
Minimizing Energy Consumption for
Frame-Based Tasks on Heterogeneous

Multiprocessor Platforms
Dawei Li and Jie Wu, Fellow, IEEE

Abstract—Heterogeneous multiprocessors have been widely used in modern computational systems to increase the computing

capability. As the performance increases, the energy consumption in these systems also increases significantly. Dynamic Voltage

and Frequency Scaling (DVFS) is considered an efficient scheme to achieve the goal of saving energy, because it allows processors

to dynamically adjust their supply voltages and/or execution frequencies to work on different power/energy levels. In this paper, we

consider scheduling non-preemptive frame-based tasks on DVFS-enabled heterogeneous multiprocessor platforms with the goal of

achieving minimal overall energy consumption. We consider three types of heterogeneous platforms, namely, dependent platforms

without runtime adjusting, dependent platforms with runtime adjusting, and independent platforms. For these three platforms, we first

formulate the problems as binary integer programming problems, and then, relax them as convex optimization problems, which can

be solved by the well-known interior point method. We propose a Relaxation-based Iterative Rounding Algorithm (RIRA), which tries

to achieve the task set partition, that is closest to the optimal solution of the relaxed problems, in every step of a task-to-processor

assignment. Experiments and comparisons show that our RIRA produces a better performance than existing methods and a simple

but naive method, and achieves near-optimal scheduling under most cases. We also provide comprehensive complexity, accuracy

and scalability analysis for the RIRA approach by investigating the interior-point method and by running specially designed

experiments. Experimental results also show that the proposed RIRA approach is an efficient and practically applicable scheme with

reasonable complexity.

Index Terms—Dynamic voltage and frequency scaling (DVFS), heterogeneous multiprocessor platforms, iteration-based task partitioning,

energy-aware scheduling

Ç

1 INTRODUCTION

HIGH energy consumption in modern computational
systems has been a critical problem. Increased energy

consumption influences the society from various aspects.
As has been reported, desktop computers in the United
States account for over 10 percent of commercial electricity
consumption; a large data center can consume as much elec-
tricity as a city. High energy consumption in modern
computational systems also increases the global carbon
dioxide emissions. Besides, it also increases the require-
ments for packaging and cooling technologies, and demon-
strates the need for more sophisticated fault-tolerant
mechanisms [1].

However, the need of high computational performance
never stops. To meet the increasing performance require-
ments, modern computational systems adopt multiproces-
sor platforms. As the computational performance increases,
energy consumption in these systems also increases signifi-
cantly. Dynamic Voltage and Frequency Scaling (DVFS)[2],
which allows processors to dynamically adjust the supply

voltage or the clock frequency to operate on different
power/energy levels, is considered an effective way to
achieve the goal of saving energy.

Energy-aware scheduling on uniprocessors has received
tremendous research endeavors [3], [4], [5], [6], [7], [8]. In
this paper, we address scheduling on multiprocessors. A
multiprocessor platform is considered homogeneous if all of
the processors on the platform are identical; if all of the
processors are not identical, it is considered heterogeneous.
Task scheduling approaches on multiprocessor platforms
can be classified into two categories, namely, partition-based
scheduling and global scheduling. In partition-based schedul-
ing, each task is assigned statically to one processor. Parti-
tion-based scheduling allows schedulability to be verified
by mature uniprocessor analysis techniques. In global
scheduling, there is a single job queue from which jobs are
dispatched to any available processor according to a global
priority scheme.

1.1 Related Work

Energy-aware scheduling on both homogeneous and het-
erogeneous multiprocessor platforms also attracted signifi-
cant research interests.

For energy-aware scheduling on homogeneous multi-
processors, extensive research has been conducted, which
falls into both categories of partition-based scheduling and
global scheduling. Representative works on partition-based
scheduling include [9], [10], [11], [12], [13], [14]. Yang et al.

� The authors are with the Department of Computer and Information Scien-
ces, Temple University, Philadelphia, PA 19122.
E-mail: {dawei.li, jiewu}@temple.edu.

Manuscript received 20 Dec. 2013; revised 10 Mar. 2014; accepted 18 Mar.
2014. Date of publication 23 Mar. 2014; date of current version 6 Feb. 2015.
Recommended for acceptance by K. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2313338

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

[11] addresses scheduling on dependent platforms. The
Largest Task First (LTF) strategy is applied to conduct task
partitioning. After this, the optimal frequency scheduling
for different time intervals is also derived. Chen et al. [12]
consider scheduling on independent platforms with the
consideration of task migration. Chen and Kuo [13] study
scheduling with the consideration of application-specific
power consumption on independent platforms. Kong et al.
[14] handle scheduling on partitioned multi-core platforms,
where cores within the same partition are dependent and
cores from different partitions are independent. Research
on global scheduling also exists [15], [16], [17], though com-
paratively less than partition-based scheduling.

Energy-aware scheduling on heterogeneous systems also
receives extensive research endeavors [18], [19], [20], [21],
[22], [23], [24], [25], [26]. Since global scheduling generally
only queues jobs first and then assigns jobs to available pro-
cessors, without considering the heterogeneity of process-
ors, energy-aware scheduling on heterogeneous processors
are mainly partition-based [20], [21], [22], [23], [24], [25],
[26]. In [22], the authors address the problem of mapping a
set of frame-based tasks to heterogeneous multiprocessors.
Several heuristics are described and analyzed in detail. One
typical heuristic is the min-min heuristic. Yang et al. [23]
study platforms with a fixed number of heterogeneous pro-
cessors. Chen and Thiele [24] investigate platforms with a
fixed number of heterogeneous processor types, while one
processor type may still have multiple processors. Hung
et al. [25] consider energy-aware scheduling on a heteroge-
neous platform with one non-DVFS Processing Unit (PU)
and one DVFS processor. Awan and Petters [20] address the
partitioning problem where DVFS is not enabled. Lee and
Zomaya [26] consider scheduling precedence constrained
tasks/applications.

In this paper, we consider partition-based energy-aware
scheduling for frame-based tasks on heterogeneous DVFS-
enabled multiprocessor platforms. The main difference
between these above-mentioned works and ours is, that our
proposed method has a strong theoretical foundation to
produce energy-efficient scheduling, as we will show later.
For the same problem, widely used methods derive an
“energy-efficient” partition that tries to achieve balanced
workloads among all processors. It is believed that a bal-
anced partition also demonstrates a good performance in
terms of overall energy consumption. For example, in [22],
the min-min heuristic is considered an energy-aware
method for mapping tasks on heterogeneous platforms; in
[27], it is pointed out that, in some situations, the max-min
heuristic can achieve better load balancing than the min-
min heuristic. However, we show that workload-balanced
partitioning methods are not optimal in terms of overall
energy consumption. We describe the two heuristics here,
since we will compare our proposed RIRA approach with
them throughout the paper.

Min-min: in [22], the min-min heuristic is applied to map
frame-based tasks to heterogeneous multiprocessors with
the goal of saving energy. It begins with the set of all unas-
signed tasks, which is initialized as the original task set. The
heuristics consists of two phases. In the first phase, the set
of tasks’ minimum expected completion times is calculated
(for all unassigned tasks). In the second phase, the task with

the overall minimum expected completion time among all
unassigned tasks is chosen and assigned to the correspond-
ing processor. Then, this task is removed from the unas-
signed task set, and the procedure is repeated until all tasks
are assigned.

Max-min [27], [28], [29]: this heuristic is very similar to
the min-min heuristic. It also begins with the set of all unas-
signed tasks. The only difference is that, in the second
phase, the task with the overall maximum expected comple-
tion time among all of the unassigned tasks is chosen and
assigned to the corresponding processor.

Our work in this paper is based on our previous work in
[30]. Different from our previous work, we provide compre-
hensive analysis on the complexity, accuracy and scalability
of the proposed RIRA; corresponding theoretical analysis
and experimental results are presented to justify the
strength of our approach. Also, we apply our proposed
algorithm to a representative practical processor’s power
configuration; comparisons with other method also demon-
strate the advantage of our proposed RIRA approach.

