1452

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

Time-Sensitive Utility-Based Single-Copy
Routing in Low-Duty-Cycle Wireless
Sensor Networks

Mingjun Xiao, Member, IEEE, Jie Wu, Fellow, IEEE, and Liusheng Huang, Member, IEEE

Abstract—Uitility-based routing is a routing scheme based on a special composite utility metric. The existing utility-based routing
algorithms have not yet considered the delivery delay, so that they cannot work well in low-duty-cycle wireless sensor networks
(WSNSs). In this paper, we present a time-sensitive utility model. A successful end-to-end message delivery will obtain a positive benefit,
which linearly decreases along with an increasing delivery delay; otherwise, a failed delivery will receive zero benefit. The utility is the
benefit minus the total transmission costs, no matter if the message delivery succeeds or fails. Such a utility model is analogous to the
postal service in the real world. Under this novel utility model, we design two optimal time-sensitive utility-based routing algorithms for
the non-retransmission setting and the retransmission-allowed setting, respectively. In our designs, we derive an iterative formula to
compute the expected utility of each message delivery, and we present a binary search method to determine the optimal
retransmission times. As a result, the two algorithms can achieve the optimal expected utility for each message delivery, which is the
optimal balance among the concerned factors, including benefit, reliability, delay, and cost. The simulation results also prove the

significant performances of our proposed algorithms.

Index Terms—Distributed algorithms, duty-cycle wireless sensor networks, reliability, routing, time-sensitive utility

1 INTRODUCTION

IRELESS sensor networks (WSNs) are usually

deployed in unmanned application scenarios, such as
military surveillance, biological observation, environmental
monitoring, and so on. In order to fulfill long-term tasks,
these WSNs are generally operated in a low duty-cycle
mode to save the energy consumption [2], which are called
low-duty-cycle WSNs. So far, several routing algorithms
have been proposed for such WSNs [2], [3], [4]. However,
these algorithms just use a simple metric (e.g., delivery
delay or delivery ratio) as the optimization objective with-
out distinguishing different message deliveries. As a result,
the network resources might be exhausted by unimportant
message deliveries, so that they cannot serve more impor-
tant delivery requests.

Utility-based routing in traditional unreliable ad hoc
networks precisely provides an efficient solution [5], [6].
This is a special routing scheme based on a composite
utility metric. A successful message delivery from a
source to a destination will obtain a positive benefit as
the reward. Otherwise, the failed delivery will receive
zero benefit. No matter whether the message delivery

o M. Xiao and L. Huang are with the School of Computer Science and Tech-
nology, Suzhou Institute for Advanced Study, University of Science and
Technology of China, Hefei 230027, P.R. China.

E-mail: xiaomj, Ishuang@ustc.edu.cn.

o |. Wu is with the Department of Computer and Information Sciences,
Temple University, 1805 N. Broad Street, Philadelphia, PA 19122.
E-mail: jiewu@temple.edu.

Manuscript received 13 Dec. 2013; revised; 23 Apr. 2014; accepted 25 Apr.
2014. Date of publication 29 Apr. 2014; date of current version 8 Apr. 2015.
Recommended for acceptance by J. Chen.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2014.2321136

succeeds or fails, it will incur a transmission cost. The
utility is in terms of the benefit minus the cost. Then, the
objective of this routing scheme is to maximize the util-
ity for each message delivery. As a result, such a routing
scheme takes the reliability, benefit, and cost into
account at the same time, and it can achieve the maxi-
mum expected net profit (i.e., benefit minus cost) for
each message delivery, which is the optimal balance
among the concerned factors [5]. Moreover, an important
message delivery in practical applications generally has
a large benefit, and a reliable delivery path often charges
a large transmission cost. As a result, this routing
scheme can inherently deliver an important message to a
reliable path, but at a higher cost, and can deliver unim-
portant messages via those low-cost but unreliable paths,
just like the postal service in the real world.

In this paper, we focus on utility-based routing in low-
duty-cycle WSNs with unreliable communication links.
Compared with traditional ad hoc networks, sensor nodes
in low-duty-cycle WSNs periodically schedule themselves
to be active for work and then stay dormant at other times
to reduce the energy consumption [2], [3], [4]. As a result,
each message delivery has a non-negligible delay since it
has to wait a certain amount of time until the message
receiver becomes active. The delivery delay is thus an
important factor for the routing design.

In order to take the delivery delay into account, we intro-
duce time into the utility-based routing model, and propose
a time-sensitive utility-based routing (TUR) model. The
benefit of a message in this model linearly decreases with
the delivery time. The utility is still defined as the benefit
minus the transmission cost. Since the benefit is time-
related, the delivery delay is indirectly added into the utility

1045-9219 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

benefit path
50-¢ s—1-d
40- s—2—d

30-0.1¢ | S>2—>1->d

Fig. 1. An example of time-sensitive utility-based routing on a weighted
graph. The edge weight of the graph is (reliability, delay, cost). There
are three messages with a linearly decreased benefit over time ¢. The
time-sensitive utility-based routing can achieve the maximum utility, i.e.,
the time-varying benefit minus the cost. Moreover, it will let the three
messages be delivered along different paths. Their utility values are cal-
culated in Section 3.1, and are listed in Fig. 6.

model. The objective is still to maximize the utility of each
message delivery.

Under this new model, we turn each low-duty-cycle
WSN to a weighted graph, and propose a time-sensitive
utility-based routing algorithm. The TUR algorithm can
maximize the expected utility (the net profit, i.e., the time-
varying benefit minus the cost) for each message delivery,
which makes the best trade-off among reliability, benefit,
delay, and cost. Accordingly, it allows reliability-concerned
messages, delay-concerned messages, and cost-concerned
messages to be delivered along different paths, as shown in
the example of Fig. 1. More specifically, our major contribu-
tions include:

1) We present a time-sensitive utility model for low-
duty-cycle WSNs. Compared with the existing utility
model, the time-sensitive utility simultaneously
takes reliability, benefit, delay, and cost into account.
As a result, utility-based routing in this model can
make a trade-off among the four factors.

2) We propose an optimal time-sensitive utility-based
routing algorithm—TUR. The TUR algorithm is a
distributed single-copy routing algorithm without
retransmission at each hop. In this algorithm, we first
derive an iterative formula to compute the expected
utility of a given message delivery. Then, this for-
mula is adopted to locally determine the optimal
next-hop relay for each node.

3) We also extend our algorithm to cover the case
where retransmission is allowed, denoted by TUR-R.
For generality, we consider both cases: the retrans-
mission occurs within the same duty-cycle, and at
different duty-cycles. In this algorithm, we first
derive an upper bound of the optimal retransmission
times for each node. Then, a binary search method is
proposed to determine the optimal retransmission
times.

4) We have conducted extensive simulations to evalu-
ate the TUR and TUR-R algorithms. The results
prove that the proposed algorithms can achieve the
better expected utility compared to other algorithms.
Meanwhile, the results also show that both TUR and
TUR-R can make a good balance among reliability,
benefit, delay, and cost.

The remainder of the paper is organized as follows. We

introduce the low-duty-cycle WSN, the time-sensitive utility
model, and the problem of utility-based routing in Section 2.

1453

The TUR and TUR-R algorithms are proposed in Sections 3
and 4, respectively. In Section 5, we evaluate the perfor-
mance of our algorithms through extensive simulations.
After reviewing related work in Section 6, we conclude the
paper in Section 7.

2 MODEL AND PROBLEM

In this section, we introduce the network model, and the
time-sensitive utility model, followed by the problem.

2.1 Network Model

We consider a low-duty-cycle WSN with unreliable commu-
nication links. Each sensor only has two possible working
states: the active state, in which the sensor can perform all
the functions of sensing, listening, transmitting, and receiv-
ing; and the dormant state, in which the sensor turns off all
the functional modules except for a wake-up timer. Specifi-
cally, when a dormant sensor wakes up, it either switches to
the active state, or transmits packets and then switches back
to the dormant state. In other words, a sensor can transmit a
packet at any time but can receive a packet only when it is
active. Before the concrete network model, we first present
three reasonable assumptions, which also have been widely
adopted in previous works [2], [3], [4].

1) Time is divided into equal-length time slots, and the
whole network is loosely synchronized. The synchroniza-
tion can be achieved through existing approaches, e.g.,
FTSP [7]. Like previous works [2], [3], [4], a time slot is large
enough, so that the time synchronization error can be
ignored.

2) Each sensor schedules its working states cyclically. For
simplicity, we assume that all sensors share a common
duty-cycle and each sensor stays active at only one fixed
time slot during each duty-cycle, which is named by the
active time slot of the sensor. This assumption is reasonable.
If sensors have different duty-cycles, the common duty-
cycle can be set as their least common multiple. If a sensor
has multiple active time slots within a duty-cycle, we can
replace this node by several virtual nodes, each of which
only has one active time slot in a duty-cycle.

