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Abstract—The phase­only beamforming synthesis is widely
applied in millimeter wave communication, radar and sonar.
Due to the CMC, the problem is non­convex. The most current
methods solve the problem by designing the phase, which either
degrades the performance or needs huge complexity. To address
this issue, a low­complexity Riemannian Manifold Optimization
based Conjugate Gradient (RMOCG) method is proposed. First,
the original problem is transformed into an unconstrained prob­
lem on a complex circle manifold. Then, a RMOCG algorithm is
derived, by deriving the gradient descent direction and the step
size for ensuring the cost function non­increasing. Comparing
with the existing methods, the proposed method has the following
advantages: 1) the null depth is respectively 8 dB deeper than
[6] and 3 dB deeper than [12]. 2) The computational cost is 2
magnitude lower than [6] and 1 magnitude lower than [12].

Index Terms—phase­only beamforming, constant modulus,
Riemannian manifold, RMOCG method

I. INTRODUCTION

The beamforming synthesis with the constant modulus con­
straint(CMC) is the key issue in the fields of radar and com­
munication. The interference can be suppressed with the null
beaforming, which can enhance the Signal to Interference plus
Noise Ratio(SINR)[1, 2]. Moreover, the beamforming with
CMC is more practical in engineering application. Therefore,
the beamforming synthesis with CMC has received extensive
attention [3–12].
Due to the CMC, the beamforming problem is non­convex

[13]. At present, the existing methods are mainly divided
into two categories. In the first category, the beamforming
is designed by relaxing the CMC [4, 5]. The second category
is designing phase.
In the above methods, the designing phase method at­

tracts extensive attention [7–12]. In [7], A typical gradient
projection is proposed by converting the problem into the
unconstrained phase design problem. Nevertheless, the con­
vergence may become slow, due to the choose of the stepsize.
To address this issue, an Alternating Direction Method Of
Multipliers(ADMM) method is proposed in [8], by dividing
the problem into multiple blocked problems. Nevertheless,
the convergence is sensitive to the initial parameters. To
address the issue, a Deep Learning based method is proposed

in [10, 11] by designing the phase optimization network.
However, huge computational cost is needed due to the
complex neural network. To reduce the complexity, a convex
relaxation(CR) method is proposed in [6, 14], by relaxing
the problem into convex phase optimization problem. Nev­
ertheless, the performance degrades due to the relaxation. To
enhance the performance,a dual­phase­shifter (DPS) method
is proposed in [12], by designing double phases.Nevertheless,
the complexity is not reduced very much due to the dual phase
shifters structure.
To address the issues above, a low­complexity Riemannian

Manifold Optimization based Conjugate Gradient (RMOCG)
method is proposed. First, the original problem is transformed
into an unconstrained problem on a complex circle manifold.
Then, a RMOCG algorithm is derived, by deriving the gradient
descent direction and the step size for ensuring the cost
function non­increasing. The main contributions are concluded
as follows.

• The null depth is respectively 8 dB deeper than [6] and
3 dB deeper than [12].

• The computational cost is 2 magnitude lower than [6] and
1 magnitude lower than [12], respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider an one­dimensional M ­element antenna array.

The steering vector of the linear antenna array is

a(θ) = [1, ej2πr2 sin θ/λ, · · · , ej2πrM sin θ/λ]T , (1)

where rm,m = 1, 2, · · ·M is the distance from the m­th array
element to the reference array element, θ ∈ Θ= [−π

2 ,
π
2 ] is the

direction of arrival (DOA), λ is the wavelength and (·)T is
the transpose operation.
Then the energy in the direction of θ is denoted as

G(θ) = |wHa(θ)|2 = wHa(θ)a(θ)Hw = wHX(θ)w, (2)

where X(θ) = a(θ)a(θ)H ∈ CM×M , w =
[w(1), w(2), · · ·w(M)]T ∈ CM×1 is the weighted vector.
Interference is always accompanied by signal transmission.

