
Improvements to Worker Assignment in Bike
Sharing Systems

Trent Johnson Jie Wu
Department of Mathematics Department of Computer and Information Sciences

Georgia Institute of Technology Temple University

Abstract—Bike-sharing systems (BSSs) are widely used in cities
worldwide as they offer an affordable, eco-friendly method of
transport. However, the rate of renting and returning bikes
from stations is not always equal. The stations with imbalanced
demand can become out of service by having all docks filled
or emptied. These out-of-service stations can lead to a worse
user experience and fewer people using BSSs. Researchers are
trying to solve the rebalancing problem by developing algorithms
that incentivize workers to pick up and drop off bicycles from
different stations to balance the rent and return rates. Many of
these algorithms focus on creating incentive and pricing models
to encourage workers to go to imbalanced stations. Since they do
not consider all of the placements of workers, this strategy may
lead to inefficiencies where workers travel farther than they need.
We can treat rebalancing as a Worker Assignment Problem by
assigning worker stations to minimize the total distance traveled.
We propose an algorithm that can approximate the optimal
assignment significantly faster than other techniques with very
high performance. The rapid speed allows for real-time use in
augmenting pricing models and as a stand-alone method for
worker assignment. Furthermore, we compare our approach
against four existing algorithms on real-world data to evaluate
computational speed and effectiveness.

Index Terms—bike-sharing, weighted matching problem, bike
rebalancing, urban computing.

I. INTRODUCTION

In recent years we have seen a dramatic rise in the num-
ber of bike sharing systems (BBSs) around the world [1].
They are a flexible and cheap form of transportation that
requires little infrastructure, provide affordable transportation
to under-serviced areas, offer health benefits to users, are
an environmentally-friendly mode of transportation, and help
reduce traffic [1]. These benefits significantly improve a city
on both an individual and a city-wide scale.

These systems can either be docked, users drop bikes off at
stations, or dock-less, users can drop bikes off anywhere. In
docked systems, many stations experience different levels of
return and rental rates throughout the day. These imbalances
can cause stations to either have a shortage of bicycles to
rent or be near max capacity, which we will respectively refer
to as underflow and overflow stations. Both underflow and
overflow stations can become out of service stations (OSSs) if
they either entirely run out of bikes or empty docks. OSSs are
unusable to many users and often occur in areas and times
with significant demand. This dissatisfaction decreases the

This research was supported in part by NSF REU site grant CNS 1757533.

Fig. 1: Bikes at a bike sharing dock in New York City

usage, potential profits, and benefits of a BSS. Furthermore,
for dock-less BSSs, there can be areas with too many or not
enough bicycles, resulting in a similar issue. Thus, BSSs must
rebalance stations and zones to reduce the number of OSSs.

Many algorithms have BSS users either give incentives [2],
[3] or assignments [4] to change what stations they rebalance.
When using incentives, the BSS will reward users some
amount if they return bikes to OSSs. Therefore, any BSS user
can participate and choose if/what station to rebalance. This
allows for gamification with leaderboards and prizes, which
can help increase the likelihood that users will rebalance. On
the other hand, we could hire a group of workers from the pool
of BSS users. As workers use the BSS, we can alternate routes
to their destination, making them rebalance stations. Using
workers allows for the total distance traveled to be minimized
as we can control where they go.

Rebalancing can be separated into spatial and temporal
domains by dividing the day into time slices in which the
algorithm makes the workers’ assignments or incentives [2],
[4]. Duan and Wu defined Worker Assignment Problem (WAP)
as the spatial component of rebalancing where workers are
assigned tasks. Workers would walk from their source to
an assigned overflow station, bike to an assigned underflow
station, and walk to their destination. Thus, the problem
focuses on matching overflow stations, underflow stations,
and workers to minimize the total detour taken by workers.
Unfortunately, WAP is NP-Hard, so solutions need to be
approximated [4].

In addition, when solving BSS rebalancing, one can imple-
ment a more combinatorial route or a more machine learning
and data-driven approach. Deep models are well suited to
related issues such as predicting station demand [5], but they

(a) (b)
Fig. 2: The overflow (blue squares) and underflow (red diamond) stations
after the a) NYC and b) Washington DC evening commute.

suffer from being very difficult to understand. Wu suggests
that combinatorial techniques are well suited to the role of
WAP and similar assignment problems. Some advantages of
this approach include potentially having lower bounds on
performance, no need for data, and being understandable. The
ease of understanding is paramount as bike-sharing systems
are often run by or in conjunction with governments, so under-
standing why the algorithm is making decisions is critical for
accountability and transparency. Thus, we use combinatorial
approaches rather than data-driven algorithms in this work.