3) The wireless communication links are unreliable, and
the CSMA /CA mechanism is adopted to cope with the exis-
tence of collision. Previous research shows that the link
quality changes very slowly over time [8]. Therefore, the
average successful transmission probability derived from
history records is adopted to evaluate the link reliability.

Based on the above assumptions, we consider a low-
duty-cycle WSN that is composed of a set of sensor nodes,
denoted by V. The common duty-cycle is 7. If a node locates
in the transmission range of another node, we say that they
are neighbors. The set of all neighboring nodes of a node i is
denoted by N;. For each pair of neighboring nodes, i and j
(i,j€V), there is a successful transmission probability p; ;.
Their active time slots are a; and «a; (a;, a; €[1,T7), respec-
tively. Note that node ¢ gets a message only at the time slot
a;. If it wants to send the message to node j, it must sleep
until node j becomes active at the time slot a;. The transmis-
sion delay can be ignored since it is much less than the delay
incurred by the sleep. Thus, the message forwarding delay
from node ¢ to node j is t;;=(a;—a;)modT. Besides, the

1454

(c) the weighted graph (edge weight:
(p,t,0))

Fig. 2. Example: duty-cycle WSN modeling.

transmission cost from node i to node j is denoted by ¢; ;.
Then, we can model the low-duty-cycle WSN as a direct
weighted graph G=(V,W), where W={(p;; ti;, ci;)|i,
JjeV}

Fig. 2 shows an example of low-duty-cycle WSN model-
ing. Fig. 2a is an initial low-duty-cycle WSN composed of
two sensors ¢ and j, whose low-duty-cycles are 3 and 6 time
slots, and whose active time slots are 1 and 5, respectively.
In Fig. 2b, we utilize two virtual sensors, i; and i3, to replace
sensor 4. Then, the initial network is simplified to be a low-
duty-cycle network, in which there is only one common
duty-cycle, and each node only has one active time slot.
After computing the delivery delays of neighboring nodes
according to their active time slots, we construct the corre-
sponding direct weighted graph, as shown in Fig. 2c. In
fact, any low-duty-cycle WSN can be converted to a direct
weighted graph in this way.

2.2 Time-Sensitive Utility Model

In the time-sensitive utility model, each message is assigned
with a time-varying benefit. When a message is delivered
from a source, its benefit will linearly decrease until it
reaches its destination. If the benefit becomes zero, this mes-
sage will be discarded. Each-hop delivery will incur a trans-
mission cost, no matter if the whole message delivery
succeeds or fails. The utility is the final benefit minus the
total transmission cost, no matter if it is a successful deliv-
ery or a failed delivery. More specifically, we define the ben-
efit and utility as follows:

Definition 1. The benefit of a message, denoted as b(t), refers to
a linearly decreasing reward over time t if it is successfully
delivered to its destination; otherwise, zero reward is returned.
Let the initial benefit be B, and let the decreased benefit in
each time slot be named by the benefit decay coefficient and
denoted by §; then the benefit satisfies

b(t):{g’ft'a’

Here, time ¢ is the living time of the message. A new gen-
erated message (¢t = 0) has its maximum benefit value. The
Time To Live (TTL) of the message is g, beyond which the

successful delivery;
failed delivery.

(1)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

message will be discarded, and the benefit will become
zero. Moreover, we let all links share the common benefit
decay coefficient. By this way, the delivery delay is linearly
combined into the benefit.

Definition 2. The utility of a message delivery, denoted by u, is
the benefit minus the total transmission cost of the message
delivery, which means the net profit of the message delivery.
Let the total transmission cost be c, then the utility satisfies

u="0b(t) — c. (2)

In this definition, the benefit and the cost are assumed to
have been unified as the same unit. Consider a message
delivery from a source s to a destination d. If the message
successfully arrives at the destination with the delay ¢, 4, the
utility would be b(t,4) — ¢; otherwise if it fails, the utility
would be 0 — c. The utility value is affected by the benefit,
the delivery delay, the path reliability, and the transmission
cost.

The above notations b, u, and ¢ are related to a whole
message delivery from s to d. For simplicity of description,
we also define two virtual notions for each node: the
remaining benefit of a node and the expected utility of a
node. Consider an arbitrary node ¢ in the delivery path
from s to d. The remaining benefit and expected utility of
node i are defined as follows.

Definition 3. The remaining benefit of node i, denoted by b;,
refers to the remaining benefit value when the message arrives
at node 1. That is,

bi:ﬁ_S'ts,ia (3)

where t,; is the total delay for the message being delivered from
the source s to node i. Specially, we have t, ; = 0, and by = p.

Definition 4. The expected utility of node i, denoted by u;(b), is
the expected utility for a message delivery from node i to the
destination, in which the remaining benefit of the message is b
when it arrives at (or is generated by) node i.

The two notations b; and u;(b) are defined from the point
of view of node i, i.e., the case when node i is the current
message forwarder. Note that u;(b) is an expected value.
This is because the message delivery from node i to the des-
tination is uncertain. It might succeed or fail at different
hops. There are multiple possible results. For each result,
there is a probability and a utility value. u;(b) is the expected
value of these utilities. Moreover, u;(b) is a function of b. A
different benefit b will lead to a different expected utility

Fig. 3 illustrates the above concepts through an example.
Consider a message delivery from node 1 to a destination d,
as shown in Fig. 3a, where the initial benefit is 45, and the
benefit decay coefficient is 1. If the message is successfully
delivered to the destination d, the final benefit (i.e., the
remaining benefit of d) will be 45 — 5 x 1 = 40, and the cor-
responding utility will be 40 — 10 = 30, as shown in Fig. 3b.
If node 1 fails to forward the message to d, the final benefit
will be 0, and the corresponding utility will be
0 — 10 = —10, as shown in Fig. 3c. Thus, the expected utility
of node 11is uy(b1) = 0.8 x 30 — 0.2 x 10 = 22.

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

0.8,5,10)

® @
(a) B=45, 6=1, (p=0.8,t=5,c=10)
b b1=45

b,=40

(b) the successful delivery
b z/br:45

bs=0 \Lu:l—lo

@

(c) the failed delivery

Fig. 3. An example of time-sensitive utility model.

2.3 Problem

Like the previous utility-based routing [5], our objective is
to design a routing scheme that can maximize the expected
utility of each message delivery under our time-sensitive
utility model. Consider a duty-cycle network G = (V, W)
with a cycle T, as described in Section 2.1, a source node s, a
destination node d, an initial benefit g, and a benefit decay
coefficient 8. Then, the problem is how to determine the
next-hop relay for each node to forward messages, so as to
maximize u,(8). For this problem, we take into account two
forwarding settings: the non-retransmission setting and the
retransmission-allowed setting.

Definition 5. The non-retransmission setting means that,
when a node forwards a message to its next-hop relay node, it
can only transmit the message once, no matter if the message
transmission succeeds or fails.

Definition 6. The retransmission-allowed setting refers to
that, when a node forwards a message, it can transmit the mes-
sage multiple times, so as to improve the successful probability.

In this paper, we focus on unreliable WSNs, in which
there are no ACK messages for each message forwarding.
The non-retransmission setting involves the networks with
a higher successful transmission probability on average. In
contrast, the retransmission-allowed setting is adopted
when the average successful transmission probability of a
network is not good enough. In addition, we only discuss
the solution for a single (s,d,B,8), which can easily be
extended to the case of multiple (s, d, B,8)’s.

For ease of the following presentation, we list the main
auxiliary variables in Table 1.

3 TUR: NON-RETRANSMISSION

In this section, we focus on the non-retransmission setting,
and propose a distributed time-sensitive utility-based rout-
ing algorithm, i.e., TUR, which can achieve the maximum
expected utility u(B) for a message delivery from a source s

1455

TABLE 1
Description of Major Notations

Variable ||

T common duty-cycle of all nodes.

Di,j successful transmission probability between
nodes ¢ and j.

forwarding delay from node 4 to node j.
transmission cost from node 7 to node j.
neighboring node set of node i.

initial benefit (Definition 1).

benefit decay coefficient (Definition 1).

i the remaining benefit of node i (Defini-
tion 3).

expected utility for node 4 to send a message
with a remaining benefit b to its destination
(Definition 4). Moreover, the expected utility
is optimal, unless otherwise stated.

optimal next-hop relay for node ¢ forward-
ing a message with a remaining benefit b.

k optimal single-timeslot retransmission time
for the case that retransmissions occur with-
in a duty-cycle.

E* optimal retransmission time for the case that
retransmissions might occur in one or more
duty-cycles.

