheduling Framework

the root causes that affect the performance of application
services. The distributed tracing system can take the request
as the tracing object and follow the execution path of the
request to obtain the execution information of all services
along the request execution path. This section introduces the
distributed tracing system in the dynamic topology-aware
scheduling framework for microservices with the following
two main objectives:

Firstly, acquire service profile dynamically: Microservice
applications are characterized by a large number of services
and complex invocation relationships and it is difficult
to sort out the invocation relationships of large-scale mi-
croservices in practical scenarios. The way to define service
profiles manually and input them into a topology-aware
scheduling algorithm has greater limitations, both from the
perspective of complexity and dynamism. By introducing
a distributed tracking system into the dynamic topology-
aware scheduling framework for microservices, the execu-
tion history of microservices can be analyzed by recording
the execution paths of a large number of requests on the
one hand, and the topology of microservices can be restored
from the execution history graph.

Secondly, quantify the impact of cluster dynamics on
microservice applications: the SLOs of microservice applica-
tions are determined by the execution time and communica-
tion overhead of individual microservices. While the cluster,
as the bearer of a large number of microservices, has a highly
dynamic resource environment and network environment.
The SLOs of microservice applications have uncertainty in
this situation. We implant probes of distributed tracing in
microservices, analyze and extract the invocation path of
each microservice under different requests. By analyzing
the execution time of microservices at the nodes on the
invocation path, we can effectively determine whether the
microservices are affected by resource contention and band-
width contention, and make timely adjustments based on
the information of trace analysis.

As shown in Fig. 4, the design architecture of the dy-
namic topology-aware scheduling framework is presented.
In this paper, we introduce a tracing module the scheduling
framework. The design of the tracing module is mainly
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based on the implementation of Google’s distributed tracing
system Dapper [25] and its open-source version Jaeger and
Zipkin: an observation probe is introduced in each mi-
croservice, the probe aggregates and reports the invocation
information of each microservice instance to the tracing
module. As shown in Fig. 5, the invocation information
includes: request ID, trace ID, invoker ID, service name,
invocation start time, invocation consume time, etc. The
request ID is a unique identifier for the current request,
and the request contains multiple calls; each call also has
a unique identifier ID and contains information about the
upstream call to analyze the dependency.

The tracing module stores the invocation information
in a separate database through the message middleware,
which can relieve the writing pressure on the database
caused by a large amount of call information to a certain ex-
tent. The topology of the entire microservice application can
be obtained by synthesizing the invocation information. The
graph database is also available as an option for the frame-
work by storing the execution history graph in the graph
database, allowing easy storage of complex invoker-server
relationships between microservices based on request types,
as well as efficient querying of the critical path/component
extraction graph. In addition, in order to obtain information
about the load on the invocation path, we additionally
include information about the size of request packets and
callback packets in the invocation information, which can
be efficiently used to set the weights of each edge in the
topology.

The reconciler in Fig. 4 is the core of the scheduling
framework. The design concept of the reconciler is to keep
the microservice application as a whole in an optimal state
of service by adjusting microservices that are affected by
resource contention and degraded in quality of service. The
parsing module in the reconciler continuously analyzes the
request execution information reported by the distributed
tracing system and restores the topology of the microservice
application in a large number of request calls in terms of
application as a category, which is stored in the form of a
configuration file and becomes part of the summary descrip-
tion of the microservice application. In order to record the
communication weights on each request link, the reconciler
also categorizes the number and size of different requests
during the period, and this information will also be stored
in the form of a service profile, which is an important basis
for the scheduler to make scheduling decisions.

In addition, the reconciler is also used to sense the
performance of microservices. When the performance of mi-
croservices is affected by the resource occupation of working
nodes or the bandwidth occupation of invocation links, the
reconciler initiates a notification to the scheduler to inform
it of the affected microservices. The scheduler adjusts the
deployment of microservice applications by rescheduling
to ensure the SLOs of time-sensitive applications, and the
relevant algorithm and processing logic of the reconciler is
further described in subsections 5.2 and 5.3.

The scheduler in Fig. 4, as its name implies, is re-
sponsible for assigning work nodes to microservices. The
scheduler supports the scheduling of general container ap-
plications, but can also receive the outline description of
microservice applications and complete the scheduling of

Fig. 6. The Case of Topology Change

microservice applications based on the scheduling policy in
subsection 5.3 of this paper, in conjunction with the specific
topology of the microservices.