1.2 Motivational Example

We provide an example to show that workload-balanced
partitioning methods do not always work well on heteroge-
neous platforms in terms of reducing overall energy con-
sumption. Due to heterogeneities of tasks and processors,
different processors may have different execution efficien-
cies for different tasks. Denote, when executing at a same
fixed frequency fs, the execution time of task ti on the jth
processor Mj by ti;j. Consider a simple example consisting
of four frame-based tasks and two processors, where t1;1 ¼
30, t1;2 ¼ 50, t2;1 ¼ 12, t2;2 ¼ 35, t3;1 ¼ 15, t3;2 ¼ 24, t4;1 ¼ 12,
and t4;2 ¼ 10. Assume that the tasks’ shared deadline is 100.
The min-min heuristic and max-min heuristic produce par-
titions as shown in Figs. 1a and 1b, respectively. A better
partition, as shown in Fig. 1c, can be achieved by our pro-
posed RIRA. We do not delve into the details of RIRA now,
and just give the result to show that RIRA outperforms the
workload-balanced partitioning methods.

After partitioning, under a given assumption about the
platform, processor frequencies are adjusted correspond-
ingly, to achieve the goal of saving energy. Assume that the
power consumption of each processor running at frequency
f is p ¼ f3; thus, the energy consumption of the processor
during a time interval t, is e ¼ f3t.

Fig. 1. Task set partition using different methods.

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 811

We first calculate the energy consumptions of the final
schedulings based on the first partition (Fig. 1a) on differ-
ent platforms. Readers might want to refer to Section 2.2
for clear definitions of the three platform types. On a
dependent platform without runtime adjusting, to achieve
minimal energy consumption, both of the two processors
should operate at 0:57fs; the overall energy consumption
on the two processors is 21:7683f3

s . On a dependent plat-
form with runtime adjusting, applying the method in [11],
we can set the shared optimal frequency before and after
finishing task t4 for the two processors, respectively; at
these optimal frequency settings, the minimal overall
energy consumption can be calculated as 21:17f3

s . On an
independent platform, to achieve minimal energy con-
sumption, both processors should reduce their processing
frequency such that their workloads finish exactly at the
deadline 100; thus, processor M1executes at 0:57fs, and
processor M2 executes at 0:1fs; the overall energy con-
sumption can be calculated as 18:6193f3

s .
By similar calculations, the energy consumptions of the

final schedulings based on the two other partitions (Figs. 1b
and 1c) on the three types of platforms can also be achieved,
and are listed in Table 1, in which “Type I” represents
dependent platforms without runtime adjusting, “Type II”
represents dependent platforms with runtime adjusting,
and “Type III” represents independent platforms. As can be
seen, our approach achieves the best performance in terms
of overall energy consumption on these three types of plat-
forms. Note that, for this special example, our approach
produces the same partition for both dependent and inde-
pendent platforms; generally speaking, our RIRA will pro-
duce different optimal partitions (in terms of reducing
overall energy consumption) for dependent platforms and
independent platforms, respectively.

1.3 Main Contributions

In this paper, we propose a Relaxation-based Iterative
Rounding Algorithm (RIRA) for energy-aware task parti-
tioning on heterogeneous multiprocessor platforms. Our
main contributions are as follows:

� First, we assume that different processors have dif-
ferent execution efficiencies for different tasks. On
the one hand, due to the heterogeneity of the plat-
form, different processors may have different hard-
ware implementations and different instruction set
architectures, etc. On the other hand, different
tasks/applications may have variously different
characteristics. Thus, this general assumption is
practical on real platforms.

� Second, most previous works derive partitions
according to existing work that tries to achieve a

workload-balanced partition. However, we show
that a “workload-balanced” partition is not optimal
in terms of reducing overall energy consumption.
Since the execution efficiencies vary from processor
to processor, it may be better to assign a heavier
workload to a more efficient processor and a lighter
workload to a less efficient processor. Thus, in
our consideration, we always place the energy con-
sumption at the highest priority.

� Third, we propose a novel Relaxation-based Itera-
tive Rounding Algorithm for partitioning a task set
on heterogeneous multiprocessor platforms. The
main idea of our approach is to relax the original
binary integer programming problem; then, assign
the most “influential” task to a processor according
to the relaxed optimal solution in the sense that the
assignment is closest to the optimal solution. After
having assigned some task(s), we update the
relaxed optimization problem, and assign the next
most “influential” task, based on the solution for
the updated optimization problem. Experiments
and comparisons verify that our RIRA produces a
better performance than existing methods, and
achieves near-optimal scheduling under most cases.

� Finally, we conduct comprehensive analysis on
the complexity, accuracy and scalability of the
proposed algorithm RIRA. Corresponding theoret-
ical analysis and numerical simulations are pre-
sented to justify the strength and applicability of
our overall approach. We believe this “iterative
rounding” technique also has its merits when we
come to other similar integer, especially binary
integer, programming problems.

1.4 Paper Organization

The organization of this paper is as follows. Section 2 gives
the system model and problem definition; the main idea of
our approach is briefly introduced. In Sections 3 and 4, our
proposed approach is applied to schedule frame-based
tasks on dependent platforms; solutions for dependent
platforms without and with runtime adjusting are pro-
vided in Sections 3 and 4, respectively. Section 5 applies
our approach to independent platforms. Simulations and
experiments are provided in Section 6. A brief conclusion
is made in Section 7.

2 SYSTEM MODEL AND PROBLEM DEFINITION

2.1 Task Model

In this paper, we consider scheduling a set of independent
frame-based tasks T ¼ ft1; t2; . . . ; tng that are released at
the same time 0 and share a common deadline D. This task
model is a typical one which reflects various practical
applications. Here, tasks ti’s are assumed to have no prece-
dence constraints, and tasks are non-preemptive. Each task
ti’s execution requirement is quantified by its Worst Case
Execution Cycles (WCECs), denoted by Ci. The Worst Case
Execution Time (WCET) of task ti, when it is executed at
frequency f on a unit-efficiency processor, can be calcu-
lated as Ci=f . Correspondingly, the WCET of task ti, when

TABLE 1
The Overall Energy Consumption of Different Partitions

on Different Platforms

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

it is executed at frequency f on a processor with execution
efficiency �, ð� 2 ð0; 1�Þ, can be calculated as Ci=ð�fÞ.

2.2 Platform Model

We consider platforms with m heterogeneous processors.
All processors are DVFS-enabled processors that can adjust
their supply voltages and execution frequencies. We define
�i;j 2 ð0; 1� as the execution efficiency of processor Mj

when it is executing task ti. These kinds of platform are
widely adopted in various practical systems, ranging from
multiprocessor mobile phones, multiprocessor worksta-
tions, or even distributed systems. The WCET of task ti,
when it is executed at frequency f on processor Mj, can be
calculated as Ci=ð�i;jfÞ. We assume ideal processors whose
frequency ranges are continuous on ð0;þ1Þ. Processors
can operate in two modes: one is run mode, where the
power consumption only consists of dynamic power
pðfÞ ¼ f3; the other one is idle mode, where the processor
consumes zero power. Additionally, we assume that when
a processor has no task to execute, it transitions into idle
mode immediately. The transition time and energy over-
head is considered very small compared to that required
to complete a task, and is assumed tobe incorporated into
the execution time and energy of the task. The power con-
sumption model that we consider in this paper is widely
adopted by existing works [31], [32].

Under these assumptions, we further consider three
types of platforms. If all of the processors must operate at a
common frequency, and the shared execution frequency
cannot be adjusted during runtime after setting the initial
frequency, the platform is called a dependent platform without
runtime adjusting. If all the processors must operate at a com-
mon frequency, and the shared frequency can be adjusted
during runtime after setting the initial frequency, the plat-
form is called a dependent platform with runtime adjusting. If
processors can operate at different frequencies at any time
and can adjust their execution frequencies independently,
the platform is considered an independent platform. The
dependent platform and independent platform consist with
the concepts of full-chip DVFS and per-core DVFS, respec-
tively [21], [33].