When the signal gain in the main lobe direction meets the
requirements we need, we turn to consider suppressing the
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interference in the side lobe direction. The problem can be
formulated as

min
w

wHY(θi)w

s.t.
wHX(θ0)w ≥ A0

|w(m)| = 1,m = 1, 2, · · ·M
, (3)

where Y(θi) =
∑

θi∈Θi

X(θi), θi is the undesired direction, Θi

is the set of the total undesired directions, θ0 is the desired
direction, A0 is the signal gain requirement of the main lobe
direction, and |w(m)| = 1 is the CMC.

III. THE PROPOSED METHOD

In this section, a low­complexity RMOCG method is pro­
posed. First, the original problem is transformed into an
unconstrained problem on a complex circle manifold. Then,a
RMOCG algorithm is derived, by deriving the gradient descent
direction and the step size.

A. Problem Transformation

The problem in (3) can be geometrically transformed into
an unconstrained problem on a complex circle manifold as{

min
w∈Ω

wHY(θi)w
s.t. wHX(θ)w ≥ A0

, (4)

where

Ω =
{
w ∈ CM ||w(m)| = 1,m = 1, 2, · · ·M

}
, (5)

where Ω is the complex circle manifold.
Using the Lagrangian multiplier method, the problem in (4)

can be written as

min
w∈Ω

wHY(θi)w+ρ
(
A0 −wHX(θ)w

)
, (6)

where ρ > 0 is the Lagrange multiplier.
The problem in (6) can be simplified as

min
w∈Ω

f(w) = wHPw , (7)

where P = Y(θi) + ρ(A0

M IM − X(θ)).
The problem in (7) is an unconstrained optimisation prob­

lem on the manifold. It can be solved by the gradient descent
approaches.

B. The Proposed RMOCG Algorithm

In this section, a RMOCG algorithm is proposed. First,
calculate the Riemann gradient; Second, derive the descent
direction; third, find the step size with the Armijo line search
strategy; and finally, iteratively update the feasible solution
until convergence.

1) Obtain the Riemann gradient: The Riemann gradient is
obtained by projecting the Euclidean gradient onto the tangent
space. In the i­th iteration, it is denoted as

∇Ωf(wi) = PTwi
Ω(∇f(wi))

= ∇f(wi)−ℜ(∇f(wi)⊙wi
∗)⊙wi

T , (8)

where
• Twi

Ω is a tangent space consisting of all tangent vectors
at points in the point space Ω. It can be given as

TwiΩ =
{
s ∈ CM |ℜ(s⊙wi

∗) = 0M
}
, (9)

where ℜ(·) is the operator to obtain the real part, ⊙ is
the Hadamard product operator.

• PTwi
Ω is a projection operator from the Riemannian

space to the tangent space, which is given as

PTwi
Ω(x) = x−ℜ(x⊙wi

∗)⊙wi
T , (10)

where x is an arbitrary vector.
• ∇f(wi) is the Euclidean gradient, which is

∇f(wi) = 2Pwi. (11)

2) Derive the descent direction: The Polak­Ribiere conju­
gate gradient descent direction, ensuring the algorithm to con­
verge superlinearly, is used to compute the descent direction.
In the i­th iteration, the descent direction is

di = −∇Ωf(wi) + βi
PRTwi−1

→wi
Ω(di−1), (12)

where Twi−1→wi
Ω(•) is the vector transfer operation required

to add and subtract points on different tangent spaces, which
is denoted as

Twi−1→wiΩ(di−1) = di−1 −ℜ(di−1 ⊙wi
∗)⊙wi, (13)

βi
PR is the Polak­Ribieres conjugate parameter,which is

βi
PR = [∇Ωf(wi)]

H ∇Ωf(wi)− Twi−1→wi
Ω(∇Ωf(wi))

||∇Ωf(wi−1)||2
.