It should be additionally noted that although the re-
source overhead and network footprint of the observation
probe is relatively small, it may still have an impact on
the performance of the microservice itself. In order to cir-
cumvent the impact of the probe on the application, we
use the probabilistic sampler of Jaeger [26] and set the
sampling frequency of this framework to 0.1 based on the
known experimental user request rate, i.e., one-tenth of the
calls are randomly collected and reported. It is experimen-
tally observed that the loss to the microservice application
throughput is less than 0.8% and the impact on latency is
less than 0.5% when the sampling frequency is 0.1. However,
there may be no way to use a probabilistic sampler as
described above for a recently deployed application where
the developers do not know the user request rate in a real-
world environment. This needs to be adjusted according
to the actual situation. For example, the larger the user
request rate, the smaller the sampling frequency should
be. To reduce the impact of trace sampling on microser-
vice application throughput and response latency in a real-
world environment, developers can also use a rate limiting
sampler [27] or adaptive sampling [28], both of which are
provided by Jaeger.

5.2 Extract Critical Path From The Trace

Applications designed with microservice architecture are
dynamic, as shown in Fig. 6: (a) The updates to microservice
application interfaces, changes to invocation methods and
invocation relationships can lead to changes in a service
profile, and scheduling decisions that rely on application de-
scription information may be invalidated as a result; (b) The
scaling strategies of container orchestration systems may
increase or decrease the replicas of microservices, which
may also influence the performance of static topology-aware
scheduling algorithms.

Based on the analysis of microservice application invo-
cation information with the tracing module, the topology
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diagram of the entire microservice application can be ob-
tained. In some cases, service profile changes may not affect
the overall performance of the application; it is only when
the topology on the critical path changes that the overall
performance of the application will be affected.

Fig. 7 shows that during the request-response process
of a microservice application, there are one or more in-
vocation paths to respond, where the path that has a
decisive impact on the end-to-end response time of the
request is defined as the ”critical path (CP)”. Since the
critical path is usually the longest path from the start
of the client request to the return of the request by the
microservice application, the critical path determines the
end-to-end response latency of the microservice application.
The request execution diagram shown in Fig. 7 shows all
the execution paths of a request, and the invocation paths
pass through the compose-service, user-service, media-
service, text-service, user-mention-service, post-storage-
service, url-shorten-service, user-timeline-service, home-
timeline-service, etc. The invocation modes between ser-
vices usually include the following three: serial invocation,
parallel invocation, and asynchronous invocation.

The critical path determines the end-to-end response
latency of the microservice application. Therefore, in order
to measure the degree to which the microservice application
is affected by the dynamics, it is necessary to analyze the
critical paths of the different invocation interfaces of the mi-
croservice application and establish the mapping between
the interfaces (usually in the form of ”/api”) and the critical
paths.

Algorithm 4 describes how to establish the correspond-
ing critical paths for different requests. The critical path
resolution algorithm starts from the root node of the request
execution graph (i.e., the most upstream service nginx), and
by checking the request execution graph, it obtains the last
returned microservice (home-timeline-service) among the
downstream services. And then the algorithm recursively
invokes the critical path resolution algorithm to analyze
the critical path composition of the downstream service,
and when the node to be searched is empty, the recursive
algorithm returns part of the critical path. When the analysis
of the home-timeline-service is completed, the same analysis
will be performed on the previous microservice (i.e., text-
service) that has a serial execution relationship with the
home-timeline-service to obtain the partial critical path of
this service. Finally, all the partial critical paths are com-
bined to form the complete critical path.

From the critical path extraction algorithm, it can be
found that the main basis for resolving the critical path is the
invocation time and return time of each layer of microser-
vices. So, it can be inferred that there are two main scenarios
affecting the critical path of microservice applications:

First, the response latency of the critical path changes,
but the composition of the critical path remains unchanged;
this is due to the increase in the response latency of some
services on the path, resulting in the overall response latency
of the critical path.

Second, the response latency of the critical path changes
because a microservice on the critical path is replaced by
other services invoked in parallel, resulting in a change in
the overall response latency.