Description

o+
Q35: <

S O

to a destination d with an initial benefit 8 and a benefit
decay coefficient 8. First, we derive an iterative formula, by
which each node can locally compute its expected utility
when it knows the expected utility values of neighboring
nodes. Second, we present the basic solution, in which the
formula is adopted to calculate the optimal expected utility
of each node in a distributed manner. Accordingly, the opti-
mal forwarding path is also determined. Finally, we give
the detailed algorithm, followed by the analysis on the opti-
mality and convergence.

3.1 The Basic Formula

We first consider an arbitrary delivery path from node s to
node d, and derive a formula to compute the expected util-
ity value. Without loss of generality, we let the path be
—n—1—d=n". Then, the expected
utility of the message delivery from s to d is us(8) = uo(B).
Assume that all edge weights in the path, including the suc-
cessful transmission probability, the delivery delay, and the
transmission cost, are known. By computing the probability
and utility values for each possible delivery case, we can get
the formula. More specifically, we have the following
theorem.

Y“e=0—-1—---

Theorem 1. The expected utility value for the message delivery
with an initial benefit B and a benefit decay coefficient § along
a given path “s =0 — 1 — --- - n—1— d = n” satisfies

n—1

n—1 n—1 i—1
us(B) = Hpi,i+1 (13 -6 Z ti,i+1) - Z Ciit1 Hpj7j+1~ 4)
=0 =0 =0 =0

Proof. We can derive Eq. (4) by computing and summing
the utility values of all possible delivery cases.

If the message delivery succeeds, denoted by s = d,

it means that each-hop message transmission in the

path is successful. Then, the delivery delay is the sum

1456
of each-hop delay, ie., Z:Zol tii+1. Moreover, the suc-

cessful delivery probability P|,_, benefit b| and
total transmission cost ¢/ _. , satisfy:

n—1 n—1 n—1
Pl_,= Hpi,m; blymg=p—3 E tiit1; Clymg = E Ciit1-
i=0 =0

i=0
(5)

s=d’

If the message delivery fails at the link “k — £+ 17
(0 <k <n—1),denoted by k # k + 1, the corresponding
benefit would become zero, and the total cost only contains
the transmission costs for the delivery from s to k. That s,

k—1
P|k-¢>k+1 = (1 —Pk,k+1) HPLH—I; b|k-q¢k+1 =0;
(6)

k—1
i1 = E :Ci,Hl'
i=0

The expected utility u, is the expected value of the
utilities for the successful delivery and all possible failed
deliveries. Thus, we have

us(IB) = P|s¢d(b|s¢d - C|séd)

n—1

+ Z Plisri1 Olpspir = Clispi)- (7)
=0

Further, after replacing the right side of Eq. (7) by
Egs. (5) and (6) and by combining the related items,
we can get Eq. (4).]

Now, we derive an iterative formula which can be used
to locally compute the expected utility value. Consider two
arbitrary adjacent nodes i and j=i+1 (0<i<n-—1) in
the delivery path “s=0—1—--- = n—-1—d=n". Note
that their expected utilities u;(b) and u;(b) actually are two
functions about the remaining benefit b. For most of the
function values, e.g., u;(8) and u;(B), there is not a local iter-
ative relationship between them. Even if the value of u;(f)
and the link information between i and j are known, there
is no formula that we can use to derive the value u;(8). For-
tunately, we find that for a pairwise special remaining bene-
fits b; and b;, there is a local relationship between u;(b;) and
u;(bj), as shown in the following theorem.

Theorem 2. The expected utilities of a node i and its next-hop
neighboring node j satisfy:

ui(bi) = piju;(b;) — cij. (8)

Proof. We derive the iterative formula about the expected
utility values of two neighboring nodes i and j as fol-
lows. According to Eq. (4), we get the formulas for u;(b;)
and U,j(b]')I

n—1 n—1 n—1 h—1
ui(b;) = th,,h,+1 (qu -6 Z th,h+1) - Z Ch it Hpg,g+1;
hi =i = 4=0
9)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

@ 0.8,5,100 @ 0.8,5.10) @

benefit £=50, =1
direct
computation

11,(5,)=0.8%0.8x (50— 1x(5+5))—(10+10x0.8)=7.6

b_.-—50. hl_45‘ bul'_40
Ug(by)= by=40
Ui (b))=P =< Uq(by)—C14=0.8x40-10=22
Us(b)=P, ; xU1(b;)—C51=0.8x22-10=7.6

iterative
computation

Fig. 4. An example of the expected utility computation. The edge weight
of the graphis (p, t, ¢). The direct computation and the iterative computa-
tion achieve the same result.

n—1 n—1 n—1 h—1
u;(b;) = th,,h+1 (bj -6 Z th.h+1) - Z Ch,h+1 Hpg.g+1~
h=j h=j h=j g=0

(10)

Comparing u;(b;) and u;(b;), we have:

n—1
wi(bi) = pijuj(by) = [[ornea(bi = by = 8- t5) — iy (11)

h=1

Since nodes i and j are adjacent in the delivery path,
according to Eq. (3), the remaining benefits of nodes 4
and j satisfy:

b; = bj +8- 1. (12)

Therefore, by substituting Eq. (12) into Eq. (11), we can
get

ui(b) = pijui(bj) — cij
O

Eq. (8) is a local formula, by which each node i can
derive its expected utility from that of neighboring
nodes. We can also use this formula to iteratively derive
the value of us(B) = us(bs). It will achieve the same result
as the direct computation, according to Eq. (4). Fig. 4
shows a simple example, in which the expected utility of
the delivery path “s —1—d” in Fig. 1 is calculated
through the two methods. These results demonstrate that
the direct computation and the iterative computation
achieve the same result.

3.2 The Basic Solution

The TUR algorithm contains two phases: the initialization
phase and the routing phase. In the initialization phase,
each node utilizes Eq. (8) to calculate its optimal expected
utility. During this computation, the node can determine an
optimal next-hop relay. In the routing phase, it just for-
wards messages via this relay. As a result, the optimal
expected utility can be achieved. The detailed method to
compute optimal expected utilities and determine optimal
relays is presented as follows.

First, the nodes in the network iteratively derive
their expected utility values. In order to compute its own
expected utility, each node i € V — {d} needs to know the
expected utility values of neighboring nodes. Thus, it will
send some requests to neighboring nodes for their latest
expected utility values. After receiving these expected

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS 1457

message
f=50 6=1

50 = [7]

(a) node s produces a request us(8) =
us(bs) =? and the corresponding routing
record to start the computation.

[P]y (B]r ()]

[21 s ()] (B1)]
(0] - [7]

(b) nodes 1 and 2 produce the routing
records for the requests wi(45) =? and
u2(45)=? from node s.

(D1 Tu, (b (B,

b Ju (b1 (b,

(c) the routing records for the requests of
nodes 1 and 2 are produced.

[45]

() a0 -]
D) RE

(o[=7]

(d) node d computes u4(30), ug(40).

(e) nodes 1 and 2 compute w1 (b1), uz(b2),
and determine r1(b1) and r2(b2).

ba [(b)ra(by)
i
Bl 30] Eolzel 1]
[35] 16 [d |

(f) node s computes us(bs), and determines
75 (bs).

Fig. 5. Example: compute the expected utility and determine the next-hop relay for each node in Fig. 1.

utility values from neighboring nodes, node i derives its
own expected utility. Each node repeatedly requests the lat-
est expected utility values of neighboring nodes to derive its
own expected utility, until the iterative process converges.
This iterative process is started by the source node produc-
ing the request u;(8) = 7.

Second, each node i€V —{d} maintains a routing
table, in which each record is denoted by (b;, u;(b;), ri(b;)),
where 7;(b;) is the next-hop relay selected by node ¢ for it
forwarding the messages with the remaining benefit b;,
and this forwarding will achieve an expected utility
u;(b;). When node i receives a request wu;(b;) =? from
itself or a neighboring node, it first produces a record
(b, ui(bj) = —o0,7;(bj) = ?) in its routing table. Then, it
will compute the expected utility and determine the cor-
responding next-hop relay for this record by using Eq.
(8) in Theorem 2. More specifically, node ¢ first calculates
the expected utility for the message forwarding via each
neighboring node j. Then, it lets the neighboring node,
via which the expected utility value is the largest, be its
next-hop relay. The corresponding formulas are pre-
sented as follows:

ri(b;) = argmax p; ju;(b;) — ¢, (13)
JEN;

where bj = bl -5 tm'.
ut(bz) = DPig; Ur; (b”) — Cigy- (14)

Third, the destination node d directly computes its
expected utility uq(bg) for a given remaining benefit b;, and
sends it to the neighboring nodes. The formula to compute
ug(bq) is presented as follows:

uq(bq) = by. (15)

Fig. 5 shows an example to iteratively compute the
expected utility and determine the next-hop relay for each
node in the network of Fig. 1. At the beginning, the source

node s first produces a request u,(50) = 7 for the message
delivery (8 = 50 and 8 = 1), as shown in Fig. 5a. In order to
calculate u,(50) by using Egs. (13) and (14), node s needs to
know the values of u(45) and u2(45). Then, it sends two
requests u;(45) =7, ug(45) =7 to nodes 1 and 2, respec-
tively. After receiving the requests, nodes 1 and 2 produce
two routing records (b = 45,u,(b;) = —oo,7(b)) = ?) and
(by = 45, us(bg) = —o0,19(by) = ?), respectively, as shown in
Fig. 5b. Next, nodes 1 and 2 also produce their requests for
this message delivery. Then, the corresponding routing
records are produced, as shown in Fig. 5c. After the destina-
tion node d receives the requests u;(40) = ? and u4(30) = ?
from nodes 1 and 2, it directly returns uy(40) =40 and
u4(30) = 30 to them. Next, nodes 1 and 2 compute their own
expected utility, and determine their next-hop relay, as
shown in Fig. 5e. Finally, after receiving the results on
u1(45) and uy(45), node s also derives its own expected util-
ity u4(50) = 7.6, and selects its next-hop relay as node 1, in
Fig. 5f.