(14)
3) Derive the step size: The step size is found based on

the well­known Armijo line search strategy, which guarantees
the objective function not increasing. The essence is to find
the smallest integer h satisfying

f(wi)− f(wi + τi−1β
hdi) ≥ στi−1β

h||∇Ωf(wi)||2, (15)

where h > 0, σ, β ∈ (0, 1), τi−1 > 0.
Therefore, the step size of the i­th iteration is denoted as

τi = τi−1β
h. (16)

4) Update the feasible solution: The solution on the tangent
space is denoted as

w̄i = wi + τidi. (17)

The feasible solution at the i+1­th iteration is obtained by
retracting the solution in (17) back onto the complex circle
manifold, which is given as

wi+1 = w̄i ⊘ |w̄i| (18)
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where ⊘ is the Hadamard element­wise deviation operator,
|w̄i| the modulus of this element.
Based on the above discussions, the proposed method is

summarized as Algorithm 1.

Algorithm 1 :The RMOCG algorithm for solving (7)
Input: I = 1500, ε = 10−3

Output: w∗ = wi+1

1: Set initial value, initial descent direction, initial stepsize
w0 ∈ Ω,d0 = −∇Ωf(w0), τ0 = 10;

2: w1 = (w0 + τ0d0)⊘ |w0 + τ0d0|
While ||∇Ωf(wi−1)|| ≥ ε and i ≤ I do

3: Calculate the Riemann gradient.
Use equation (11) to calculate ∇f(wi)
Calculate ∇Ωf(wi) using equation (8)

4: Compute the direction of descent
Calculate Twi−1→wi

Ω(di−1) using formula(13)
Calculate βi

PR with formula(14)
Calculate di using formula (12)

5: Calculate step size τi using formula (16)
6: Update calculation iterations

Calculate w̄i with formula (17)
Calculate wi+1 with formula (18)

7: Loop calculation i = i+ 1

C. Complexity Analysis
The complexity of each iteration is analysed as follows.

TABLE I: Complexity Analysis

The iteration procedures Calculation complexity

Riemannian gradient M2 + 2M multiplications

Descent direction (5M ) and M divisions.

Step size (h+ 1)M2 + (h+ 1)M multiplications.

Update solution M multiplications and M divisions.

Each iteration ((h+ 2)M2 + (h+ 11)M)

As shown in TABLE I, the complexity of the proposed
method is O(M2), while the complexity of the method in
[6, 12] is O(M3)

IV. NUMERICAL RESULTS
In this section, several simulations are shown to evaluate the

performance of the convergence, nulling depth and computa­
tional time. For comparison purpose, the convex relaxation
(CR) method in [6] and the dual phase shifter (DPS) method
in [12] are considered.
The simulation configuration is set as follows. Case I:The

number of antennas is M = 64, the target direction is θ0 =
10◦, and the interference direction is θi = {−49◦ : −40◦}.
Case II: The number of antennas is M = 64, the target

direction is θ0 = −30◦, and the interference direction is
θi = {10◦ : 20◦}.

A. The convergence evaluation
Fig.1 shows the cost function versus the number of it­

erations in Case I and Case II . As can be seen, the fast
convergence is obtained.
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Fig. 1: The cost function versus the number of the iterations.

B. The nulling beamforming comparison
Fig.2 shows the nulling beamforming in Case I . As shown

in Fig.2, the null of the proposed method are respectively 8dB
deeper than [6] and 3dB deeper than [12].
Fig.3 shows the nulling beamforming in Case II . As

shown in Fig.3, the average null of the proposed method is
respectively 5 dB deeper than [6] and 0.5 dB deeper than [12].
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Fig. 2: The formed beam pattern in case I .

C. The computational cost camparison
Fig.4 shows the computational cost versus the number of an­

tennas. As can be seen, the computational cost is 2 magnitude
lower than [6] and 1 magnitude lower than [12], respectively.
Moreover, as the number of the antennas increasing, more
obvious priority is shown in the proposed method.
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Fig. 3: The formed beam pattern in case II .
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Fig. 4: Computational time versus number of antennas.

V. CONCLUSION

In this paper, a low­complexity Riemannian Manifold Op­
timization based Conjugate Gradient (RMOCG) method is
proposed for phase only null beamforming synthesis. First, the
original problem is transformed into an unconstrained problem
on a complex circle manifold. Then, a RMOCG algorithm is
derived, by deriving the gradient descent direction and the step
size for ensuring the cost function non­increasing. Comparing
with the existing methods, the proposed method has better
performance in terms of the null depth and the computational
cost.
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