2.3 Problem Definition

Given a set of frame-based tasks, T ¼ ft1; t2; . . . ; tng, our
goal is to schedule all of the tasks on m heterogeneous pro-
cessors, M1;M2; . . . ;Mm, such that the overall energy con-
sumption on all the processors is minimized. Scheduling
consists of two steps. The first and the main step is to pro-
duce a partition with the goal of achieving minimal energy
consumption.

Since power consumption is proportional to the cube of
execution frequency, while execution time is just inversely
proportional to execution frequency, after achieving a parti-
tion, the execution frequency of each processor is slowed
down as much as possible under the constraints of our three
different assumptions about platforms. Namely, for depen-
dent platforms without runtime adjusting, the common fre-
quency should be chosen such that the processor with the
greatest workload completes all of the tasks assigned to it,
exactly at the deadline D; for dependent platforms with

runtime adjusting, we can further determine the optimal
frequencies in different time intervals; for independent plat-
forms, all processors are slowed down independently such
that each processor completes all of the tasks assigned to it,
exactly at deadline D. Notations that are consistently used
in this paper are listed in Table 2. Some of the notations will
be made clear later.

2.4 Our Approach

By the motivational example, we have noticed that a
“workload-balanced” partition is not optimal in terms of
overall energy consumption, especially on heterogeneous
multiprocessor platforms. Thus, in our consideration, we
always place the energy consumption at the highest prior-
ity and propose a relaxation-based rounding algorithm
for this problem. Our intuition is that an assignment that
is closest to the optimal solution for the relaxed problem
will achieve a better partition in terms of overall energy
consumption.

We first describe a Relaxation-based Naive Rounding
Algorithm (RNRA), which solves the relaxed optimization
problem once, and produces a partition according to the
solution. However, this approach may lead to an accumu-
lated error between the final assignment and the relaxed
optimal solution.

Then, we propose a Relaxation-based Iterative Rounding
Algorithm. The main idea of our RIRA is as follows.

First, we define the average execution cycle of task ti as

AECi ¼
1

m

Xm
j¼1

Ci

�i;j
; (1)

and sort the tasks in the order ti1 ; ti2 ; . . . ; tin , such that
AECi1 � AECi2 � � � � � AECin . This is also the order that
we will assign tasks in. The intuition here is that the task
with the greatest average execution requirement can be

TABLE 2
Notations Used in This Paper

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 813

considered as the most “influential” task in terms of both
schedulability and energy consumption, and thus, it should
be considered first.

Then, we formulate the problem under consideration as
a binary integer programming problem, and then we relax
it as a convex optimization problem and solve it; based on
the optimal solution for the relaxed problem, we assign the
most “influential” task to the corresponding processor.
After that, we update the optimization problem (since we
have already assigned one task, both the objective function
and constraints have changed) and relax it again to achieve
the solution which will guide the assignment of the next
most “influential” task. The above process is repeated until
we finish assigning ðn� 1Þ tasks. For the last task tn, we
just select the assignment that achieves the minimal overall
energy consumption among all possible assignments of the
last task.

In the following sections, we address the problem of
scheduling frame-based tasks on heterogeneous platforms
with the goal of achieving minimal energy consumption
while meeting all of the timing constraints. Dependent plat-
forms without and with runtime adjusting are considered
in Sections 3 and 4, respectively. Scheduling on heteroge-
neous independent platforms is presented in Section 5.

3 SCHEDULING ON HETEROGENEOUS DEPENDENT

MULTIPROCESSOR PLATFORMS WITHOUT

RUNTIME ADJUSTING

3.1 Problem Analysis

We first consider the optimal frequency setting if we have
already had a task set partition. Let binary variables xi;j

be 1 if task ti is assigned to processor Mj, and 0 other-
wise. A given partition can be represented by a binary
matrix xn�m. We denote the shared frequency among all
of the processors during the whole time by f . Then, the
time when processor Mj will complete its workload can
be calculated as

1

f

Xn
i¼1

xi;jCi

�i;j
: (2)

The shared frequency should guarantee that each proces-
sor finishes the tasks on it before the deadline. Thus, to
reach minimal energy consumption, the shared frequency
can be slowed down as much as possible, as long as all
processors’ completion times are less than or equal to the
deadline D

1

f

Xn
i¼1

xi;jCi

�i;j
� D; 8j ¼ 1; 2; . . . ; m: (3)

The energy consumption on the jth processorMj is

Ej ¼ f3 1

f

Xn
i¼1

xi;jCi

�i;j

 !
¼ f2

Xn
i¼1

xi;jCi

�i;j
: (4)

Thus, to achieve a partition with the objective of saving
energy, the problem can be formulated as

min Etotal ¼ f2
Xm
j¼1

Xn
i¼1

xi;jCi

�i;j

 !

s:t:
Xn
i¼1

xi;jCi

�i;j
� fD � 0; 8j ¼ 1; 2; . . . ;m;

xi;j ¼ 0 or 1; 8i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m;Xm
j¼1

xi;j ¼ 1; 8i ¼ 1; 2; . . . ; n;

(5)

where the optimization variables are the shared frequency
f and the binary matrix xn�m. However this binary integer
programming problem is hard to solve directly. We relax
the binary variables xi;j’s to be any fraction in ½0; 1�. The
above optimization problem can be reformulated as

min Etotal ¼ f2
Xm
j¼1

Xn
i¼1

xi;jCi

�i;j

 !

s:t:
Xn
i¼1

xi;jCi

�i;j
� fD � 0; 8j ¼ 1; 2; . . . ; m;

0 � xi;j � 1; 8i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; m;Xm
j¼1

xi;j ¼ 1; 8i ¼ 1; 2; . . . ; n:

(6)

Denote this relaxed optimization problem by P1, which is
a convex optimization problem that can be efficiently solved
by the well-known interior point method [34]. The optimi-
zation variables of P1 are the shared frequency f and the
relaxed assignment matrix xn�m. Details of this method will
be provided later in Section 3.4. Here, xi;j can be any num-
ber between 0 and 1, and it represents the percentage of
task ti that should be assigned to processor Mj to achieve
the minimal overall energy consumption.

3.2 A Simple Algorithm: RNRA

Our first intuition is that if we assign tasks in a way that is
“closest” to the optimal solution (for the relaxed problem),
we will achieve a better partition in terms of overall energy
consumption. One possible way is a naive rounding method
to partition the task set. It solves the relaxed problem once,
and then assigns the tasks according to this single solution.
Basically, it assigns each task, ti, to processor Mj	 , such that
xi;j	 is the maximum among xi;1; xi;2; . . . ; xi;m. Algorithm 1
describes this Relaxation-based Naive Rounding Algorithm.

3.3 An Improved Algorithm: RIRA

However, we notice that this approach may lead to an accu-
mulated error between the final assignment and the relaxed
optimal solution because the condition for optimal energy
consumption changes after we have assigned some tasks.
Thus, assigning follow-up tasks according to the original
solution may not be optimal in terms of overall energy con-
sumption. Taking this aspect into consideration, we propose
the Relaxation-based Iterative Rounding Algorithm. We
will describe our RIRA in detail.

In the first step, we sort tasks such that their average exe-
cution cycles AECi’s are in descending order. Without loss
of generality and for notional brevity, from now on, we will

814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

assume that all of the tasks are already sorted in our desired
order, i.e., AEC1 � AEC2 � � � � � AECn.