Algorithm 4 Critical Path Extraction Algorithm
Require: Graph: execution graph of request;

UM: uptream service

Ensure: CP: critical path of request;

1: CP.add(UM)

2: instance← UM

3: if instance.children = None then

4: return CP

5: end if

6: DM← UM.lastReturnedDM

7: while DM ̸= nil do

8: CP.extend(CriticalPathExtraction(Graph, DM)

9: DM← DM.previousSerialInvoke

10: end while

11: return CP

The causes of the two cases are different, but the treat-
ment is the same: locating the root node that produces the
impact and executing a rescheduling policy for that node
and its downstream services.

5.3 Dynamic Performance-Aware Scheduling

In this section, we propose algorithms to analyze the re-
sponse latency of each service on the critical path and
the total response latency of the critical path to locate the
services that affect the application performance.

As shown in Algorithm 5, we divide the tracing data
into multiple time slices for recording and analysis. In order
to reduce the overhead caused by monitoring, we first
analyze the delay of the critical path in each time slice.
Firstly, for the phenomenon of packet loss: request failure
and timeout caused by the unstable network environment,
the algorithm analyzes the response delay of T99 (latency
for the 99th percentile) of the critical path and T50 (latency
for the 50th percentile). When there is a tail latency in
microservices, it means that the service quality of some
users is not guaranteed, and the value of T99 is high, while
the change of T50 is not significant, so the ratio of T99 to
T50 can reflect the situation of tail latency better. When the
service quality of most users is not guaranteed, both T99

and T50 are high, and their ratios cannot reflect the service
quality, so we only use T50 to describe the quality of service.
The performance evaluation function condition is T99/T50,
which is used to quantify the quality of service, and when
condition is greater than the set threshold, the microservice
application is judged to be abnormal and the performance is
degraded. We inject faults into the microservice application
during the preprocessing phase and obtain the end-to-end
response latency. Therefore, by analyzing these historical
data, we can obtain the relationship between T50 and T99 in
normal and abnormal states, and thus derive the T99/T50
thresholds. The threshold is set to 20 in this paper.
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Fig. 7. Innvocation of compose-post api in social network [16]

Another scenario is for the case of increased transmission
delay due to restricted bandwidth or increased process-
ing delay due to restricted computing resources. We select
throughput as the metric and define the maximum through-
put of application with condition. Algorithm 5 analyzes the
average response delay T50, and when its overall increase is
more than twice, it means that most of the users’ requests
are received, which means that the service is considered to
be affected.

For the affected service that experiences performance
degradation, Algorithm 5 handles it by adding the service
and its downstream services to the scheduling queue and
assigning new hosts to them by rescheduling. So the perfor-
mance of the whole application is brought to normal.

To reduce the monitoring overhead, Algorithm 5 only
analyzes the latency of the critical path, and only when the
critical path is abnormal, the nodes on the path are analyzed
in turn. This is due to the fact that the invocation latency of
the whole critical path determines the response latency of
the whole application.

Although there is a scenario in which the critical path
is replaced in some cases: the total response time on a
certain invocation path exceeds the total response time of
the critical path. For this scenario, Algorithm 5 can still han-
dle it because the total response latency of the application
also changes at this time, which can trigger the response
mechanism of the algorithm to add the exception service
and downstream services to the scheduling queue.

In addition, since the response latency is not stable,
the monitoring process may have a big difference in the
data of each different time slice. In order to prevent the
occasional rise in latency from triggering the response
of rescheduling resulting in frequent rescheduling of the
microservice container, we also add the moving average
algorithm (getMovingAverage()) to calculate the request

latency within a certain time period and predict the long-
term trend of latency change, which is shown as Eq. (13).

delayt = βdelayt−1 + (1− β)delay (13)

The sampling delay obtained for the current time slice
period is recorded as delay, while delayt represents the
moving average experiment for the current time slice pe-
riod. The value of delayt is determined by both the sampling
coefficient and the current sampling delay. We set β as the
coefficient to control the number of time slices involved in
the moving average calculation. The β is set to 0.9 in this
paper, which means we take the last 10 values into account.
The moving average method is also used to sample and
evaluate condition, condition is one of the metrics to judge
the quality of service.