3.3 The Detailed Algorithm

Based on our solution, we present the detailed TUR algo-
rithm, as shown in Algorithm 1. In the initialization phase,
each node i € V repeatedly exchanges the expected utility
values with its neighboring nodes, and derives its own
expected utility and next-hop relay according to Egs. (13),
(14), and (15). More specifically, when node i is active, it first
receives the expected utility values of neighboring nodes in
Step 5. Then, it calculates its expected utility value and
determines the corresponding next-hop relay in Step 6. If
the node is the source node, it will first start the iterative
computation by producing a request u;(b;) = us(8) = ? in
Step 4. When a neighboring node j becomes active, node ¢
will tell node j the latest expected utility that it requires, as
shown in Steps 7 and 8. In the routing phase, node i just for-
wards the message to the selected next-hop relay when it
becomes active. The computation overhead of this algo-
rithm is dominated Step 6. In this step, node i calculates its

1458

path —LE5548€) 650, 9=1| f=40, 6=1 [#=30, 6=0.1
s—o1od d.6> 1.2 0.56
s—2-d 4 .52 1.25
§2—1—d 2.5 =15 17>
S>1925d 1.6 24 0.8

Fig. 6. The forwarding paths and the corresponding expected utility val-
ues for three message deliveries in the network of Fig. 1.

expected utility via each neighboring node. Since a node ina
real WSN only has a few neighboring nodes, the computa-
tion overhead is very small. In addition, each node locally
computes its expected utility, determines its next-hop relay,
and forwards messages. Thus, it is a distributed algorithm.

Algorithm 1 The TUR algorithm
Require: G=(V,W={{(p; ;. ti ;,cili,j€V}), s, d, B, 6.
Ensure: ul(bz), Tz(bz)
For each node i do

Initialization:

1: for each time slot in 7" do

2: if node 7 is active then
if node i=s then

Produce a request u;(b;) =us(8) =" to itself;

Request and receive u;(b;) from node j€ N;;
Calculate each u;(b;) and determine r; by using
Egs. 13, 14, and 15, and update the routing table;
7. if neighbor j is active then

8: Send the latest u;(b;) to node j if j needs it;
Routing:

9: for each time slot in 7" do
10: if neighbor j is active and r;(b;) = then
11: Send the message to node j;

Here, for simplicity of description, we let Algorithm 1
only involve one message delivery from a source node s to a
destination node d with an initial benefit 8 and a benefit
decay coefficient §. In fact, when there are multiple mes-
sages with different sources, initial benefits, and benefit
decay coefficients, they can be delivered in parallel. The
overhead will be multiplied by the number of types of dif-
ferent message deliveries. In general, there are only a few
types of message deliveries in a real WSN. Thus, the over-
head is acceptable, and the algorithm can still work well.
Here, we also ignore the effects of changing link quality on
the algorithm. In fact, if the accumulative effect of changing
link quality of a node after a long-time running is not negli-
gible, it only needs to start the iterative process in TUR to
update its optimal expected utility and optimal next-hop
relay, just like the initialization phase. This is a small scale
of iterative computation. Moreover, when a node collapses
due to energy depletion, or a new node is added into the
network, this iterative process is also launched to update
the routing tables of the corresponding nodes. The algo-
rithm still works well.

In addition, we use this algorithm to derive the optimal
expected utilities and forwarding paths for three different
message deliveries in the example network of Fig. 1. The
results are listed in Fig. 6, where the records marked by
ovals are the optimal expected utilities, and the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

corresponding paths are the optimal forwarding paths. For
each message delivery, we also list the expected utility val-
ues of other forwarding paths for each message delivery, to
prove the correctness of our algorithm. These results also
show that Algorithm 1 can schedule different messages to
be forwarded along different paths, so that it has provided
a load balance while maximizing the utility for each mes-
sage delivery, just like the postal service in the real world.
Note that this load balance is a natural result of maximizing
the utility. It is similar to a market scheduling, which can
provide a good load balance result.

3.4 The Convergency and Optimality

The TUR algorithm derives the expected utility of each node
through an iterative computation in the whole network. For
the convergency of the iterative computation, we have the
following theorem.

Theorem 3. The iterative computation on the expected utility in
TUR will not lead to a loop, and it will converge within at
most |V'| rounds of computation, where a round means that
each pair of neighboring nodes will exchange their expected
utilities with each other once.

Proof. First, we show that the iterative computation on the
expected utility of each node will not lead to a loop. Con-
sider an arbitrary node i € V' — {d}, whose expected util-
ity is calculated by using Eq. (14) (or Eq. (8)). For each
neighboring node j € N;, we have

u;(bi) = pijui(by) — cij < uj(by). (16)

This means that a neighboring node j can be selected as
the next-hop relay only when its expected utility is larger
than that of the node ¢ itself. In other words, the expected
utility of each node only depends on the neighbors’
expected utilities that are larger than its own. Following
such a rule, the iterative computation will not result in a
loop.

Next, we show that the iterative process will converge
within at most V| rounds of computation. In fact, there
must be at least one node whose expected utility value
will converge after each round of iterative computation,
and it will not change in the following rounds. In the first
round, the destination d calculates its expected utility
ugq(ba). Moreover, it will not change in the following
rounds of computation since it is the largest expected
utility in the whole network. In the second round, the
neighboring nodes of the destination d will get uy(ba),
after which they will derive their own expected utilities.
Among them, there must be a node whose expected util-
ity value is the largest, which is also the second largest
expected utility in the whole network. This expected util-
ity only depends on u,(b4). Thus, it will not change in the
following rounds. In other words, this expected utility
value has converged. In the same way, the third largest
expected utility will converge after the third round of
computation, and so on. In each round, at least one node
can determine its expected utility and next-hop relay.
Thus, the theorem is correct. m|

Here, it should be pointed out that the above iterative
computation only involves the expected utility. It does not

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

include the process of initializing routing tables incurred by
utility requests. If we take this process into account, the
TUR algorithm will converge after 2|V| rounds of computa-
tion. Then, based on the convergence of TUR, we have that
the total computation and communication overheads of
each node are O(|V|*). Moreover, we can straightforwardly
derive the optimality of this algorithm as follows.

Theorem 4. The TUR algorithm is optimal. That is, each node
can get its optimal expected utility and next-hop relay after
limited rounds of computation.

Proof. The TUR algorithm utilizes Eqgs. (13) and (14) to
locally compute the expected utility of each node, and
uses Eq. (15) to calculate the expected utility of the desti-
nation. Here, Eq. (15) can directly derive the optimal
expected utility of the destination. Moreover, Egs. (13)
and (14) let each node select an optimal neighboring
node to maximize its expected utility. Thus, if the
expected utilities of neighboring nodes are optimal, the
expected utility of this node is also optimal. According to
the optimality of the expected utility of the destination
and the convergence of the algorithm, we can get that the
TUR algorithm can let each node achieve the locally opti-
mal expected utility. Note that, the local optimal
expected utility is actually equivalent to the global opti-
mal result according to Theorem 2. That is to say, the
expected utility of each node is globally optimal. Accord-
ingly, the next-hop relay of each node is also the best.
Therefore, the TUR algorithm is optimal. O

4 TUR-R: RETRANSMISSION-ALLOWED

In unreliable communication WSNSs, there is generally no
ACK for each-hop message forwarding. Each node might
transmit every message multiple times, so as to improve the
successful probability of the message forwarding, while
sacrificing some transmission costs. Taking this case into
consideration, we extend our solution to the retransmis-
sion-allowed setting in this section.

Besides the computation of expected utility, a key prob-
lem in the retransmission-allowed setting is to determine
the number of retransmissions. To solve this problem, we
first consider the case that the time slot is large enough so
that the retransmissions only occur within a single time slot,
and we compute the optimal retransmission times for this
case. Next, we extend it to the general case, in which the
time slot is not necessarily a large time interval, and the
retransmissions might occur at different duty-cycles. Then,
we present a general method to calculate the optimal
retransmission times. Finally, based on this method, we pro-
pose a retransmission-allowed time-sensitive utility-based
routing algorithm—TUR-R.