Then, relax the original optimization problem as prob-
lem P1. Since tasks are already in our desired order, the
solutions x1;1; x1;2; . . . ; x1;n indicate the optimal assign-
ment of the most influential task t1. Then, we find the
maximum among x1;1; x1;2; . . . ; x1;n, denoted by x1;j	 , and
assign t1 to processor Mj	 . Denote the final assignment
matrix for the task set by Assignn�m. Then, we have
Assign1;j ¼ 0; 8j 6¼ j	and Assign1;j	 ¼ 1.

Before assigning the next most influential task t2, we
need to update the optimization problem first. In this pro-
cess, we should always keep in mind that we have already
assigned task t1 to processor Mj	 , which means that
x1;j ¼ 0; 8j 6¼ j	 and x1;j	 ¼ 1. The expressions for the com-
pletion time and the energy consumption on each proces-
sor are almost the same as those for problem P1. Thus, the
updated optimization problem can be formulated as

min Etotal ¼ f2
Xm
i¼1

Xn
i¼1

xi;jCi

�i;j

 !

s:t:
Xn
i¼1

xi;jCi

�i;j
� fD � 0; 8j ¼ 1; 2; . . . ;m;

0 � xi;j � 1; 8i ¼ 2; . . . ; n; 8j ¼ 1; 2; . . . ;m;Xm
j¼1

xi;j ¼ 1; 8i ¼ 2; . . . ; n:

(7)

Denote this optimization problem by P2, since it will pro-
vide the solution for assigning task t2. Notice that, even
though the appearance of this updated optimization prob-
lem is very similar to the original one (P1), P2 is quite differ-
ent from P1 because now, x1;1; x1;2; . . . ; x1;m have fixed
values, namely, x1;j ¼ 0; 8j 6¼ j	, and x1;j	 ¼ 1. The optimiza-
tion variables in P2 only includes the optimal frequency f ,
and x2;1; x2;2; . . . ; x2;m, x3;1; x3;2; . . . ; x3;m; . . . ; xn;1; xn;2;
. . . ; xn;m. After solving P2, we can assign t2 according to
x2;1; x2;2; . . . ; x2;m (solved for P2), which is similar to what we
do to assign t1. Namely, find x2;j

0	 ¼ maxðx2;1; x2;2; . . . ; x2;mÞ,
then set x2;j ¼ 0; 8j 6¼ j

0	, and x2;j
0	 ¼ 1. Then, we can update

the optimization problem as P3, keeping in mind that we
have already assigned task t1 and t2; solve it and assign task
t3. Then, solve P4 to assign t4;. . .; solve Pi to assign ti;
Repeat the process until we finish assigning ðn� 1Þ tasks.
We notice that, in some cases, assigning the last task accord-
ing to this iterative scheme may not be optimal. Thus, for the
last task, we just select the assignment which can achieve the
minimal overall energy consumption among all possible
assignments for the last task. Algorithm 2 shows our Relaxa-
tion-based Iterative Rounding Algorithm.

3.4 Algorithm Analysis

As has been mentioned, we apply the interior point method
to solve the problemsPi; 8i ¼ 1; 2; . . . ; n. Interior-pointmeth-
ods solve a convex optimization problem or its correspond-
ing KKT conditions by applying Newton’s method to a
sequence of equality constrained problems, or to a sequence
of modified versions of the KKT conditions [34]. To gain a
clear understanding of RIRA’s complexity and accuracy, we
apply a particular interior point algorithm: the barrier
method to solve the optimization problems, Pi’s. The barrier
method uses a logarithmic barrier function to approximate
the inequality constrained problem as an equality con-
strained problem to which Newton’s method can be applied.
The logarithmic barrier function is with the form:

ÎðuÞ ¼ � 1

t
logð�uÞ (8)

where t > 0 is a parameter that sets the accuracy of the
approximation. The total number of Newton iterations to
solve one optimization problem is

N ¼ logðm=ðtð0Þ�ÞÞ
log m

� �
mðm� 1� log mÞ

g
þ c

� �
; (9)

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 815

where m is the total number of inequalities in the prob-
lem (in P1, m ¼ mþ nm); tð0Þ > 0 is the initial value of t
for the logarithmic barrier function; m > 1 is the increase
extent for tin the iteration, namely, tð1Þ ¼ mtð0Þ, tð2Þ ¼ mtð1Þ;
g and c are parameters used in the Newton’s method; � is
the tolerance parameter. If we choose parameters m, c,
and g as constants, the complexity for solving one convex
problem can be simplified as: Oðmnðlog mþ log nþ
log 1

�ÞÞ. Since our proposed RIRA involves iteratively solv-
ing n optimization problems, the complexity of RIRA is

O mn2 log mþ log nþ log
1

�

� �� �
: (10)

3.5 Illustration Example

An illustration example is provided, which considers
scheduling eight tasks to three processors. Tasks’ WCECs,
C1; C2; . . . ; C8 and the processor efficiency matrix, �8�3 are
given in Table 3. For the need of some other techniques, a
reference time matrix is derived as t8�3, where ti;j ¼
Ci=�i;j, which is also provided in the same table. The
common deadline for this task set is D ¼ 100. Notice that,
in this example, tasks are already in the required order
for RIRA.

Fig. 2a shows the partition by the min-min heuristic.
Fig. 2b shows the partition by the max-min heuristic. The

RNRA solves P1 (for this example) and gets the relaxed
assignment matrix x8�3, as shown in Table 4. Obviously,
by the naive rounding scheme, it can easily achieve the
final assignment matrix Assign8�3. Fig. 2c shows the par-
tition by RNRA. Our RIRA first solves the original optimi-
zation problem P1; assign t1 according to solutions
x1;1; x1;2; x1;3 (solved for P1). Then, it updates the optimi-
zation problem as P2, solves it, and assigns t2 according
to solutions x2;1; x2;2; x2;3 (solved for P2). Repeat the above
process until it assigns seven tasks; for the last task, it
selects the assignment that achieves the minimal energy
consumption. Relevant solutions are shown in Table 5.
Fig. 2d shows the partition by our proposed RIRA. In
each subfigure in Fig. 2, the number behind a task is the
order in which this task is assigned; for example, t7ð1Þ in
Fig. 2a means that t7 is the first task that is assigned.

After a partition, the processors are slowed down
dependently such that the processor with the greatest
completion time meets the predefined deadline D ¼ 100
exactly. In this example, the shared frequencies for the
min-min, max-min, RNRA and RIRA partitions are
0.3975, 0.3417, 0.3194, and 0.3194, respectively. Note that,
though the shared frequencies for RNRA and RIRA parti-
tions are the same, the actual partitions are not the same.
The energy consumption for these four partitions can be
calculated as follows: 11.3 for the min-min heuristic, 10.7
for the max-min heuristic, 8.464 for RNRA, and 8.08 for
our RIRA. Obviously, our proposed RIRA achieves the
best partition in terms of overall energy consumption.

4 SCHEDULING ON HETEROGENOUS DEPENDENT

PLATFORMS WITH RUNTIME ADJUSTING

4.1 Problem Analysis

For dependent platforms with runtime adjusting, the
approach of Yang et al. [11] is applied here to determine
the optimal frequency scheduling during different time

Fig. 2. Partitions by different approaches.