However, when solving WAP, Duan and Wu restricted the
number of workers, overflow, and underflow targets to be
equal, so workers were given complete assignments, assign-
ments with both underflow and overflow stations. Restricting
worker counts is unrealistic as worker counts could be far high
or lower than the targets. In this paper, we relax the definition
of WAP and allow for any number of workers. When we
have a surplus of workers, we can give partial assignments,
assignments with only a single station to rebalance, to help
reduce detours.

In this paper, we provide the following contributions:

• We extend the Worker Assignment Problem to include
partial assignments and variable worker counts

• We introduce four algorithms into the field of BSS
rebalancing

• Use real-world bike-sharing data to evaluate the perfor-
mance and run-time of four algorithms

• Propose a new algorithm, Iterative Round Search, that
has low detour assignments and run-time

II. RELATED WORK

Earlier works have examined the rebalancing of BSSs from
a plethora of perspectives. Designing better station layouts
to reduce the rebalancing problem has been investigated by
O’Dell et al. [6] who created a methodology for optimizing the
placement of docks. Furthermore, Caggiani et al. used linear
programming to maximize spatial equality [7] and Zhang
et al. utilized particle swarm optimization and GPS data to

Fig. 3: Workers have a start and end destination and an assignment of stations
is given to them that both rebalances stations and minimized detour

TABLE I: Run-time on Citi Data (s)

Variable Definition

W,O,U Set of workers, overflow stations, and underflow stations
w, o, u Any worker, overflow station, or underflow station
dis(w, o, u) Total distance from w’s source, o, u, to w’s destination

create station placements to maximize the reductions in carbon
emissions by the BBSs [8].

Algorithms for BSS rebalancing tend to look into two
approaches. The first is to use trucks to move bikes from over-
flow stations to underflow stations. Past works have designed
many algorithms for optimal routes for these trucks [9], [10],
[11]. However, trucks are expensive and not very efficient.
In addition, they cause congestion and pollution, which can
reduce the advantages of having a bike-sharing system.

Thus, many researchers have been looking into using crowd-
sourcing BSS users to rebalance the system by offering
incentives to alternative stations. Most user-based rebalancing
strategies focus on finding optimal pricing and incentive
schemes to most effectively encourage workers to go to the
stations that are at high risk of going out of service [3],[12].
For example, Bike Angels is a machine learning algorithm
used in Philadelphia, New York, and Washington DC that
gives users points for renting and returning bicycles to over-
flow and underflow stations. These points can be utilized for
prizes and discounts [2]. This approach requires a three-month
data gathering and testing phase before full implementation. In
addition, Pan created a pricing model using a reinforcement
learning model to assign workers best [3]. However, these
systems do not attempt to minimize the total detour taken
by workers, so workers can travel further than they need to.
All of the unnecessary detours taken by workers can increase
the total cost of rebalancing extra distance, reduce worker
satisfaction, and decrease the number of willing workers.

III. PROBLEM FORMULATION

The Worker Assignment Problem has various formulations
and perspectives. Furthermore, most of the algorithms eval-
uated in this paper are not designed for WAP, but they are

(a) (b) (c)
Fig. 4: Graphs with two fixed vertex sets a) shows workers and overflow
fixed together b) shows overflow and underflow fixed together, and c) shows
workers and underflow stations.

created for similar problems easily reducible to WAP. Thus,
we will show these related problems and their reduction.

A. Matching Problems

In general, matching problems take a graph and seek to
find a set of edges such that each vertex is part of at most
one edge in the chosen set. We can give edges weights to
create Weighted Matching, where we must find a set of disjoint
edges, edges which do not share a vertex, with the maximal
sum of weights. Perfect weighted matching (equivalent to the
Assignment Problem) seeks to create a set of edges on a fully
connected bipartite graph with the two vertex sets having equal
sizes. A variation of Hungarian algorithm can solve bipartite
matching with on a bipartite graph with vertex sets V1 > V2
in O(V1V2log(V1)) [13].