4.1 Retransmissions in a Single Active Time Slot

First, we consider the case that the retransmission occurs
within a single time slot. In fact, if a retransmission occurs
within a single time slot, it will improve the successful
delivery probability and will also increase the transmission
cost, but it will not result in an increased delivery delay.
Consider an arbitrary node ¢ and its next-hop node j. After
k-time retransmissions, the corresponding successful

1459

delivery probability becomes 1 — (1 — p;;)¥, and the trans-
mission cost becomes kc; ;. Thus, the expected utility for the
k-time retransmissions, denoted by w;(b;)|,, satisfies the fol-
lowing iterative formula:

wi(bi)l, = [1 = (1 = pij)"Juy(b;) — keiy. (17)

Here, Eq. (17) can be seen as a function about the retrans-
mission time k. Moreover, we can find an optimal retrans-
mission time %k to maximize the expected utility value
u;(b;)|,. We call this optimal k the optimal single-timeslot
retransmission time, and denote it by k. Regarding k, we have
the following theorem.

Theorem 5. When node i retransmits a message to its next-hop
node j within a single time slot, the expected utility value of
node i will decrease after increasing, along with an increase in
retransmission times. Moreover, the optimal single-timeslot
retransmission time k for this message delivery satisfies

. {ln ¢ij—Inp; ju,-(bj)J Fn ¢ij — In p;ju;(b;)
In (1 —pi_’j) In (1 — pm‘)

l. (18)

Proof. Based on Eq. (17), we compute the expected utility
values w;(b;) for the k retransmissions and the k-+1
retransmissions:

W)y = [1— (1= piy)"™ M uib)) — (k+ Deiys (19)
wi(bi)]y = [1— (1 = pij) Tuy(b)) — kei . (20)

With Egs. (19) and (20), we have
w0y — w0l = (1= pig)pijus(by) — iy (21)

Let & satisfy (1 — pi,j)]"inyjuj(bj) —¢;; =0, then we can
get

. Inc;—In pi,juj(bj)
In (1 —p;)

According to Eq. (21), we have that u;(b;)], < u;(b;)],,, if
and only if £ < K. That is, when the number of retrans-
missions k increases, the expected utility value w;(b;)
decreases after increasing. Moreover, the maximum
expected utility value u;(b;) can be achieved only when
k=F. Since k is an integer, the optimal single-timeslot
retransmission time satisfies

(22)

k=|K]ork=T[K].
O

We illustrate the relationship between the expected utility
u;(b;)|,, and the retransmission time k through Fig. 7. Here,
k =k is a real number that maximizes the expected utility
u;(b;)|,.- The optimal single-timeslot retransmission time % is
the floor of &/, which is the largest integer no more than #'.

4.2 Retransmissions in Multiple Active Time Slots

When the time slot is not a large time interval, the
retransmissions might occur in multiple active time slots
of different duty-cycles. Compared to the single-timeslot
retransmissions, the retransmissions in multiple active

1460

ui(hi}b:

Expected utility

;}=Lkdé jx
N W k

Retransmission times

Fig. 7. An example of expected utility for the retransmissions in a single
time slot: ¥’ is a real number to maximize the expected utility w;(b;)|,
and the optimal single-timeslot retransmission time £ is the floor of £’.

time slots will not only increase the successful delivery
probability and the transmission cost, but also will result
in a non-negligible delivery delay. Assume that each
active time slot can only include pu-times retransmissions.
Then, the k-times retransmissions will occupy Lﬁj active
time slots, which also means Lﬁj duty cycles.

Consider that an arbitrary node i forwards messages to
its next-hop node j through k-times retransmissions. Then,
the successful delivery probability of the hth (1 <h < k)
retransmission is (1 — p; ;)" 'p;;. This retransmission will
lead to a delivery delay Lﬁj T. Accordingly, the remaining
benefit of node j will be decreased by (SLﬁJ T, and the corre-
sponding expected utility of node j is wu;(b; — SLﬁJT) In
addition, the cost of the A-times retransmissions is kc; ;.
Thus, the iterative formula about the expected utility for the
k-times retransmissions becomes:

k
=300 = i)l (08| | 7) < ke 23)
h=1
According to Eq. (23), we can still find the optimal
retransmission time % to maximize the expected utility value

u;(bi)|,- We denote this optimal retransmission time by k*.

About k£*, we have the following theorem.

Theorem 6. When node i forwards a message to its next-hop node
J, the expected utility value of node i will decrease after
increasing, along with an increase in retransmission times.
Moreover, the optimal retransmission time k* is no larger than
the optimal single-timeslot retransmission time kie, k* <k

Proof. Based on Eq. (23), we compute the expected utility
values u;(b;) for the (k + 1)-times retransmissions:

!
wi(bi)ly = > [=pip)" 'pijlu <bj - ’SL%JT>

h=1

—(]C—I—].)Ci_’j. (24)

With Egs. (23) and (24), we have
i (0i) 1= i (bi) |y
: kE+1
=[(1 = i) pigly (bj - SLTJT> —cije (29)
In Eq. (25), u;(b; — (SL%j T) is a decreasing function

about the retransmission time k. Thus, there must exist a
real number £’ satisfying u;(b;)|,, — wi(bi)] = 0.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

u(bi)lk

iy ~

Expected utility

Retransmission times

Fig. 8. An example of expected utility for the retransmissions in multiple
active time slots: the optimal retransmission time £* is smaller than the
optimal single-timeslot retransmission time k.

Moreover, when the retransmission time k < £, u;(b;)
lp1 — ui(bi)];, is always larger than zero; otherwise, if
k> ', ui(b;)|;1 —ui(bi)], will be smaller than zero.
This is to say, when the number of retransmissions &
increases, the expected utility value u;(b;) decreases after
increasing. The optimal expected utility wu;(b;)|, can be
achieved when k = £”. Then, the optimal retransmission
time £* is the closest integer to k" that can maximize the
optimal expected utility w;(b;)|,, ie., k"= [k"] or
k= [k"].

In addition, comparing Eq. (21) and (25), we can
derive k* < k due to u;(b; — 6&% T) < u;(by). 0

Fig. 8 shows an example of the expected utility for the
retransmissions in multiple active time slots. The solid line
demonstrates the relationship between the expected utility
u;(b;)|,, and the retransmission time k. k = k* is the optimal
retransmission time. For comparison, we also use a dashed
line to show the expected utility for the retransmissions in a
single active time slot. Here, the dashed line is just a refer-
ence (since the retransmissions in this case occur in multiple
time slots). As shown in this figure, when the retransmis-
sion time k increases, the expected utility value decreases
after increasing, and the optimal retransmission time £* is
smaller than the optimal single-timeslot retransmission
time £.

4.3 The Detailed Algorithm

Based on the above analysis about retransmissions, we
can determine the optimal retransmission time k*. First,
we directly compute the optimal single-timeslot retrans-
mission time k by using Eq. (18) in Theorem 5. Then, we
adopt a binary search in the range [1,%] to find the opti-
mal retransmission time £k*. Specifically, we treat the
expected utility u;(b;)|, as a discrete function about the
retransmission time k, i.e., U(k) = u;(b;)|,. Moreover, we
use the difference function of expected utility, i.e.,
AU (k) = ui(b;)|1; — ui(bi)],, to determine the range of
binary search. According to Theorem 6, the expected
utility is a convex function. Thus, the optimal retrans-
mission time k" is always located at the range [kiow, Knign],
where the lower bound £, and the upper bound kj;y,
satisfy the constraint AU (kjo,)AU (kpign) < 0. Accordingly,
we equally split the range in each round of binary
search, and select the part that satisfies this constraint as
the next binary search range, until ko, = kpign. Then, this
retransmission time is exactly the optimal one. Theorem
6 ensures the correctness.

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

B ui(bi)lk

3 3

Q '

3| o

el | /)

- § klow_1 i khigh:k)
d * N

Retransmission times k

Fig. 9. Searching the optimal retransmission time £*.

Fig. 9 illustrates this binary search method. At the
beginning, we initialize the lower bound and the upper
bound as ki,, = 1 and kg, = l%, respectively. Additionally,
we let the median be k,,iq = LMJ Next, we determine
which one of the two ranges [kio, kmia] and [kpia, knign] sat-
isfies the above constraint. In Fig. 9, the arrow lines indi-
cate the trends of expected utility. It shows that
AU (Kjow)AU (kymig) < 0. Thus, the optimal retransmission
time &£* must belong to the range [k, kmiq)- Then, we select
this range as the next binary search range. Repeating this
process, we can finally derive the optimal retransmission
time £*.

