

Tiresias : Optimizing NUMA Performance with CXL Memory and Locality-Aware Process Scheduling

Wenda Tang^{1,2}, Tianxiang Ai¹, and Jie Wu² ¹China Telecom eSurfing Cloud ²China Telecom Cloud Computing Research Institute

2024 年 7月

- Introduction
- Motivation & Background
- *Tiresias* Design
- Performance Analysis
- Conclusion & Future Work

Introduction

Motivation & Background

Differentiated Memory QoS Requirements

赋能未来

- Latency-Critical (LC) Performance Sensitive, Metric: P99 Latency...
 e.g., Web Search, Social Media
- Best-Effort (BE) Performance Insensitive, Metric: Job Finish Time...
 e.g., Offline Analysis

Memory access latency increases monotonically as the memory bandwidth pressure increases.

Tiresias Design

Tiresias Design

2. Bandwidth Expansion via CXL Memory

Unthrottling memory bandwidth of BE workloads via CXL memory.

赋能未来

Tiresias Design

3. Locality-Aware Process Scheduling

Performance Analysis

赋能未来

Conclusion

- Black-box workloads in public clouds call for new techniques for allocating memory subsystem resources (including CXL memory).
- *Tiresias* exploits three optimization techniques: (1) workload-aware and software-based memory bandwidth management, (2) a memory page migration strategy to alleviate memory bandwidth contention by leveraging CXL memory, and (3) PTSR based locality-aware process scheduling.

Future Work

- Experiments results on real CXL hardware.
- System implementation includes CPU scheduler and page-table management in Linux Kernel.
- QoS monitoring and performance-aware strategies.

Thanks