TABLE 4
Assignment by RNRA

TABLE 5
Assignment by RIRA

TABLE 3
An Illustration Example

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

intervals after we have achieved a partition. Given a parti-
tion, denoted by an assignment matrix xn�m, again, xi;j ¼ 1
if task ti is assigned to processor Mj, and is 0 otherwise.
We define the normalized effective execution cycles
assigned to processor Mj as

Uj ¼
Xn
i¼1

xi;jCi

�i;j
: (11)

Without loss of generality, we assume that processors are in
ascending order of their Uj values, i.e., U1 � U2 � � � � � Um.
Because tasks do not have precedence constraints, each pro-
cessor can execute its workload continuously without any
interruption. Since all of the active processors must share a
common frequency (though the shared frequency can vary
with time), the processor with a less Uj value will complete
its tasks earlier than that with a greater Uj value. Introduce
U0 ¼ 0; we say that the jth time interval is the interval
between the time when Uj�1 is completed and the time
when Uj is completed. Assume that the shared frequency of
all running processors during the jth interval is fj. The
length of the j time interval is

tj ¼ ðUj � Uj�1Þ=fj; (12)

where fj is the shared frequency of the running processors
during this time interval. We can notice that, during the first
interval, all processors are running. During the second
interval, the first processor, which has the least effective
execution cycles, has finished its tasks; thus, only ðm� 1Þ
processors are running. Similarly, during the jth interval,
only ðm� jþ 1Þ processor(s) are running. Thus, the energy
consumption during the jth time interval is

E
0
j ¼ ðm� jþ 1Þf2j ðUj � Uj�1Þ; (13)

where ðm� jþ 1Þis the number of processors that are in run
mode during time interval tj. Thus, the frequency setting
problem can be formulated as

min Etotal ¼
Xm
j¼1

ðm� jþ 1Þf2
j ðUj � Uj�1Þ;

s:t:
Xm
j¼1

ðUj � Uj�1Þ=fj � D:

(14)

Intuitively, it is more energy-efficient to execute at a
lower frequency when more processors still have work-
loads, while use a higher frequency when less processors
still have workloads. Actually, the above optimization prob-
lem can be solved by the Lagrange Multiplier Method
directly, and the optimal frequency for the jth time interval
can be achieved [11]:

fj ¼
Pm

j¼1ðUj � Uj�1Þ
ffi
m� jþ 13

p

D
ffi
m� jþ 13

p : (15)

4.2 Approach

Although the optimal fj can be solved analytically, it is
based on sorting the workloads on different processors first.
Thus, the above analysis does not contribute to finding an

energy-efficient partition in the first place. Since we are still
considering a dependent platform, in our approach, we
adopt the same partition, derived by the RIRA algorithm for
dependent platforms without runtime adjusting, as the par-
tition for the dependent platforms with runtime adjusting.

4.3 Example

Take the partition by the min-min heuristic in Fig. 2a as an
illustration example to demonstrate this frequency adjust-
ing procedure. The runtime frequency adjusting procedures
are shown in Fig. 3. Fig. 3a shows the sorted workloads
among the three processors. After this, we can determine
the optimal frequencies for the three time intervals. For this
partition, by the Lagrange Multiplier Method, we can get:
f1 ¼ 0:3254, f2 ¼ 0:3725, f3 ¼ 0:4693, t1 ¼ 44:3884, t2 ¼
8:2028, t3 ¼ 47:4088. The final scheduling for this partition
is shown in Fig. 3b. The overall energy consumption is
reduced from 11.3 to 10.3375.

After applying this runtime frequency adjusting scheme
for all four partitions in Fig. 2, their overall energy con-
sumptions can be achieved: 10.3375 for the partition by the
min-min heuristic, 10.4740 for the max-min heuristic, 8.1617
for RNRA, and 7.8776 for our RIRA. Our proposed RIRA
also achieves the best partition. This verifies that our parti-
tion method can also provide a good solution on dependent
platforms with runtime adjusting.

5 SCHEDULING ON HETEROGENEOUS

INDEPENDENT MULTIPROCESSOR PLATFORMS

In this section, we will apply our approaches for energy-
aware scheduling frame-based tasks on heterogeneous
independent multiprocessor platforms. Since many of the
procedures are similar to that of Section 3, we will omit
some details.

Fig. 3. Runtime frequency adjusting for min-min partition.

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 817

5.1 Problem Analysis

Similar to what we do in Section 3, we first consider the
optimal frequency setting after we have had a partition,
denoted by a binary matrix xn�m. Since we assume indepen-
dent platforms here, in order to achieve minimal energy
consumption, the optimal frequency for the jth processor
can be determined as

fj ¼
1

D

Xn
i¼1

xi;jCi

�i;j
: (16)

Then, the energy consumption on the jth processorMj is

E
00
j ¼ f3j D ¼ 1

D2

Xn
i¼1

xi;jCi

�i;j

 !3

: (17)

Thus, to achieve the energy-optimal partition, it is equiv-
alent to solve the following optimization problem:

min Etotal ¼
1

D2

Xm
j¼1

Xn
i¼1

xi;jCi

�i;j

 !3

s:t:
Xm
j¼1

xi;j ¼ 1; 8i ¼ 1; 2; . . . ; n

xi;j ¼ 0 or 1; 8i ¼ 1; 2; . . . ; n; 8j ¼ 1; 2; . . . ;m:

(18)

Again, we relax xi;jto be any fraction within ½0; 1�, the
problem is transformed as follows:

min Etotal ¼
1

D2

Xm
j¼1

Xn
i¼1

xi;jCi

�i;j

 !3

;

s:t:
Xm
j¼1

xi;j ¼ 1; 8i ¼ 1; 2; . . . ; n;

0 � xi;j � 1; 8i ¼ 1; 2; . . . ; n; 8j ¼ 1; 2; . . . ;m:

(19)

Denote the above optimization problem as P
0
1.

5.2 Algorithms

RNRA solves problem P
0
1, and adopts the same process

as in Algorithm 1 to assign all of the tasks. Our RIRA
solves problem P

0
1 first, and assigns task t1 according to

solutions x1;1; x1;2; . . . ; x1;m; then, it updates the optimiza-
tion problem as P

0
2:

min Etotal ¼
1

D2

Xm
j¼1

Xn
i¼1

xi;jCi

�i;j

 !3

;

s:t:
Xm
j¼1

xi;j ¼ 1; 8i ¼ 2; . . . ; n;

0 � xi;j � 1; 8i ¼ 2; . . . ; n; 8j ¼ 1; 2; . . . ; m:

(20)

Assign task t2 according to the solutions x2;1; x2;2;
. . . ; x2;m (solved for P

0
2). Notice that the optimization vari-

ables of P
0
2 only includes x2;1; x2;2;. . . ; x2;m, x3;1; x3;2;. . . ;

x3;m, . . ., xn;1; xn;2;. . . ; xn;m, since t1 has already been
assigned; in other words, x1;1; x1;2; . . . ; x1;m have fixed val-
ues. Repeat updating and assigning in the same way as in
Algorithm 2; the only difference is that the jth relaxed
optimization problem for the independent platform
is denoted by P

0
i . By this way, an energy-efficient parti-

tion for independent platforms can be achieved. Given
this partition, each processor reduces adjusting its execu-
tion frequency independently such that it finishes its
assigned workload exactly at the deadline D, to reduce
the energy consumption.

5.3 Example

For the example in Table 3, obviously, the min-min andmax-
min heuristics will produce the same partitions as in Figs. 2a
and 2b, respectively. However, RNRA and RIRA will pro-
duce partitions different from those in Figs. 2c and 2d,
respectively. Using the same example on independent plat-
forms, the partitions derived by RNRA and RIRA are shown
in Figs. 4a and 4b, respectively. For each given partition, to
achieve minimal energy consumption, all of the three pro-
cessors should adjust their execution frequency indepen-
dently such that their workloads finish exactly at the
deadline D ¼ 100. The frequency setting for the three pro-
cessors in the four partitionmethods are shown in Table 6.

The energy consumption for the four partitions on inde-
pendent platforms are: 7.11 for the min-min heuristic, 8.92
for the max-min heuristic, 6.14 for RNRA and 5.84 for our
RIRA. Our proposed RIRA still achieves the best partition
in terms of overall energy consumption.

6 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations and
experiments to evaluate our RIRA. For each task assign-
ment problem on a multiprocessor platform, the four
described partitioning methods, namely, the min-min heu-
ristic, the max-min heuristic, RNRA, and RIRA, are applied
to three types of platform assumptions. We normalize
energy consumption for each case by their corresponding
optimal energy consumption, which is the solution for the
first relaxed optimization problems, namely, P1, and P

0
1.