In the final part of the algorithm, when it is determined
that the performance of a microservice is dynamically af-
fected, the impact on that microservice will be eliminated
by adjusting the node deployment location based on the
dynamic response policy in section 4.

6 PERFORMANCE EVALUATION

In this section, we will use an open-source benchmark suite
DeathStarBench [16] to evaluate the framework. We will
compare the framework with Kubernetes [29] (predecessor
as [30]) default scheduling policy in terms of resource uti-
lization and quality of service, and validate the response of
the framework to dynamic influences.

6.1 Evaluation Setup
The experimental platform in this paper is built with Open-
Stack (Train Version) [31], an open-source cloud computing
management platform. 10 physical machines are included
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Algorithm 5 Performance-Aware Scheduling Algorithm
Require: CP: critical path of request;

Q: scheduling queue;

N: work nodes;

baseline: regular e2e latency of the request;

threshold: regular ratio of T99/T50

Ensure: Θ;

1: while true do

2: slice← tracer.getDate(CP.head)

3: T50 ← slice.percentile(50)

4: T99 ← slice.percentile(99)

5: condition← T99/T50

6: condition.getMovingAverage

7: if condition > threshold or T50 > baseline ∗ 2 then

8: for ms ∈ CP do

9: msT50 ← msSlice.percentile(50)

10: msT99 ← msSlice.percentile(99)

11: condition← msT99/msT50

12: if condition > threshold.ms or T50 > base-

line.ms*2 then

13: Q.add(ms.subGraph)

14: TopologyAwareScheduling(N)

15: descheduling(ms.subGraph)

16: end if

17: end for

18: end if

19: end while

in the cloud platform, each using Intel x86 Xeon E5 series
processors, containing 16 to 32 CPU cores, and equipped
with 128GB of physical memory. The framework of the pro-
totype system uses Kubernetes (v1.19.2) as the underlying
support, and the algorithm in this paper is accomplished
with its scheduler framework. The entire container platform
contains one control node and eight worker nodes, with
the control node configured with 16 CPU cores and 32 GB
of memory. The worker nodes are configured with 8 CPU
cores and 16 GB of memory distributed on different physical
machines. We also use Linux Traffic Control as an injection
tool for network exceptions.

The evaluation is conducted through two end-to-end
interactive and responsive real-world microservice applica-
tions: Social Network and Hotel Reservation, both provided
by the DeathStarBench suite [16]. Social Network imple-
ments a broadcast-style social network whereby users can
publish, read, and react to social media posts. It contains
36 unique microservices. And Hotel Reservation is an on-

line hotel reservation site for browsing hotel information
and making reservations with 15 unique microservices. In
addition, these services are deployed in separate Docker
containers.

To test the performance of the scheduling framework, we
also use the following tools:

• wrk2 [32]: To accurately evaluate the performance
of microservice applications under different deploy-
ment strategies, this paper uses the open-source
workload generator wrk2 to simulate real requests.
wrk2 is a popular HTTP benchmarking tool that runs
on a single multi-core CPU and generates an open-
loop load in the form of a large number of HTTP
requests to the web application (open-loop load
means that all requests are entered at the scheduled
time, without waiting for previous requests to be
responded to. Without waiting for previous requests
to be answered, the open-loop load reflects the true
performance of the server and the actual latency of
operation). The load generator itself can generate
load in the form of rated value or obey Poisson
distribution, and simulate the interaction from client
to microservice application in the form of multiple
threads and multiple connections. In order to simu-
late the load environment under real scenarios to the
greatest extent, this paper uses real user traffic as the
input load to simulate the pressure on microservice
applications under different scenarios.

• Linux tc [33]: In the testing of microservice applica-
tions, the available bandwidth and response latency
of containers also affect the end-to-end response
time and throughput of microservice applications.
When the import or export bandwidth of a worker
node is exhausted, the response of containers on that
node will be greatly affected. In order to simulate
real application scenarios especially the large-scale
offline operation scenario in the mixed part scenario,
and evaluation of the impact of high bandwidth
consumption on the performance of microservice
applications, this paper adopts the Trickle tool under
Linux to control the available bandwidth and latency
of the working nodes to simulate the abnormal con-
ditions on the link.