B. Weighted 3-Dimensional Matching

Weighted 3-Dimensional Matching is an extension of
Weighted Matching that uses 3-dimensional hypergraphs. A
3 dimension hypergraph G = (V,E) has edges that connect
three vertices rather than 2, so E ⊂ V × V × V . To solve
Weighted 3-Dimensional Matching, we use a weighted 3D
hypergraph to create a set of disjoint edges to maximize the
sum of the chosen edges. Unfortunately, this problem is NP-
Hard. [14]. This problem is a special case of Weighted 3-
Dimensional Matching, where the graph must be tripartite.
However, the 3-Index Assignment Problem is NP-Hard [15].

C. Reduction

We can solve WAP using 3-Dimensional Matching. First,
we define W as the set of workers. Then for every overflow
station, we will add it to the set O a number of times equal
to its rebalancing target. Every element in O represents the
need for one bike for a station. Likewise, for every underflow
station, we will add the station to the set U a number of times
equal to its rebalancing target. Thus, removing/sending a bike
to each cloned station in O,U will remove/send the target
amount of bikes to target stations. Note that |O| = |U | by the
definition of WAP.

To reduce WAP to 3-Dimensional Matching, we first create
a hypergraph G with three sets of vertices W , O, and U . We
define ∀(w ∈W, o ∈ O, u ∈ U), the total distance traveled by
a worker w from their start, to o, to u, and to their destination
to be dis(w, o, u). Next, ∀(w, o, u) ∈ (W × O × U), let
(w, o, u) be an edge in G with a weight equal to a large con-
stant minus dis(w, o, u). We can use weighted 3-Dimensional
Matching to obtain maximal matching of G. A worker and a

station connection signify a worker adding/removing a single
bicycle from that station in the final matching. Thus, the
matching represents an assignment that fulfills the station
targets and minimizes the total distance traveled.

IV. ALGORITHMS

In this section, we describe the evaluated algorithms in the
paper: Two Round Matching [4], Local Ratio [16], Hungarian
Search [17] and Genetic Hungarian Search [17]. Furthermore,
we present our algorithm: Iterative Round Search.

A. Two Round Matching

Two Round Matching is an algorithm developed by Duan
and Wu [4] that performs two rounds of matching to min-
imize detour. This algorithm is the only algorithm designed
specifically for WAP that we tested. It performs two rounds of
maximal matching to achieve the best assignment. It first pairs
stations and then assigns workers to the station pairs. However,
this algorithm is restricted to problems with an equal number
of workers, overflow, and underflow targets. Thus, we propose
TRM∗ to extend the algorithm to variable worker counts.

In the first round, a graph G = (V,E) is created with
V = O∪U and E = O×U with edges having weight equal to
a large constant minus dis(o, u) for all (o, u) ∈ E. Next, we
perform a weighted matching on G to get the assigned edges
E′. Thus, we have created the minimum distance routes to
rebalance from overflow to underflow stations. In the second
round, we create G∗ with the vertex set V ∗ = W ∪ O ∪ U
and edge set E = E′ × W with edge weights equal to a
large constant minus dis(w, o, u) for all w, o, u ∈ E. We
then do a final round of weighted matching of G∗ to a set
of edges. We can use those edges to assign an overflow and
underflow station to each worker that minimizes the total
distance traveled. Therefore, we have reduced WAP to 3-
Dimensional Matching In addition, outputs of TRM∗ are 3-
approximate solutions to WAP [4].

However, this algorithm only works with scenarios when
workers, overflow targets, and underflow targets are equal. We
will relax the need for workers to be equal to station targets
and use Karp’s algorithm instead of the Hungarian Method to
perform the matching [13]. This allows the bipartite graph’s
vertex sets to be different sizes to utilize different numbers of
stations and workers. [18]. Unfortunately, TRM∗ also cannot
give partial assignments to workers. For M = max{U,W},
TRM∗ has a time complexity of O((MO)log(M)).

B. Random Hungarian Search

An approximation used to solve the 3-Index Assignment is
called Hungarian Search (HS) [17]. In this process, we take
the tripartite graph with vertex sets V1, V2, V3 with assignment
A ⊂ V1 × V2 × V3. Then, for each assignment, we randomly
pick two sets to fix together in the assignment. Then, we use
a Weighted 2D-Matching Algorithm to optimize the cost of
the assignments by changing the remaining set’s assignments.