Fig. 4. Partitions by RNRA and RIRA on independent platforms.

TABLE 6
The Frequency Setting of the Final Schedulings

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

6.1 Simulation Settings

From the first setting to the third setting, simulations are
done for scheduling 24 tasks on six processors. In the
fourth setting, we consider scheduling 64 tasks on 16 pro-
cessors. We design the fifth setting to reveal the relation
of the execution time of our proposed algorithm with
respect to the tolerance parameter �. In the sixth setting,
we study the scalability of RIRA by conducting experi-
ments for various numbers of processors and numbers of
tasks. In all settings, the unit of execution requirements is
106. We conduct all the simulations in MATLAB (Version
7.9.0.529 (2009b)) [35] on a 32-bit Windows XP system
with Intel

�
Core 2 Duo CPU.

In the first setting, we evaluate the performance of our
proposed RIRA for different processor efficiency matrices
and a fixed task set. Specifically, we choose the fixed set
of tasks with execution requirements: C ¼ ½5; 5; 5; 5; 5; 5; 5;
5; 10; 10; 10; 10; 10; 10; 10; 10; 15; 15; 15; 15; 15; 15; 15; 15�. We
randomly generate 50 processor efficiency matrices �24�6.
Within each matrix, the �i;jði ¼ 1; 2; . . . ; 24; j ¼ 1; 2; . . . ; 6Þ
values are uniformly distributed in ½0:1; 1�. Note that we
are not emphasizing the actual distribution pattern of the
efficiency values, and just choose the simple uniform dis-
tribution. [0.1, 1] is chosen to reflect the heterogeneity
among the processors. Efficiency values less than 0.1 are
not considered, because practical multiprocessor systems
are not likely to have efficiency values differing too much
from each other. For each processor efficiency matrix, we
can achieve the normalized energy consumption (normal-
ized to the optimal energy consumption for the first
relaxed problem) of the four partition methods under a
given platform assumption. We compare each partition
method’s 50 normalized energy consumption values by
computing their means and standard deviations.

In the second setting, we evaluate the performance of
our proposed RIRA for different task sets and a fixed
processor efficiency matrix. More specifically, we con-
sider the special case where processors have different
efficiencies, while one processor has the same efficiency
for different tasks. We consider the following example:
�i;1 ¼ 1, �i;2 ¼ 0:82, �i;3 ¼ 0:64, �i;4 ¼ 0:46, �i;5 ¼ 0:28,
�i;6 ¼ 0:1, 8i ¼ 1; 2; . . . ; 24. In a sense, these values are
uniformly distributed in ½0:1; 1�. We randomly generate
50 task sets. For each task set, the Ci values are uni-
formly distributed between ½5; 15�. For each task set, we
can achieve the normalized energy consumption

(normalized to the optimal energy consumption for the
first relaxed problem) of the four partition methods
under a given platform assumption. We compare each
partition method’s 50 normalized energy consumptions
by computing their means and standard deviations.

In the third setting, we randomly generate 20 processor
efficiency matrices and 20 task sets. In each of the 20� 20
cases, all �i;j values and Ci values are uniformly distributed
in ½0:1; 1� and ½5; 15�, respectively. For a given processor effi-
ciency matrix and a platform assumption, we average the
normalized energy consumption over the normalized
energy consumption of the 20 randomly generated task sets,
and then compare these 20 average normalized energy
consumptions.

In the fourth setting, we conduct simulations for sched-
uling 64 tasks on 16 processors. For each platform type, we
randomly generate five processor efficiency matrices and
20 task sets. For a given processor efficiency matrix and a
platform assumption, we average the normalized energy
consumption over the normalized energy consumption of
the 20 randomly generated task sets, and then compare
these five average normalized energy consumptions.

We also design the fifth setting to investigate the perfor-
mance and complexity of our RIRA, without comparing it
to other approaches. The result is done for scheduling 24
tasks on six processors. We fix C ¼ ½5; 5; 5; 5; 5; 5; 5; 5;
10; 10; 10; 10; 10; 10; 10; 10;15; 15; 15; 15; 15; 15; 15; 15� and set
�i;1 ¼ 1, �i;2 ¼ 0:82, �i;3 ¼ 0:64, �i;4 ¼ 0:46, �i;5 ¼ 0:28,
�i;6 ¼ 0:1, 8i ¼ 1; 2; . . . ; 24. Under these settings, we vary
the tolerance parameter, �, as 10�6; 10�5; 10�4; 10�3; 10�2;
10�1 and evaluate the elapsed time to derive a partition, and
the normalized energy consumption, by the RIRA approach.

In the sixth setting, we vary the numbers of processors
and the numbers of tasks to verify the scalability of our pro-
posed RIRA. We vary the number of processors from six to
16, with a step size of two; given a number of processors,
we vary the number of tasks from 24 to 88, with a step size
of 16. Detailed simulation configurations are omitted due to
page limit.

6.2 Simulation Results and Analysis

For the ease of presentation, we use “Type I”, “Type II”, and
“Type III” platforms to denote dependent platforms with-
out runtime adjusting, dependent platforms with runtime
adjusting, and independent platforms, respectively. Results
for the first setting is provided in Fig. 5. In each figure of

Fig. 5. Setting I: given task set.

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 819

Fig. 5, the horizontal axis represents the partition methods
as indicated. The vertical axis represents the normalized
energy consumption for 50 randomly generated processor
efficiency matrices. Obviously, our RIRA achieves the best
performance in all of the three platform types. For depen-
dent platforms without runtime adjusting, RIRA reaches
1.2195 times that of the optimal energy consumption; for
dependent platforms with runtime adjusting, RIRA reaches
1.1893 times that of the optimal energy consumption; for
independent platforms without runtime adjusting, RIRA
reaches 1.0205 times that of the optimal energy consump-
tion, which is only about 2 percent greater than the optimal
energy consumption. For this setting, the normalized
energy consumption of RIRA achieves the smallest standard
deviation. Thus, our RIRA is superior in comparison to the
other three methods, in terms of both average performance
and stability.

Results for the second setting are provided in Fig. 6. In
each figure of Fig. 6, the vertical axis represents the normal-
ized energy consumption for 50 randomly generated task
sets. We notice that, in this special case, the RNRA attempts
to assign all of the tasks to the most efficient processor, i.e.,
processor M1. Thus, the normalized energy consumption of
RNRA (about six) is much greater than the other three
methods (less than two). For clear comparisons between our
RIRA and the min-min and max-min heuristics, we do not
show the results for the RNRA method in Fig. 6. It can be
seen that our RIRA still provides the best performance. For
the three types of platforms, the average normalized energy
consumptions are only 1.0665, 1.0528, and 1.0267, respec-
tively, which means that the overall energy consumption
is within 10 percent greater than the optimal energy

consumption, and can be considered extremely good,
though its standard deviation may be slightly greater than
some of the other methods.

Also, it can be noticed that the min-min heuristic
achieves a better performance than max-min in the first set-
ting, while max-min achieves a better performance than
min-min in the second setting. Thus, neither min-min nor
max-min is a pure winner when compared with each other.

Results for the third setting are shown in Fig. 7. In each
type of platform in Fig. 7, the horizontal axis represents the
20 randomly generated processor efficiency matrices. The
vertical axis represents the average normalized energy con-
sumption of the 20 randomly generated sets of tasks, given a
processor efficiencymatrix. Results for all of the 20 randomly
generated processor efficiency matrices are provided. This
general setting further verifies that the average performance
of our proposed RIRA is clearly better than other methods
and is also stable under various cases. Results for the fourth
setting are shown in Fig. 8. RIRA still arrives at the best solu-
tion in terms of energy consumption. Again, it demonstrates
its good average performance and high stability.