The detailed process of determining the optimal retrans-
mission times of a given node i is presented in Algorithm 2.
In Step 1, node i calculates its optimal single-timeslot
retransmission time & by using Eq. (18). Then, based on this
result, it initializes the search range in Step 2. Next, the
binary search is conducted in Steps 3-10. After the search
process, node ¢ will get its optimal retransmission times in
Step 11. The corresponding computation overhead is
O(log, k).

Algorithm 2 Determine the optimal retransmission times

1: Compute & by using Eq. 18;

2: Let kjopw=1, and khigh :];J,'

3: while klow?’ékhigh do

i g Bt

5: Compute AU(klow) = ui(bi)|klow+1 —ui(bi)|klow by
using Eq. 25;

6. Compute AU (kmiq) =ui(b;)
using Eq. 25;

7. if AU (kiow)AU (kmia) <0 then

kmia+1 _ui(bi) kmid by

8: khigh = kmid;
9: else
10: klow = kmid;
11: k* =kjow;

Now, we present the retransmission-allowed time-sen-
sitive utility-based routing algorithm, i.e., TUR-R. In fact,
by combining the above process of determining the opti-
mal retransmission times and TUR, we can directly get
the TUR-R algorithm, as shown in Algorithm 3. Com-
pared to TUR, we add the process of determining the
optimal retransmission times at Step 6 in TUR-R. More-
over, each node will compute the expected utility with
retransmissions, and will use it to determine its optimal
next-hop relay. In addition, the retransmission scheme is
adopted by each node in Step 12.

1461

Algorithm 3 The TUR-R algorithm

Require: G:<‘/, W:{<pm-7ti’j7ci,j>|i,j€V}>, s, d, 3, 0.
Ensure: wu;(b;), 7;(b;).

For each node i do

Initialization:

1: for each time slot in 7" do

2. if node i is active then

3 if node i=s then

4 Produce a request u;(b;) =us(8) =" to itself;

5: Request and receive u;(b;) from node je€ N;;

6 Determine the optimal retransmission time k*
and compute each u;(b;)|r+~ by using Eq. 23 and
Algorithm 2;

7: Determine r; by using Egs. 13, and update the
routing table;

8. if neighbor j is active then

9: Send the latest u;(b;) = u;(b;)|x+ to node j if j
needs it;

Routing;:

10: for each time slot in 7" do

11: if neighbor j is active and r;(b;)=j then

12: Send the corresponding messages to node j by
k*-times retransmissions;

Note that, Algorithm 2 and TUR-R are applicable, no
matter if the retransmissions occur in a single time slot or
multiple active time slots. Moreover, the optimal retrans-
mission times can be determined locally by each node.
Therefore, TUR-R can achieve the optimal result in the
retransmission-allowed case.

5 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performances of our proposed algorithms, including
TUR and TUR-R. Besides, we also implement three other
algorithms to compare them with. The compared algo-
rithms, the evaluation methods, settings, and results are
presented as follows.

5.1 Algorithms in Comparison

Since our proposed algorithms are the first time-sensitive
utility-based routing algorithms designed for duty-cycle
WSNs, to the best of our knowledge, there are no existing
algorithms that we can compare them with. Thus, according
to the metrics what we are concerned with, we carefully
design and implement three other algorithms: MinDelay,
MaxRatio, and MinCost.

MinDelay is a shortest-path-based algorithm, in which
each node exploits the Dijkstra algorithm to determine the
shortest path w.r.t. delay, and then it lets messages be
delivered along their shortest paths. MaxRatio lets mes-
sages be delivered along the paths which have the largest
successful delivery probabilities. MinCost delivers mes-
sages along the paths with the smallest expected delivery
cost. Both the paths with the largest delivery ratios and the
paths with the minimum delivery costs are also determined
by the Dijkstra algorithm.

1462

TABLE 2
Evaluation Settings

[Parameter name [| Default value | Range |

Deployment area S || 100m x100m | -
Number of nodes |V] || - 200-600
Transmission radius || 2.5\/S/|V|m | -
Transmission probability || - 0.3-0.9
Transmission cost || - 1-10
Scheduling cycle || 20 -
Initial benefit || 100 10-100
Benefit decay coefficient || 0.02 0.02-0.2
Number of messages || 10,000 -

5.2 Simulation Settings and Metrics

In the simulations, we deploy |V| sensor nodes in a
100 x 100 m square area. More specifically, we divide the
whole square area into |V| equivalent small square lattices,
and then let each node be deployed at a random position in
a lattice. The transmission model of sensor nodes is the tra-
ditional disk model. That is, each pair of sensor nodes can
communicate with each other only when their distance is
less than a given transmission radius. We let all sensor
nodes share a common transmission radius, and set the
radius to be 2.5 (> V12 +2?) times the side length of
the small square lattice. As a result, the sensor nodes in the
neighboring lattices must be within the transmission radius,
and thus, can communicate with each other. In this way, the
|V| sensor nodes are randomly and uniformly deployed in
the whole square area while ensuring that the whole net-
work is fully connected.

Next, we let all of the sensor nodes share a common
duty-cycle, and set the cycle to be 20 time slots. Each node
becomes active only at one time slot in each cycle. The active
time slot is randomly selected while ensuring that it is dif-
ferent from the neighboring nodes’. Each pair of neighbor-
ing nodes is associated with a successful transmission
probability and cost, which are randomly selected from
[0.3,0.9] and [1, 10], respectively. In addition, the initial ben-
efits and the benefit decay coefficients are selected from
[10,100] and [0.02,0.2], respectively. All of the evaluation
variables are shown in Table 2.

The major metric in our simulations is the average utility,
which is the average value of utilities of all message deliver-
ies. In order to demonstrate that our utility-based algo-
rithms make a good tradeoff among reliability, delay, and
cost, we also compare the average delivery delay, delivery ratio,
and average delivery cost of the five algorithms besides the
average utility. The average delivery delay and average
delivery cost are the average value of delivery delay and the

50

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

cost of all message deliveries. The delivery ratio is the ratio
of successful deliveries and all message deliveries.

5.3 Evaluation Results

We conduct nine groups of simulations in total. In each sim-
ulation, we produce 10,000 messages by randomly selecting
the sources and destinations, and record the average utility,
delivery cost, and delivery delay, respectively. Due to the
memory limitation of my computer, we only study the cases
[V| = 200,400,600. Actually, despite this, the evaluation
results still show the significant performances of our algo-
rithms. The concrete simulations and results are presented
as follows.

We first evaluate the performance on utility through
three groups of simulations. In the first group of simula-
tions, we fix the benefit decay coefficient § = 0.02 and
change the initial benefit value from 10 to 100, i.e., g = 10,
20,...,100, to compare the average utility of the five algo-
rithms. The results are shown in Fig. 10. Compared with
MinDelay, MaxRatio, and MinCost, TUR increases the util-
ity by 1459.6, 464.3, and 637.3 percent on average, respec-
tively. Compared with TUR, the TUR-R algorithm increases
the utility by up to 104.3 percent (47.9 percent on average).
In the second group of simulations, we fix the initial benefit
B =100 and change the benefit decay coefficient from 0.02
to 0.2. The comparison results on the average utility are
shown in Fig. 11. Compared with MinDelay, MaxRatio, and
MinCost, TUR increases the utility by 2305.2, 923.9, and
1149.9 percent on average, respectively. Compared with
TUR, the TUR-R algorithm increases the utility by up to
104.3 percent (87.3 percent on average). In the third group
of simulations, we change both the initial benefit and the
benefit decay coefficient at the same time to record the
change of average utility of the TUR algorithm, as shown in
Fig. 12. These results demonstrate the optimal utility perfor-
mance of our proposed algorithms. Moreover, the larger the
initial benefit and the smaller the benefit decay coefficient
are, the larger the average utility would be. The results also
show that retransmission can achieve an significant increase
in performance.

Next, we evaluate the performances on the delivery
ratio, delay, and cost through six groups of simulations.
We change the initial benefit and the benefit decay coeffi-
cient to record the average delivery delay, delivery ratio,
and average delivery cost of the five algorithms, respec-
tively. Since the delivery ratios of the five algorithms are
different, it is unfair to only compare the average delivery
delay and average delivery cost of the successful deliver-
ies. In order to make the comparison fair, we also record

—=—TURR
404 [-*—TUR _/ 309 1

—A— MinDelay|
Z 30 [~7— MaxRatio] 2z 2z 201 1
E |—<— MinCost E 204 /- : 5 .

-
$ 20 ./'/: S /./' 5 . e i
5 o _— £ 104 - . i g o 4
2 '/ —" 2 -/ — > " —"
Z 104 é./' 4 Z " < é:/'/
— = 5
0 __a—" gy —y—J—] o . . — B
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Initial Benefit

(a) Number of nodes: |V| = 200

Initial Benefit

(b) Number of nodes: |V| = 400

Fig. 10. Performance comparisons of utility versus initial benefit.