Jiang et al. used this algorithm using a graph initialized
with random edges as a baseline [19]. We will denote Random

Algorithm 1: Two Round Matching∗ [4]
Input : Sets of workers W , overflow target stations

O, underflow target stations U
Output: The minimum weight worker assignment of G
for o ∈ O, u ∈ U do

E ← E ∪ (o, u);
e(o, u)← dis(o, u);

end
X ← min-cost perfect matching of G(V,E);
V ∗ ←W ∪O ∪ U , E∗ ← ∅;
for x ∈ X,w ∈W do

E∗ ← E∗ ∪ (x,w);
e(x,w)← dis(w, x);

end
return full min-cost matching of G∗(V ∗, E∗);

Algorithm 2: Hungarian Search [17]
Input : W , O, U , worker assignment graph G.
Output: The minimum weight worker assignment of G
while dis(G) is decreasing do

for V1, V2 in shuffle([(W,O), (O,U), (W,U)]) do
G∗ ←Freeze all edges in G between V1, V2;
G← The full min-cost matching of G∗;

end
end
return G;

Hungarian Search (RHS) as creating a random assignment and
optimizing them with HS. The time complexity of running an
iteration of RHS is O((RMU)log(M)).

C. Genetic Hungarian Search

Huang and Lin developed a genetic algorithm denoted as
Genetic Hungarian Search (GHS) that used HS to optimize
each potential assignment after selection occurred [17]. In
a standard genetic algorithm, we create a population of P
potential assignments (or species) and define the fitness of
each species to the total distance traveled. Then, according to
their fitness values, species are randomly chosen as parents
and joined together to create offspring. The offspring are then
mutated to form the next generation of assignments. This
process is repeated for L generations or until the population
has converged. However, for GHS, instead of a standard
mutation, we will run HS on each offspring. This will both
optimize the graphs and act as a way to change the off-
spring pseudo-randomly. Furthermore, the algorithm will use
Partially Mapped Crossover on P parents to create a pool
of 2P offspring. These offspring and then pruned of any
duplicate children and the best P will be selected. If there
are not P offspring after the duplicate pruning, the evolution
is considered converged, and the algorithm terminates.

In our experiment, we simulated four generations with a
population size of 8. The HS optimization of each species
was multi-threaded to save time. In addition, we use Karp’s

Algorithm 3: (Proposed) Iterative Round Search
Input : W ,O, U .
Output: The minimum weight worker assignment
G(V,E)← TRM∗(W,O,U);
G∗(V,E)← HS(W,O,U,G);
return G∗;

Matching Algorithm, so for a population size of P and L gen-
erations, we have a time complexity of O((RPMU)log(M)).

D. Iterative Round Search

We propose Iterative Round Search (IRS) as the best al-
gorithm for this problem. In IRS, we first create a graph
from TRM∗. Then optimize the graph using Hungarian Search,
which can only improve the 3-approximate TRM solution.
Since TRM∗ is so fast, it adds little time to the computation.
HS can then optimize a 3-approximate solution, enabling a
rapid convergence for a close approximation. Other algorithms
use HS for an initial graph to be later optimized by a genetic
algorithm [17], or a global search [19]. Alternatively, IRS uses
an excellent initialization for HS to quickly produce accurate
approximations with no downstream optimization.

E. Local Ratio

Local Ratio (LR) was developed by Chan, and Lau [16].
Inspired by fractional coloring, a good ordering of edges is
made via linear programming. For G = (V,E), let σe be the
edge weight for e ∈ E and N(v) being the set of the edges
adjacent to v. Order edges based on the x values from the
linear programming problem

max
∑
e∈E

xeσe

s.t.
∑

e∈N(v))

xeσe ≤ 1 ∀xe

xe ≥ 0 ∀xe.
Next, Local Ratio is used to iterative prunes poor edges and
adds the first valid edge in the ordering to the matching. Once
all edges have been added or removed, the resulting matching
is a 2-approximate solution [16]. However, when solving this
problem, a set of all possible WU2 edge weights must be
built. Thus, this algorithm is at a minimum of O(WU2) in
addition to the linear programming.

V. DATA AND EXPERIMENT

For this experiment, we used publicly available data and
created simulations to evaluate performance.