6.2 Evaluation Results

6.2.1 Resource Utilization

In this evaluation, we generate container loads with differ-
ent resource requirements based on Alibaba’s public trace
[6], and compares the maximum number of containers that
can be hosted under the same resource environment. As
shown in Fig. 8 (”ratio” indicates the ratio of the maximum
number of containers obtained by the method used to the
number obtained by the First Fit), MOTAS provides a small
improvement in resource utilization compared to the default
scheduling policy of Kubernetes. Also, it can be observed
that the scheduling overhead of MOTAS is a bit higher, but
it is still acceptable.
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Fig. 8. Utilization of MOTAS and K8s

6.2.2 Quality of Service

As shown in Fig. 9, we plot a comparison of the cumula-
tive distribution function (CDF) of the end-to-end latency
for different applications. Since social network applications
are more complex, we test them with different interfaces.
The comparison shows that the MOTAS can provide lower
end-to-end response latency for microservice applications
compared to the Kubernetes default scheduling policy. Ob-
serving the performance of home-timeline interface, user-
timeline interface, and hybrid interface in hotel reservation
application, the topology-aware scheduling strategy has
lower average response latency and performs better on
the metric of T99, which means that MOTAS also has an
advantage in tail latency control.

We test the throughput of the Hotel Reservation. The
workload is generated by wrk2 with different interfaces. We
continuously increase the workload, record the variation of
the T50 and T99 latency of the application, and calculate the
ratio of T99/T50 (the maximum throughput is considered
to be reached when T99/T50 is more than 10). The applica-
tion keeps the allocated resources unchanged and does not
enable automatic scaling. The results obtained from several
experimental tests are shown in Fig. 10 (we use the verti-
cal axis label ”Latency” to indirectly state ”Throughput”,
i.e. the higher the latency, the lower the throughput). The
Kubernetes default scheduling policy reaches the maximum
throughput at 10 times the workload, and the MOTAS can
provide a throughput improvement of about 20%.

6.2.3 Dynamic Violation Reconcilation

To verify the ability of MOTAS to handle QoS violations, we
set send delay (10ms) and generate randomly(1%) packet
loss (1%) to simulate QoS violations on the VM where
the text-service is located through tc. As shown in Fig.
11 and Fig. 12, we compare the latency of all services of
the compose-post interface of the Social Network. It can
be found that the injected network delay and packet loss
cause an increase in the overall end-to-end latency. Our
framework is able to identify and handle the violation, and

service quality is restored by rescheduling text-service and
its downstream services.

7 RELATED WORK

7.1 Microservice characteristics
Several research works compared the performance of mono-
lithic and microservice architectures and discovered that
while microservices have some advantages over monoliths
in terms of lower infrastructure costs, but microservices
have significant overhead in terms of programming lan-
guage runtime, cache hit rate reduction, network virtualiza-
tion, microservice communication, etc [16], [20], [34], [35].

The study conducted in [6] using Alibaba public datasets
showed that the invocation dependency graph of microser-
vices is highly dynamic in production environment. And
Gan et al. [16] investigated microservice architecture char-
acteristics and found that the performance of microservice
applications is often defined by their topology, thus the
latency requirements for each layer of services are much
more stringent than for typical monolithic applications.

7.2 Container orchestration
McDaniel et al. [36] investigated the interference between
multiple applications placed in containers sharing under-
lying resources and found that I/O bandwidth contention
brings some impact on container application performance.
Running microservice applications in containers puts more
pressure on system resources than traditional monolithic
applications, and the infrastructure faces new challenges
in terms of resource management, scheduling, monitor-
ing and observability. The orchestration system based on
Borg’s open source implementation evolved into Kuber-
netes, which has since become the de facto standard for
distributed container orchestration, as container orchestra-
tion system continue to advance. However, the container
operating environment is highly dynamic and complex,
with SLOs that need to be met in SLAs on the one hand, and
cloud service providers needing to minimize costs on the
ohter, but current orchestration systems only provide simple
scheduling policies, and there is an urgent need for more
complex policies to satisfy both the demands for quality of
service and cost reduction requirements.