Initial Benefit

(c) Number of nodes: |V| = 600

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

80 T T T 60 T T T T T T
—a—TURR 404 —=—TURR
—e— TUR —e—TUR
60+ —Aa— MinDelayH —a— MinDelay|
2 —v— MaxRatio| 2 409 E —v— MaxRatio|
5 40<- . " - - . ._ijln.Cost I E [™ s . - - E] 2OA-\- - - . - . 7.7 M\n.Cost J
<3 <3 <3
|4 & 204 1 I
2 5 * . * o . —o o. 3 o g T — o o 3 P . - . ° . » o—eo—4q
4 < <
0 0
0+ T T T T T T T T T T T T T T T
0.04 0.08 0.12 0.16 0.20 0.04 0.08 0.12 0.16 0.20 0.04 0.08 0.12 0.16 0.20
Benefit Decay Coefficient Benefit Decay Coefficient Benefit Decay Coefficient
(a) Number of nodes: |V| = 200 (b) Number of nodes: |V| = 400 (c) Number of nodes: |V| = 600

Fig. 11. Performance comparisons of utility versus benefit decay coefficient.

IS
S

20

Average Utility
Average Utility

o
N
So

80 100 80 100

12 008, 20 60

Initial Benefit

012 08 . G

.04 20 .04
Benefit Decay Coefficient Initial Benefit Benefit Decay Coefficient

(a) Number of nodes: |V| = 200 (b) Number of nodes: |V| = 400

Fig. 12. The relationship of utility versus initial benefit and benefit decay coefficient.

° Average Utility
>

80 100

0.08 40 60

.04 20
Benefit Decay Coefficient Initial Benefit

(c) Number of nodes: |V| = 600

Mg : " " " " " " " r
¥ ¥ ¥ ¥ v v ¥ ¥ N 200, 4 4 4 ? 4 4 4 4 4 240 N ° . " R R N R
& 1204 —=~TURR |-)) —=—TURR
8 o TUR 8 160 8 200 —e—TUR
> 1004 —A— MinDelay| | > 7] —a— MinDelay([] > 7] A MinDeIay“
§ —v— MaxRatio 1 AN —v— MaxRatio g e —v— MaxRatio
= . | —<«—MinCost = - |—<— MinCost < 160 . <~ MinCost H
2 &0 \\-] 3 120 N] K] e =
(o] (o} (o}
e
g 604 ST ~ § \'\.\'\.\‘ g 120-] I .
k: ~—— 2 80y -_\.\ $ ~—~——
40 v T v v T T v v s 80 v T v T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Initial Benefit Initial Benefit Initial Benefit
(a) Number of nodes: |V| = 200 (b) Number of nodes: |V| = 400 (c) Number of nodes: |V| = 600
Fig. 13. Performance comparisons of delivery delay versus initial benefit.
e e e . j 200 ——————————————— 240 —
-)) g —=—TURR g
g 1204 3 160 —e—TUR | 8 2004
> —A— MinDelay)| > —A— MinDelay| >
g —v— MaxRatio| g —v— MaxRatio| g 160
3 — Mi 3 1204 —<—Mi H 3 1609
8 804 [—<— MinCost J| 8 <4— MinCost 3
Q [} (o} o
& g go—e—9o—9o—o—o—0o—0o—0o 0 graop— ‘ 1
2 2 s $ - a—a—%
< w0 . . i = ; ; " : r R T
0.04 0.08 0.12 0.16 020 0.04 0.08 0.12 0.16 0.20 0.04 0.08 012 0.16 020
Benefit Decay Coefficient Benefit Decay Coefficient Benefit Decay Coefficient
(a) Number of nodes: |V | = 200 (b) Number of nodes: |V| = 400 (¢) Number of nodes: |V| = 600
Fig. 14. Performance comparisons of delivery delay versus benefit decay coefficient.
08 . " " 06 . . . " " T
—=—TURR 0.4 ol
e TUR . " - /./
0.6 |—a— MinDelay| —" B —A— MinDelay| -— —A— MinDelay| »
° —v— MaxRatiq = 2 047|-v— MaxRati — 1 2 03|-v—MaxRatio — 1
g | —<— MinCost /' 9 [—<¢—MinCost ./ T | —<— MinCost ./
0.4 . x _— o« A
> — o —o—o—9 > - — > 0.2 . o —o—
5] ! —— @ - _ _e—* o _ o«
2 " 2 029 T 1 2 e
B l/:] g / — 8 01 _— = 1
0.0+ T T T T T 00 T T T T T 00 T T T T T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Initial Benefit Initial Benefit Initial Benefit
(a) Number of nodes: |V| = 200 (b) Number of nodes: |V| = 400 (c) Number of nodes: |V| = 600

Fig. 15. Performance comparisons of delivery ratio versus initial benefit.

1463

the failed delivery with the maximum delay and cost. The
results are shown in Figs. 13-18. Compared with MinDe-
lay, MaxRatio, and MinCost, TUR decreases the delivery
delay by 47.0, 46.2, and 46.2 percent on average, increases
the delivery ratio by 3096.4, 1144.1, 1184.7 percent, and
reduces the delivery cost by 59.1, 58.4, and 58.4 percent,

respectively. Here, TUR even has a much better perfor-
mance with delay and cost than MinDelay and MinCost,
due to its good delivery ratio. The results show that the
TUR algorithm has achieved good performances with
reliability, delay, and cost at the same time. It makes a
good tradeoff among the three factors.

1464

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

0.8 T T T

T T
—m—TUR-R —a—TUR-R

124 084 —e—TUR || —e—TUR
—A— MinDelay]| 0.6 —A— MinDelay|
2 2 064 —v— MaxRatio| | 2 —v— MaxRatio|
8 084 8 e |—<— MinCost s 04 =<~ MinCost | |
ook < —a > .
g 5 04 E g
2 2 >
© 044 © ® 02
[a] 0 0.24 o
0.0 0.0 0.0
T T T T T T T T T T T T T T T
0.04 0.08 012 0.16 0.20 0.04 0.08 012 0.16 0.20 0.04 0.08 0.12 0.16 020
Benefit Decay Coefficient Benefit Decay Coefficient Benefit Decay Coefficient
(a) Number of nodes: |V| = 200 (b) Number of nodes: |V| = 400 (c) Number of nodes: |V| = 600
Fig. 16. Performance comparisons of delivery ratio versus benefit decay coefficient.
&4 4o 2 o 200 —t——t——t————t—————4 240 ————————————
A ~ = TORR]
= = —a—TUR = —s—TURR
% 120 —=—TURR | 2 1c0d STTURR 2 200{ TR
S e TUR S N —e—TUR S -
> - > —a— MinDelay > IS —4— MinDelay
—4— MinDela; " i
5 Y| 5 —v— MaxRati o 160 —v— MaxRatio|4
= —v— MaxR: > 1204 laxRatio| | 14 N
5 804 O v— MaxRatiol | 3 .. <~ MinCost 3 .. ®—___ [=<=MinCost
K <~ MinCost K ~G e 8 1201 S~]
é’, \ % 80+ ~ -\.\ oé, _\ i S
g 409 N 8 T~ — 5 80 -
> . —_ > 404 T~ | > -
< I~ e, <] < I~
T y ! — .y T y T T ; 40 T y T T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Initial Benefit Initial Benefit Initial Benefit
(a) Number of nodes: |V | = 200 (b) Number of nodes: |V| = 400 (c) Number of nodes: |V| = 600
Fig. 17. Performance comparisons of delivery cost versus initial benefit.
A ——————t——4 200 ——t — 240 ——— +
B 120 —=—TUR-R K B B
S —e—TUR S 160-] S 2004
> —A— MinDelay] > —A— MinDelay| fl
é’ 804 —v— MaxRatio|| E 1204 —v— MaxRatiol | E 160+
2 [<~ MinCost 3 3
a inCos! a a 120
8 S 80| b o e
g & g p— "
s 409 5 e e oo oo —o—9o—0 ¢ 5 80 -
2 Z 40 S z ——— "
< B: < [. " — m—— 8 —a—B—" w0 - - -
0.04 0.8 0.2 016 020 0.04 0.08 0.2 0.16 020 0.04 0.08 012 016 0.20

Benefit Decay Coefficient

(a) Number of nodes: |V | = 200

Benefit Decay Coefficient

(b) Number of nodes: |V| = 400

Benefit Decay Coefficient

(c) Number of nodes: |V| = 600

Fig. 18. Performance comparisons of delivery cost versus benefit decay coefficient.