A. Data Sets

For this experiment, we used three publicly available New
York City CitiBike Data Set [20], Washington DC Capital Bike
Share Data Set [21], and Boston Bluebike Data Set [21]. These
data sets have 2, 718, 594 trips for CitiBike, 219, 155 trips for
Capital, and 270, 893 trips for Bluebikes in May 2021.

For all data sets, we used data gathered from May 2021
and used UTM coordinates for each station. Since this data set

TABLE II: Increase in Travel Distance (%)

TRM∗ RHS IRS GHS LR TRM∗ RHS IRS GHS LR TRM∗ RHS IRS GHS LR

1/5 0.14 0.09 0.05 0.16 0.03 0.10 0.05 0.03 0.1 0.02 0.1 0.05 0.03 0.1 0.02
1/4 0.15 0.09 0.06 0.15 0.05 0.12 0.06 0.04 0.1 0.03 0.12 0.06 0.04 0.1 0.03
1/3 0.16 0.1 0.08 0.15 0.07 0.13 0.07 0.05 0.11 0.04 0.13 0.07 0.05 0.1 0.04
1/2 0.21 0.13 0.12 0.16 0.11 0.16 0.09 0.08 0.12 0.07 0.15 0.09 0.08 0.11 0.07
1 0.47 0.45 0.44 0.45 0.43 0.43 0.4 0.4 0.41 0.38 0.41 0.37 0.37 0.38 0.35
2 0.17 0.15 0.15 0.14 0.14 0.17 0.16 0.16 0.15 0.15 0.17 0.14 0.15 0.14 0.14
3 0.09 0.08 0.09 0.08 0.08 0.10 0.09 0.1 0.08 0.09 0.1 0.08 0.09 0.08 0.08
4 0.06 0.05 0.06 0.05 0.05 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.05
5 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.04

TABLE III: Run-Times (s)

TRM RHS IRS GHS LR TRM RHS IRS GHS LR TRM RHS IRS GHS Local Ratio

1/5 0.03 0.09 0.08 14.31 2.02 0.03 0.09 0.08 16.19 2.17 0.03 0.09 0.08 16.57 2.28
1/4 0.03 0.11 0.09 15.07 2.64 0.03 0.10 0.09 15.36 2.86 0.03 0.11 0.10 15.45 3.02
1/3 0.03 0.14 0.12 15.74 3.77 0.03 0.14 0.12 15.80 4.06 0.03 0.14 0.13 16.17 4.36
1/2 0.04 0.21 0.17 16.75 6.30 0.04 0.21 0.18 16.71 6.90 0.04 0.21 0.18 17.03 7.28
1 0.05 0.47 0.36 19.40 16.75 0.05 0.49 0.38 19.53 18.73 0.06 0.49 0.40 20.36 20.38
2 0.86 6.14 4.45 140.76 40.29 0.92 6.25 4.66 147.93 45.73 0.96 6.72 4.99 153.26 52.33
3 1.7 11.71 8.47 255.82 69.38 1.8 12.45 9.35 274.04 89.87 1.87 12.98 9.75 281.38 86.49
4 2.52 17.60 12.50 372.20 105.25 2.69 18.67 13.59 402.83 120.82 2.79 19.45 14.35 410.76 129.51
5 3.34 23.50 16.81 487.48 148.07 3.6 24.80 18.12 518.62 167.63 3.7 25.52 18.25 535.59 189.38

does not contain worker sources and destinations, we created
workers by randomly picking start/end stations weighted by
the number of trips that started/end at that station in the
time interval. Then, we created a biker with source/destination
location randomly within 500 meters of the station. Also, we
created targets for the station equal to the net number of bikes
that left/arrived at the station in the time slice.

B. Experimental Set-Up

The data sets were divided into time slices between 100
and 400 stations and workers. We could not use larger graphs
as Local Ratio required more RAM than feasible for our
computers. Time slices were randomly selected in May 2021
from 7 am to 7 pm. Finally, we fabricated station rebalancing
targets by tracking how many bikes left/arrived at each station
in the time slice. For non-binary station targets, we split each
station into a number of copies equal to the rebalancing target
at the same location with a target of ±1. If there were fewer
workers than station targets, workers had two assignment
stations. On the other hand, if there were more workers than
stations, they could have partial assignments. If a worker is
not assigned a start or end station, they go to the station that
minimizes the distance traveled. We approximated the actual
geographic distance with Euclidean distance.

