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1 Additional Background

This section reviews the optimal stopping rule problem [1], discusses the protocols, which we

will implement and compare with the proposed ones in our evaluation, in greater detail, and

presents additional related work on routing protocols in delay tolerant networks (DTNs).

1.1 The optimal stopping rule problem (with an example)

Let us briefly review the optimal stopping rule problem [1] with an example. In the stopping

rule problem, we may observe a sequence X1, X2, . . . for as long as we wish, where X1, X2, . . . are

random variables whose joint distribution is assumed to be known. For each stage t = 1, 2, . . .

after observing X1, X2, . . . , Xt, we may stop and receive the known reward yt, or we may

continue and observe Xt+1. In the latter case, the bit Xt on day t will not be valid anymore

on day t + 1. The optimal stopping rule is to stop at some stage t to maximize the expected

reward.

A stopping rule problem has a finite horizon if there is a known upper bound T on the

number of stages at which one may stop. If stopping is required after observing X1, . . . , XT ,

we say the problem has a horizon of T . In principle, such problems may be solved by the

method of backward induction. Since we must stop at stage T , we first find the optimal rule
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at stage T − 1. Then, knowing the optimal reward at stage T − 1, we find the optimal rule at

stage T − 2, and so on, back to the initial stage (stage 0). Let V
(T )
t (1 ≤ t ≤ T ) represent the

maximum expected reward one can obtain, starting from stage t. We define V
(T )
T = yT , and

then inductively for t = T − 1, go backwards to t = 0,

V
(T )
t = E(max

{
yt, V

(T )
t+1

}
).

The meaning of the above equation is that, at stage t, we compare the reward for stopping,

namely yt, with the best reward V
(T )
t+1 that we expect to be able to get by continuing and using

the optimal rule for stages t + 1 through T . The optimal reward is therefore the maximum of

these two quantities, and it is optimal to stop at the earliest t when yt ≥ V
(T )
t+1 .

Here, we use a “house-selling” scenario as a simple example for the finite horizontal optimal

stopping rule problem. Suppose we have a house to sell within T days. An offer comes in

each day and Xt denotes the monetary amount of the offer received on day t. X1, . . . , XT are

independent and identically-distributed (i.i.d.), and are uniform over 0 to M . We may stop at

any day t and receive yt = Xt. We don’t know the offers before they come in, and we cannot

recall a past offer. We need to find a stopping rule that maximizes the expected sales value.

Let us derive the optimal stopping rule using the backward induction method. Since we must

sell the house by day T , the expected offering in the last day is V
(T )
T = E(yT ) = E(XT ) = M

2
.

Inductively, at day t,

V
(T )
t = E(max

{
yt, V

(T )
t+1

}
) =

∫ M

0

max
{
x, V

(T )
t+1

}
dF (x)

=

∫ M

V
(T )
t+1

xd
x

M
+

∫ V
(T )
t+1

0

V
(T )
t+1 d

x

M
=
M2 + (V

(T )
t+1 )2

2M
,

where F (x) = x
M

is the cumulative distribution function of yt, a uniform distribution over 0 to

M . We can calculate V
(T )
t inductively for t = T − 1 down to 1. The optimal stopping rule is

to sell the house on the first day t when Xt ≥ V
(T )
t+1 . In other words, the optimal stopping rule

uses the expected reward in stage t+ 1 as the decision threshold for stage t.

1.2 Protocols in comparison (in greater detail)

We compare OOF and OOF- against several opportunistic forwarding protocols. While OOF

and OOF- have well-defined utilities to maximize in each forwarding (the joint expected delivery
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probability or the joint expected delay of all copies of each message), other algorithms use either

heuristic forwarding rules or blind forwarding.

Epidemic [2]. A node sends a copy of the message to every node it encounters that does

not have a copy already, until its copy of the message times out. Given a long enough time-out,

the destination, as well as every other node in the network, will eventually have a copy of the

message.

Spray-and-wait [3]. This protocol differs from epidemic in that it controls the number

of copies of each message in the network. A number L of logical tickets are associated with

each message. A node i can only copy a message to another node j it encounters if (1) j is the

destination (j = d) or (2) j 6= d and the message in i owns L > 1 tickets. If forwarded, the new

copy in j will have Lj = bL/2c tickets, and Li = L− Lj tickets will remain with the copy in i.

MaxProp∗. A cost is assigned to each node regarding each destination. Each node i

keeps track of a probability f i
j of the next meeting node being j, and disseminates it to every

node in the network. The delivery probability from a source to a destination is the total cost∑
(i,j)∈P (1−f i

j) on their shortest (in terms of total cost) path P calculated by the Bellman-Ford

algorithm, where the cost of each forwarding (i, j) is 1 − f i
j . We use a variation MaxProp∗,

which differs in that (1) it incorporates the hop-count-limited forwarding protocol to control

forwarding overhead in order to make a fair comparison, and (2) it assumes that each node can

carry an infinite number of messages. Note that the first modification will effect the performance

negatively.