6 RELATED WORK

The routing problem in WSNs has been studied for many
years, and a lot of algorithms have been proposed for tradi-
tional non-duty-cycle WSNs [9], [10], [11], [12], [13], [14]. In
duty-cycle WSNs, the delivery delay is an important factor
of routing design. Thus, some delay-concerned routing
algorithms, including DSF, L?, DRINA, etc., [2], [13], [15],
[16], [17] and two flooding-based algorithms [3], [4], were
proposed recently. However, compared with our utility-
based algorithms, none of them adopts the utility metric,
which takes benefit, reliability, delay, and cost into account
at the same time.

The model of utility-based routing was first proposed by
Lu and Wu to balance the reliability and the transmission
cost of each message delivery in ad hoc networks [18].
Then, it is extended by adding the opportunistic transmis-
sion mechanism in [5], [6]. However, this utility model does
not take the delivery delay into account, so that it cannot
work well in duty-cycle WSNs.

To this end, we propose the time-sensitive utility-based
routing model in [1], [19] by adding the delivery delay into
the utility metric. This paper, which takes retransmission
into consideration, is exactly the extension of the work in
[1]. Moreover, the time-sensitive utility-based routing
model in [19], where the failed delivery will lead to zero
utility, is actually different from the model in this work. In
addition, although the concept “utility” is also adopted

widely in other works, it is just a simple composite metric,
unlike our utility metric, which is analogous to the postal
service in real world [20].

7 CONCLUSION

In this paper, we present a time-sensitive utility model for
duty-cycle WSNs, which takes benefit, reliability, delay,
and cost into consideration at the same time. Under this
model, we derive an iterative formula to compute the util-
ity of each message delivery. Based on this formula, we
design two optimal time-sensitive utility-based routing
algorithms for the non-retransmission setting and the
retransmission-allowed setting, respectively. Both of the
algorithms can maximize the expected utility of each mes-
sage delivery, and provide a good tradeoff among the
four concerned factors. Simulations also prove the signifi-
cant performances of our proposed algorithms.

ACKNOWLEDGMENTS

This paper was an extended version of the conference paper
[1] published in IEEE SRDS 2012. This research was sup-
ported in part by the National Natural Science Foundation
of China (NSFC) (Grant No. 61379132, 60803009, 61003044,
61170058), the NSF of Jiangsu Province in China (Grant No.
BK20131174, BK2009150); and NSF Grants ECCS 1231461,
ECCS 1128209, CNS 1138963, CNS 1065444, and CCF
1028167.

XIAO ET AL.: TIME-SENSITIVE UTILITY-BASED SINGLE-COPY ROUTING IN LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

M. Xiao, J. Wu, and L. Huang, “Time-sensitive utility-based rout-
ing in duty-cycle wireless sensor networks with unreliable links,”
in Proc. IEEE 31st Symp. Reliable Distrib. Syst., 2012, pp. 311-320.

Y. Gu and T. He, “Dynamic switching-based data forwarding for
low-duty-cycle wireless sensor networks,” IEEE Trans. Mobile
Comput., vol. 10, no. 12, pp. 1741-1754, Dec. 2011.

S. Guo, S. M. Kim, T. Zhu, Y. Gu, and T. He, “Correlated flooding
in low-duty-cycle wireless sensor networks,” in Proc. IEEE Int.
Conf. Netw. Protocols, 2011, pp. 383-392.

S.Guo, Y. Gu, B. Jiang, and T. He, “Opportunistic flooding in low-
duty-cycle wireless sensor networks with unreliable links,” in
Proc. ACM 15th Annu. Int. Conf. Mobile Comput. Netw., 2009,
pp. 133-144.

M. Lu, F. Li, and]. Wu, “Efficient opportunistic routing in utility-
based ad hoc networks,” IEEE Trans. Reliability, vol. 58, no. 3,
pp- 485-495, Sep. 2009.

J. Wu, M. Lu, and F. Li, “Utility-based opportunistic routing in
multi-hop wireless networks,” in Proc. 28th Int. Conf. Distrib. Com-
put. Syst., 2008, pp. 470-477.)

M. Maréti, B. Kusy, G. Simon, and Akos Lédeczi, “The flooding
time synchronization protocol,” in Proc. 2nd Int. Conf. Embedded
Netw. Sens. Syst., 2004, pp. 39-49.

S. Lin, J. Zhang, G. Zhou, L. Gu, T. He, and J. A. Stankovic,
“ATPC: Adaptive transmission power control for wireless sensor
networks,” in Proc. 4th Int. Conf. Embedded Netw. Sens. Syst., 2006,
pp- 223-236.

J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless
sensor networks: A survey,” IEEE Wireless Commun., vol. 11, no. 6,
pp- 628, Dec. 2004.

A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Boloni, and
D. Turgut, “Routing protocols in ad hoc networks: A survey,”
Comput. Netw., vol. 55, no. 13, pp. 3032-3080, 2011.

K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Netw., vol. 3, no. 3, pp. 325-
349, 2005.

S. Shah and B. Beferull-Lozano, “Joint sensor selection and multi-
hop routing for distributed estimation in ad-hoc wireless sensor
networks,” IEEE Trans. Signal Process., vol. 61, no. 24, pp. 6355—
6370, Dec. 2013.

L. A. Villas, A. Boukerche, H. S. Ramos, H. A. F. de Oliveira, R. B.
de Araujo, and A. A. F. Loureiro, “DRINA: A lightweight and reli-
able routing approach for in-network aggregation in wireless sen-
sor networks,” IEEE Trans. Comput., vol. 62, no. 4, pp. 676-689,
Apr. 2013.

S. Bai, W. Zhang, G. Xue,]J. Tang, and C. Wang, “Dear: delay-
bounded energy-constrained adaptive routing in wireless sensor
networks,” in Proc. IEEE Conf. Comput. Commun., 2012, pp. 1593
1601.

Y. Gu and T. He, “Data forwarding in extremely low duty-cycle
sensor networks with unreliable communication links,” in Proc.
5th Int. Conf. Embedded Netw. Sens. Syst., 2007, pp. 321-334.

Z.Cao, Y. He, and Y. Liu, “I*: Lazy forwarding in low duty cycle
wireless sensor networks,” in Proc. IEEE Conf. Comput. Commun.,
2012, pp. 1323-1331.

K. Naveen and A. Kumar, “Relay selection for geographical for-
warding in sleep-wake cycling wireless sensor networks,” IEEE
Trans. Mobile Comput., vol. 12, no. 3, pp. 475-488, Mar. 2013.

M. Lu and J. Wu, “Social welfare based routing in ad hoc
networks,” in Proc. Int. Conf. Parallel Process., 2006, pp. 211-218.

M. Xiao, J]. Wu, C. Liu, and L. Huang, “TOUR: Time-sensitive
opportunistic utility-based routing in delay tolerant networks,” in
Proc. IEEE Conf. Comput. Commun., 2013, pp. 2085-2091.

E. Pagani and G. P. Rossi, “Utility-based forwarding: a compari-
son in different mobility scenarios,” in Proc. 3rd ACM Int. Work-
shop Mobile Opportunistic Netw., 2012, pp. 29-36.

1465

Mingjun Xiao received the PhD degree from
the University of Science and Technology of
China (USTC) in 2004. During 2012, he was a
visiting scholar at Temple University, under
the supervision of Dr. Jie Wu. He is an associ-
ate professor in the School of Computer Sci-
ence and Technology at USTC. He was a
TPC or reviewer of many conferences and
journals. His main research interests include
delay tolerant networks and wireless sensor
networks. He is a member of the IEEE.

Jie Wu is the chair and a Laura H. Carnell profes-
sor in the Department of Computer and Informa-
tion Sciences at Temple University. Prior to
joining Temple University, he was a program
director at the National Science Foundation and
a distinguished professor at Florida Atlantic Uni-
versity. His current research interests include
mobile computing and wireless networks, routing
protocols, cloud and green computing, network
trust and security, and social network applica-
tions. He regularly publishes in scholarly journals,
conference proceedings, and books. He serves on several editorial
boards, including the IEEE Transactions on Computers, IEEE Transac-
tions on Service Computing, and the Journal of Parallel and Distributed
Computing. He was the general chair for the IEEE IPDPS 2008 and the
IEEE ICDCS 2013 and a program cochair/chair for the IEEE INFOCOM
2011 and China Computer Federation (CCF) CNCC 2013. Currently, he
is the general chair for ACM MobiHoc 2014. He was an IEEE Computer
Society distinguished visitor, ACM distinguished speaker, and the chair
for the IEEE Technical Committee on Distributed Processing (TCDP).
He received the 2011 China Computer Federation Overseas Outstand-
ing Achievement Award. He is a CCF distinguished speaker and a fellow
of the IEEE.

Liusheng Huang received the MS degree in
computer science from the University of Science
and Technology of China (USTC) in 1988. He is
a professor in the School of Computer Science
and Technology at USTC. He serves on the edi-
torial board of many journals. He has published
six books and more than 200 papers. His main
research interests include delay tolerant net-
works and Internet of things. He is a member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