C. Results

In Table II, we display the percent change in distance that
workers take by rebalancing instead of optimal routes. We
can see that detour added steadily increases for all algorithms
workers, and targets are equal. When worker counts are
low, workers can be routed to almost any station with little
competition for stations in desirable areas. However, as worker
count increases, we start sending workers to stations far away
to balance. This results in a more balanced system at the cost

of efficiency. Once we start adding more workers, we then
begin to have a larger pool of workers from more locations
to reroute. Having more workers allows us to make more effi-
cient assignments with our workers. Wu points that increased
worker satisfaction leads to more worker recruitment [4]. If
we hire workers, the distance traveled by the average worker
decreases. Then, workers are more satisfied, so more workers
are recruited. These relations create a positive feedback loop
that results in a large pool of workers [4]. However, we only
see these benefits when worker and target sizes are vastly
different. Thus, a system should have fewer rebalancing targets
for workers to effectively balance stations and utilize the
worker feedback loop.

Another point of interest is that these algorithms give fewer
detours in extreme worker shortage situations than worker
surplus scenarios. The difference in detours may be due to
”bad” stations that are very hard to rebalance as they are out
of the way of all usual worker paths. The worker shortage
scenario can not assign workers to these stations, but these
bad stations must be rebalanced with enough workers. This
leads to less efficient assignments.

When looking at the individual algorithms, it is clear
that Local Ratio does the best at minimizing detour in all
cases but one. On the other hand, TRM∗ performs the worst
overall. This makes sense as only two rounds of matching are
performed. However, one surprising fact was TRM∗ performed
relatively similar to the other algorithms despite not having
partial assignments. Furthermore, our proposed algorithm usu-
ally performs second best, especially with worker shortages.
Also, differences in algorithmic performance tend to drop as
we added more workers because having more workers gives
more flexibility in assigning.

Furthermore, in Table III we present the run-times of each

algorithm. We can observe a steady increase in run-times as
we add workers. In every case, TRM∗ is the fastest, with
IRS being the second-fastest. Far behind are LR and GHS,
which take up to 51 and 144 times longer to complete. LR
uses copious amounts of RAM, which may be a reason for its
slow speed.

Furthermore, we can examine the time complexity of each
algorithm. Note that M = max{U,W}, and for GHS, P
is the population size, and L is the number of generations.
Since HS continues until it can no longer improve the score,
we introduce R, which is the maximum number of rounds
HS can complete. Thus, TRM∗ is O((MU)log(M)), GHS
is O(LPR(MU)log(M)), IRS is O(R(MU)log(M)), and
LR is O(WS = U2) plus linear programming. TRM∗ by
far has the lowest time complexity. Furthermore, GHS has
the worst time complexity as it performs Hierarchical Search
PL times. From a time complexity standpoint, RHS and IRS
are the same, but in run-time, IRS is faster despite doing an
extra step beforehand. The faster run-time is due to TRM∗

rapidly getting a good initialization, so only a few rounds
of optimization are needed for IRS, while RHS needs many
iterations on the random graph before converging.

VI. CONCLUSION

This paper introduces the usage of 3-Dimensional Matching
and 3-Index assignment algorithms as potential solutions to
BSS rebalancing. Furthermore, we evaluated our proposed
algorithm, Iterative Round Search, against four algorithms.
Finally, we show that IRS has similar performance to the
best algorithms tested, runs faster than these algorithms, and
can have reduced time complexity. The speed is due to a
rapid and good initialization from TRM∗, and the excellent
approximation is from the iterative optimization of HS. The
fast speed of this algorithm can help reduce computing costs
and allow for more frequent updates of assignments. The near
real-time updates and high accuracy of IRS will reduce detours
for workers, which will reduce the costs of hiring workers.

Furthermore, Iterative Round Search is not limited to bike-
sharing. It works as an approximation to the general Weight
3-Dimensional Matching problem. Furthermore, it can be
tailored to domain-specific uses by replacing TRM∗ with
another quick heuristic. This can allow for applications in
networking, logistics, and other industries.

Some areas of further research can be to investigate using
WAP to extend pricing models. The speed of IRS allows
us to calculate the total detour assuming a given user when
to different stations. If a user going to a particular station
lowers/raises the total amount of detour, we can (de)incentive
them to go to that station. Users could then have personalized
prices for stations to help reduce global costs. Also, adding a
fairness constraint to make sure all workers are utilized equally
and prevent worker dissatisfaction. Furthermore, a constraint
on how far the worker has to walk or more heavily penalized
long walks to stations could give workers more satisfactory
assignments. These could further improve station rebalancing
and increase the benefits of BSSs.