Fig. 9 provides the results for the fifth setting. The nor-
malized energy consumption is the same as previously
defined. The “normalized elapsed time” is normalized by
the elapsed time when the tolerance parameter is set as
� ¼ 10�6, which is actually around 8 seconds on a common
PC. As can be seen, the running time of RIRA decreases line-
arly with respect to logð�Þ, which justifies the complexity
analysis provided in Section 3.4. Besides, we can notice that,
even though the tolerance parameter increases from 10�6 to
10�2, the final scheduling produced by the RIRA approach
almost remains unchanged. This is because in our RIRA, we

Fig. 7. Setting III: both task sets and processor efficiency matrices are randomly generated.

Fig. 6. Setting II: given processor efficiency matrix �24�6.

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

actually do not need very accurate solutions for the relaxed
optimization problems; in fact, we only need a “rough sol-
ution” as long as it can guide our assigning decision. Thus,
we can increase the tolerance parameter when solving the
relaxed optimization problems to reduce its computational
complexity.

The results of the sixth setting are provided in Table 7.
When we have a set of 88 frame-based tasks to schedule on
16 processors, the execution time of RIRA is about 1,500 s.
We can also see that the number of tasks has a much greater
influence on the execution time than the number of process-
ors. The results verify that RIRA is a polynomial time algo-
rithm and has satisfiable scalability, and is especially
applicable for moderate and small size problems.

6.3 Simulation Summary

From all of the above experiments and comparisons, we can
see that our proposed RIRA method outperforms all other
methods in terms of overall energy consumption and
achieves a near optimal solution for various situations,
especially on independent platforms. Our RIRA achieves a
good performance mainly because of the two techniques it
applies. The first technique is the ranking scheme, namely,
considering the most “influential” task first, since such a
task potentially has the greatest influence on the overall
energy consumption. The second technique is the iterative
rounding scheme. When applying this technique, whenever
we consider assigning a task, the assignment that is closest
to the optimal solution can be chosen. Thus, our RIRA
finally produces a partition with an extremely good perfor-
mance in terms of overall energy consumption.

6.4 Applying Our Approach to Practical Power
Configurations

By now, we have assumed that processors’ dynamic power
consumption is p ¼ f3; however, our approach is not lim-
ited by this assumption. Actually, our proposed RIRA
works well for the general assumption that the power con-
sumption of processor Mj is pj / fa, where a is a positive
number greater than two. Besides numerical simulation, we
also consider a multiprocessor platform with practical
power configuration. We are aware that practical processing
cores are only able to execute on a set of discrete frequency
values, instead of arbitrary continuous values. For a practi-
cal multi-core processor, we first apply the curve-fitting
technique for the frequency and power characteristics using
the form of pðfÞ ¼ gfa. We assume that each processor has
the same power characteristics of the Intel Xscale processor,
as shown in Table 8 [36]. Then, we apply our method and
derive the optimal frequency setting. After this, we round
each derived frequency value to the closest higher fre-
quency. Though other techniques that use both the closest
lower frequency and the closest high frequency can be
used, we choose the simple rounding up strategy to show
the advantage of our final practical scheduling against
other scheduling methods. Applying the curve-fitting tech-
nique, we achieve a fitting function: pðfÞ ¼ 1;598f2:595. We
also consider scheduling 24 tasks on six such processors.
We fix the processor efficiency matrix as that in the second

Fig. 8. Setting IV: Simulation for scheduling 64 tasks on 16 processors.

Fig. 9. Elapsed time and NEC versus �

TABLE 7
Execution Time (in seconds) of RIRA

for Different Problem Sizes

TABLE 8
Power Characteristics of the Intel XScale Processor

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 821

setting and generate tasks’ WCEC values such that the opti-
mal frequency settings are well below 1 GHz. For the same
reason stated in the second setting, we do not include
RNRA in the comparison. The results for all of the three
types of platforms are shown in Fig. 10. Each bar represents
the normalized energy consumption for the specified plat-
form type and the partition method. We can see that our
RIRA also outperforms max-min and min-min.

6.5 Additional Remarks

For the ease of presentation, in most cases, we have
assumed pj / f3. However, as has already been shown, our
proposed RIRA works well for the general assumption that
the power consumption of processor Mj is pj / fa, where a

is a positive number greater than 2.
It should also be noticed that our scheduling by the RIRA

approach is an offline static scheme. The static scheduling
overhead can be considered negligible compared to tasks’
execution times. Once the static scheduling is produced by
our proposed RIRA, little runtime/online scheduling over-
head is required. Thus, though iterative rounding and solv-
ing are introduced in our algorithm, it only increases the
complexity of finding the task partition and frequency set-
ting, but does not increase the runtime scheduling over-
head. Specifically, the task partition and frequency setting
will be fixed after their initial setting for dependent plat-
forms without runtime adjusting, and no online scheduling
will be involved. Thus, the online scheduling overhead is
very limited. This low scheduling overhead property is also
enjoyed by our approach that attacks the problem on inde-
pendent platforms. As we can see also, for dependent plat-
forms with runtime adjusting, the frequency read justing
only occurs m� 1 times, which also demonstrates a low
scheduling overhead. These aspects make RIRA a practi-
cally-applicable scheduling scheme.

7 CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of scheduling
frame-based tasks on heterogeneous platforms with the
goal of minimizing overall energy consumption. We pro-
posed a Relaxation-based Iterative Algorithm for three
types of heterogeneous platforms, namely, dependent plat-
forms without runtime adjusting, dependent platforms

with runtime adjusting, and independent platforms. We
notice that a “workload-balanced” partition is not optimal
in terms of overall energy consumption. In our algorithm,
when assigning each task, we always place the overall
energy consumption at the highest priority. Thus, our pro-
posed RIRA produces a better performance than existing
methods, and achieves a near optimal solution for most
cases. Experiments and comparisons from three different
angles verify the strength of our algorithm.

As we have pointed out, the ranking method (always
considering the most influential task first) and iterative
rounding approach also have their merits when we come to
various integer, especially binary integer, programming
problems. We only consider frame-based tasks in our work,
while it is also applicable to use our iterative rounding
scheme to partition periodic tasks on heterogeneous multi-
processor platforms. The proposed RIRA approach does not
work for the situation where tasks have different deadlines.
Addressing energy-aware scheduling for tasks with differ-
ent deadlines are beyond the scope of this paper, and is left
for future work.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grants ECCS
1231461, ECCS 1128209, CNS 1065444, and CCF 1028167.

REFERENCES

[1] K. Li, “Power allocation task scheduling on multiprocessor
computers with energy time constraints,” in Energy-Efficient
Distributed Computing Systems.Hoboken, NJ, USA: Wiley 2012.

[2] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined
dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads,” in Proc.
IEEE/ACM Int. Conf. Comput. Aided Des., Nov. 2002, pp. 721–725.

[3] W.-C. Kwon and T. Kim, “Optimal voltage allocation techniques
for dynamically variable voltage processors,” ACM Trans. Embed.
Comput. Syst., vol. 4, no. 1, pp. 211–230, Feb. 2005.

[4] M. Li and F. F. Yao, “An efficient algorithm for computing optimal
discrete voltage schedules,” SIAM J. Comput., vol. 35, no. 3,
pp. 658–671, Sep. 2005.

[5] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced cpu energy,” in Proc. 36th Annu. Symp. Found. Comput.
Sci., 1995, pp. 374–382.

[6] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors,” in Proc. Des.
Autom. Conf., 2001, pp. 828–833.

[7] Y. Shin and K. Choi, “Power conscious fixed priority scheduling
for hard real-time systems,” in Proc. 36th Des. Autom. Conf., 1999,
pp. 134–139.

[8] H.-S. Yun and J. Kim, “On energy-optimal voltage scheduling for
fixed-priority hard real-time systems,” ACM Trans. Embed. Com-
put. Syst., vol. 2, no. 3, pp. 393–430, Aug. 2003.

[9] H. Aydin and Q. Yang, “Energy-aware partitioning for multipro-
cessor real-time systems,” in Proc. Int. Parallel and Distrib. Process.
Symp., pp. 113–121, 2003.