Guan et al. [37] designed an application-oriented con-
tainer resource allocation architecture with the goal of min-
imizing the cost of application deployment in a distributed
system while supporting automatic scaling as the workload
of cloud applications changes. Zhang et al. [38] proposed a
two-phase scheduling strategy that considers both container
and virtual machine placement, but with a single optimiza-
tion goal aimed at improving the utilization of physical
resources. Adam et al. [39] proposed two-stage stochastic
programming resource allocator (2SPRA), which explored
resource allocation optimization for the multi-tier architec-
ture of microservice applications with the aim of reducing
the response latency of microservice applications. However,
the objectives of these methods are relatively single.

In addition, for the need of monitoring and observa-
tion in complex distributed systems, Sigelman et al. [25]
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Fig. 9. E2E Latency of MOTAS and K8s

Fig. 10. Throughput of MOTAS and K8s

proposed a low-overhead, non-intrusive, distributed de-
ployment tracing framework that can effectively provide
application-oriented tracing capability, which can provide
good support when studying the microservice container
orchestration problem in complex distributed environments.

Fig. 11. Injecting Delay

7.3 Resource management and task scheduling

Different optimization goals for this problem lead to differ-
ent optimization ideas, including response time [40], budget
cost [41], security [42], etc. Among the various optimization
objectives, performance and resources are the most con-
cerned, e.g., fair scheduling strategies [7], [43], [44] were
used to guarantee the performance of applications, but
they perform poorly in terms of resource utilization. Bin



14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MAY 2022

Fig. 12. Injecting Packet Loss

packing [8] was used to improve the resource utilization
but it does not guarantee the quality of service. Heuristic re-
source allocation algorithms [45], [46] considered objectives
in terms of user budget cost, makespan, total cost of the
tasks, system load, etc. These approaches are able to obtain
a feasible solution for multiple optimization objectives by
pre-defining reasonable heuristics and continuously tuning
them, but scheduling of online services running in the form
of containers is not considered in these works.

Kaewkasi et al. [47] proposed an ant colony optimization
algorithm for scheduling containers, the work focused on
resource utilization of the cluster, but the limitation is that
only resources are evaluated and the relationship between
resources and quality of service is avoided. Mao et al. [48]
was more concerned with balanced scheduling of resources
within a cluster. Guerrero et al. [49] used genetic algorithms
to optimize resource allocation and elasticity management
of containers, but this work ignored the fact that in the
microservice form, there is a lot of intercommunication be-
tween containers and the impact that these communication
overheads bring to the microservice application as a whole.

Another trend is the application of machine learning
methods to resource management and scheduling. Mao et
al. [50] applied reinforcement learning to the problem of
multi-resource packing for batch jobs and achieved good
results in improving resource utilization. Hou et al. [51]
combined feature inference approach to deal with the prob-
lem of microservice task scheduling, the algorithm improves
the efficiency of microservices under constrained resources
by learning microservice features and generating specific
resource management policies, but the approach requires
a large amount of trace data, and it cannot handle well
microservice tasks with high variability and dynamics in
multi-tenant and multi-task cluster scenarios. Auto-pilot
[52] combined time series analysis and reinforcement learn-
ing algorithms to scale the number of containers and related
resources, but the drawback is that independent scaling
of each container may yield locally optimal results when
the application has large-scale and complex dependencies.
The machine learning approach usually achieves good re-
sults in resource management, but considering the dynamic

changing characteristics of microservice systems in the ac-
tual production environment may lead to repeated model
reconstruction efforts, such methods require continuous
investment of large amounts of manpower to physically
train high-performance models, which does not meet the
scheduling requirements of container orchestration systems
in production environments.

8 CONCLUSION

In this paper, we present a topology-aware placement
framework for microservice applications scheduling in the
cloud environment. The foundation of this framework is the
graph mapping algorithm based on the topologies of the
cluster and microservices. It is shown that the algorithm can
reduce network communication overhead of microservice
applications and avoid network interference while ensuring
cluster resource utilization. Based on the open-source mi-
croservices benchmark, we evaluated the framework against
the Kubernetes default scheduling policy. And the eval-
uations effectively demonstrate that the framework can
achieve high resource utilization while significantly reduc-
ing the end-to-end latency and increasing the throughput at
QoS. However, there are shortcomings in our current work.
The scale of the tests does not reach the true cloud scale, so
the proposed framework cannot be directly applied to the
real-world production environment without modification.
In future work, we will further expand the cluster scale,
microservice scale, and input workload scale.
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