REFERENCES

[1] E. Fishman, “Bikeshare: A review of recent literature,” Trans-
port Reviews, vol. 36, no. 1, pp. 92–113, 2016.

[2] H. Chung, D. Freund, and D. B. Shmoys, “Bike angels: An
analysis of citi bike’s incentive program,” in Proceedings of 1st
ACM COMPASS, no. 5, 2018, pp. 1–9.

[3] L. Pan, Q. Cai, Z. Fang, P. Tang, and L. Huang, “A deep
reinforcement learning framework for rebalancing dockless bike
sharing systems,” in Proceedings of the AAAI, vol. 33, no. 01,
2019, pp. 1393–1400.

[4] Y. Duan and J. Wu, “Spatial-temporal inventory rebalancing for
bike sharing systems with worker recruitment,” IEEE Transac-
tions on Mobile Computing, 2020.

[5] J. Wu, “Challenges and opportunities in algorithmic solutions
for re-balancing in bike sharing systems,” Tsinghua Science and
Technology, vol. 25, no. 6, pp. 721–733, 2020.

[6] L. Dell’Olio, A. Ibeas, and J. L. Moura, “Implementing
bike-sharing systems,” in Proceedings of Institution of Civil
Engineers-Municipal Engineer, vol. 164, no. 2, 2011, pp. 89–
101.

[7] L. Caggiani, R. Camporeale, B. Dimitrijević, and M. Vidović,
“An approach to modeling bike-sharing systems based on spatial
equity concept,” Transportation Research Procedia, vol. 45, pp.
185–192, 2020.

[8] H. Zhang, X. Song, T. Xia, J. Zheng, D. Haung, R. Shibasaki,
Y. Yan, and Y. Liang, “Maas in bike-sharing: smart phone gps
data based layout optimization and emission reduction potential
analysis,” Energy Procedia, vol. 152, pp. 649–654, 2018.

[9] M. Dell’Amico, E. Hadjicostantinou, M. Iori, and S. Novellani,
“The bike sharing rebalancing problem: Mathematical formu-
lations and benchmark instances,” Omega, vol. 45, pp. 7–19,
2014.

[10] M. Dell’Amico, M. Iori, S. Novellani, and T. Stutzle, “A destroy
and repair algorithm for the bike sharing rebalancing problem,”
Computers & Operations Research, vol. 71, pp. 149–162, 2016.

[11] F. Cruz, A. Subramanian, B. P. Bruck, and M. Iori, “A heuristic
algorithm for a single vehicle static bike sharing rebalancing
problem,” Computers & Operations Research, vol. 79, pp. 19–
33, 2017.

[12] S. Ban and K. H. Hyun, “Designing a user participation-based
bike rebalancing service,” Sustainability, vol. 11, no. 8, 2019.

[13] R. M. Karp, “An algorithm to solve the m× n assignment
problem in expected time o (mnlogn),” Networks, vol. 10, no. 2,
pp. 143–152, 1980.

[14] R. Karp, “Reducibility among combinatorial problems,” pp. 85–
103, 1972.

[15] M. G. GJ and D. Johnson, Computers and intractability: A
guide to the theory of NP-completeness. WH Freedman and
Company, 1979.

[16] Y. H. Chan and L. C. Lau, “On linear and semidefinite program-
ming relaxations for hypergraph matching,” Math. Program,
vol. 135, no. 1, pp. 123–148, 2012.

[17] G. Huang and A. Lim, “A hybrid genetic algorithm for three-
index assignment problem,” in IEEE CEC, vol. 4, 2003, pp.
2762–2768.

[18] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp.
83–97, 1955.

[19] H. Jiang, J. Xuan, and X. Zhang, “An approximate muscle
guided global optimization algorithm for the three-index as-
signment problem,” in IEEE CCE, 2008, pp. 2404–2410.

[20] “Citibike system data,” 2021. [Online]. Available: https:
//www.citibikenyc.com/system-data

[21] “Bluebikes bikeshare system data,” 2021. [Online]. Available:
https://www.capitalbikeshare.com/system-data