[10] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-
time tasks on cluster-based multicores,” in Proc. Des., Autom. Test
Eur. Conf. Exhib., 2011, pp. 1–6.

[11] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algo-
rithm for energy-efficient scheduling on a chip multiprocessor,”
in Proc. Des., Autom. Test Eur., Mar. 2005, vol. 1, pp. 468–473.

[12] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo, “Multiprocessor energy-efficient scheduling with task
migration considerations,” in Proc. 16th Euromicro Conf. Real-Time
Syst., Jun.-Jul. 2004, pp. 101–108.

[13] J.-J. Chen and T.-W. Kuo, “Multiprocessor energy-efficient sched-
uling for real-time tasks with different power characteristics,” in
Proc. Int. Conf. Parallel Process., Jun. 2005, pp. 13–20.

Fig. 10. Applying our method to practical power configurations.

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

[14] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-
time tasks on cluster-based multicores,” in Proc. Des., Autom. Test
Eur. Conf. Exhib., Mar. 2011, pp. 1–6.

[15] D.-S. Zhang, F.-Y. Chen, H.-H. Li, S.-Y. Jin, and D.-K. Guo, “An
energy-efficient scheduling algorithm for sporadic real-time tasks
in multiprocessor systems,” in Proc. IEEE 13th Int. Conf. High Per-
form. Comput. Commun., 2011, pp. 187–194.

[16] V. Nelis, J. Goossens, R. Devillers, and N. Navet, “Power-aware
real-time scheduling upon identical multiprocessor platforms,” in
Proc. IEEE Int. Conf. Sens. Netw., Ubiquitous Trustworthy Comput.,
2008, pp. 209–216.

[17] V. Nelis and J. Goossens, “Mora: An energy-aware slack reclama-
tion scheme for scheduling sporadic real-time tasks upon multi-
processor platforms,” in Proc. 15th IEEE Int. Conf. Embedded Real-
Time Comput. Syst. Appl., Aug. 2009, pp. 210–215.

[18] N.-T. Fong, C.-Z. Xu, and L. Y. Wang, “Optimal periodic remap-
ping of dynamic bulk synchronous computations,” J. Parallel Dis-
trib. Comput., vol. 63, no. 11, pp. 1036–1049, 2003.

[19] X. Tang, K. Li, Z. Zeng, and B. Veeravalli, “A novel security-
driven scheduling algorithm for precedence-constrained tasks in
heterogeneous distributed systems,” IEEE Trans. Comput., vol. 60,
no. 7, pp. 1017–1029, Jul. 2011.

[20] M. A. Awan and S. M. Petters, “Energy-aware partitioning of
tasks onto a heterogeneous multi-core platform,” in Proc. IEEE
19th Real-Time Embedded Tech. Appl. Symp., Apr. 2013, pp. 205–214.

[21] E. M. Saad, M. H. Awadalla, M. Shalan, and A. Elewi, “Energy-
aware task partitioning on heterogeneous multiprocessor
platforms,” CoRR, vol. abs/1206.0396, 2012.

[22] W. Sun and T. Sugawara, “Heuristics and evaluations of energy-
aware task mapping on heterogeneous multiprocessors,” in Proc.
Int. Symp. Parallel Distrib. Process. Workshops Phd Forum, May 2011,
pp. 599–607.

[23] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approxima-
tion scheme for energy-efficient scheduling of real-time tasks in
heterogeneous multiprocessor systems,” in Proc. Des., Autom. Test
Eur. Conf. Exhibition, Apr. 2009, pp. 694–699.

[24] J.-J. Chen and L. Thiele, “Task partitioning and platform synthesis
for energy efficiency,” in Proc. 15th IEEE Int. Conf. Embedded Real-
Time Comput. Syst. Appl., 2009, pp. 393–402.

[25] C.-M. Hung, J.-J. Chen, and T.-W. Kuo, “Energy-efficient real-time
task scheduling for a DVS system with a non-DVS processing ele-
ment,” in Proc. 27th IEEE Int. Real-Time Syst. Symp., Dec. 2006,
pp. 303–312.

[26] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for
precedence-constrained applications using dynamic voltage
scaling,” in Proc. 9th IEEE/ACM Int. Symp. Cluster Comput. Grid,
May 2009, pp. 92–99.

[27] K. Etminani and M. Naghibzadeh, “A min-min max-min selective
algorithm for grid task scheduling,” in Proc. 3rd IEEE/IFIP Int.
Conf. Central Asia Internet, Sep. 2007, pp. 1–7.

[28] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heteroge-
neous computing systems,” J. Parallel Distrib. Comput., vol. 59,
pp. 107–131, Nov. 1999.

[29] H. Izakian, A. Abraham, and V. Snasel, “Comparison of heuristics
for scheduling independent tasks on heterogeneous distributed
environments,” in Proc. Int. Joint Conf. Comput. Sci. Optimization,
Apr. 2009, vol. 1, pp. 8–12.

[30] D. Li and J. Wu, “Energy-aware scheduling for frame-based tasks
on heterogeneous multiprocessor platforms,” in Proc. 41st Int.
Conf. Parallel Process., Sep. 2012, pp. 430–439.

[31] S. Albers, A. Antoniadis, and G. Greiner, “On multi-processor
speed scaling with migration,” in Proc. 23rd ACM Symp. Parallel-
ism Algorithms Architectures, 2011, pp. 279–288.

[32] E. Angel, E. Bampis, F. Kacem, and D. Letsios, “Speed scaling on
parallel processors with migration,” in Proc. 18th Int. Conf. Parallel
Process., 2012, pp. 128–140.

[33] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-
time tasks on cluster-based multicores,” in Des., Autom. Test Eur.
Conf. Exhibi., 2011, pp. 1–6.

[34] S. Boyd and L. Vandenberghe, in Convex Optimization, Cambridge,
UK, Cambridg. Univ. Press, 2004.

[35] MATLAB, Version 7.9.0.529 (R2009b), The MathWorks Inc., Natick,
MA, USA, 2010.

[36] Intel xscale microarchitecture. (2003). [Online]. Available: http://
developer.intel.com/design/intelxscale/benchmarks.htm

Dawei Li received the bachelor’s degree from
the Advanced Class, Department of Electronics
and Information Engineering, Huazhong Univer-
sity of Science and Technology, Wuhan, Hubei,
P.R. China. He is working toward the PhD degree
in the Department of Computer and Information
Sciences at Temple University since September
2011. His research interests include energy-
aware task scheduling on multi-cores/multiproc-
essors, application mapping and scheduling on
network-on-chip -based multiprocessor system-

on-chips, and design and analysis of data center networks.

Jie Wu is the chair and a Laura H. Carnell profes-
sor in the Department of Computer and Informa-
tion Sciences at Temple University. Prior to
joining Temple University, he was a program
director at the National Science Foundation and
an distinguished professor at Florida Atlantic Uni-
versity. He regularly publishes in scholarly jour-
nals, conference proceedings, and books. He
serves on several editorial boards, including
IEEE Transactions on Computers, IEEE Trans-
actions on Service Computing, and Journal of

Parallel and Distributed Computing. He was a general chair for IEEE
IPDPS 2008 and IEEE ICDCS 2013 and a program co-chair/chair for
IEEE INFOCOM 2011 and CCF CNCC 2013. Currently, he is serving as
a general chair for ACM MobiHoc 2014. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair for
the IEEE Technical Committee on Distributed Processing (TCDP). His
current research interests include mobile computing and wireless net-
works, routing protocols, cloud and green computing, network trust and
security, and social network applications. He is the recipient of the 2011
China Computer Federation (CCF) Overseas Outstanding Achievement
Award. He is a CCF Distinguished Speaker and a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ANDWU: MINIMIZING ENERGY CONSUMPTION FOR FRAME-BASED TASKS ON HETEROGENEOUS MULTIPROCESSOR PLATFORMS 823

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