Delegation [4]. Delegation forwarding may use a wide range of forwarding metrics (quali-

ties). We use the mean inter-meeting time Ik,d of node k, with destination d, as the forwarding

quality of a node k, and node j has a higher forwarding quality than node i if Ij,d < Ii,d. In del-

egation, each message copy maintains a forwarding threshold τ , initialized to be the forwarding

quality of its source node (Is,d). When node i meets node j, i forwards a message to j if the

forwarding quality of node j exceeds the message’s threshold τ (Ij,d < τ). Then, the τs of both

copies in i and j are set to Ij,d. In the case that Ij,d < τ , but j already has the message copy,

the copy is not forwarded, but the τ of the copy in i will still be set to Ij,d.

Epidemic and Spray-and-wait do not use any forwarding metric. The performance of Spray-

and-wait degrades the fastest as the network size increases. This is because, when forwarded

randomly, the chance that some of the L copies of a message end up in the hands of quality

forwarders decreases as the network size increases. In terms of cost, Spray-and-wait, OOF,

and OOF- maintain a constant cost in terms of the number of forwardings per message, which
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achieves ultimate scalability. Delegation has an O(N) worst-case cost and an O(
√
N) average-

case cost. The cost increase proportional to the network size N may result in a degraded

performance in a small network and an excessive cost in a large network.

1.3 Additional related works

The Delay Tolerant Network Research Group (DTNRG) [5] has designed a complete architecture

to support various protocols in DTNs. In [6], Jain, Fall, and Patra presented a comprehensive

investigation on the DTN routing problem with different levels of prior knowledge about the

network. Specifically, Bellman-Ford algorithm (with future connectivity information) or the

linear programming approach (with information of future connectivity and traffic demands) is

used to obtain an optimal path between a source and a destination. In [7], Merugu, Ammar, and

Zegura proposed a DTN routing algorithm that is similar in spirit to Bellman-Ford algorithm

in [6]. In [8], Liu and Wu presented hierarchical routing in DTNs with deterministic repetitive

mobility to improve scalability.

Epidemic routing [2] is the first flooding-based routing algorithm. Gossip [9] forwards to

each encountering node with probability p. Opportunistic routing protocols, such as [10], make

forwarding decisions based on the comparison of the nodes in terms of some delivery probability

metric. Different delivery probability metrics are defined including encounter frequency [10],

time elapsed since last encounter [11, 12, 13, 14, 15], social similarity [16, 17], location similarity

[18], time-varying expected delay [19], timely-contact probability [20], and geometric distance

[21].

Trace data available for the research community [22] include the UMassDieselNet trace, the

NUS student contact trace, and the MIT Reality Mining [20]. In [20], several opportunistic

routing algorithms are simulated in large realistic contact traces. A timely-contact probability

metric is proposed in this paper, which captures the contact frequency of mobile nodes and is

similar to [10] and [12] in spirit.

The optimal stopping rule is also applied in [23] to design the joint optimal opportunistic

scheduling and channel state information acquisition strategies to increase the transmission

rate.
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2 Discussion and Analysis

This section will discuss how OOF and OOF- can work with incomplete routing information

and will analyze the complexity and limitations of both.

2.1 Routing with incomplete information

OOF and OOF- can work with incomplete routing information. To calculate Pi,d,K,Tr for any

K and Tr, each node collects the mean inter-meeting times for every pair of nodes. When the

nodal mobility in the network exhibits long-term regularities, the mean inter-meeting times are

long-term stable, which can be infrequently updated, and therefore, the amortized overhead of

disseminating this routing information is low in the long run. In practice, they can be generated

from historical connectivity information (as in the UMassDieselNet trace [12, 24]), or in some

situations, from prior knowledge on the contact pattern of the nodes (as in the NUS student

contact trace [25]).

The mean inter-meeting times can also be incrementally exchanged among the nodes. When

node i meets node j, node i sends to node j its mean inter-meeting times with the other nodes

(1-hop routing information), or it can also send the mean inter-meeting times received from the

other nodes (k-hop routing information). Alternatively, node i can send only some preferred

information to j, e.g., the mean inter-meeting times between frequently meeting nodes.

OOF and OOF- can work with incomplete information, i.e., when the mean inter-meeting

times between all of the pairs of nodes are not available to every node. To allow OOF and

OOF- to work with incomplete routing information, for each pair of nodes i and j whose mean

inter-meeting time is unknown, we simply set their (1) mean inter-meeting time Ii,j = ∞, (2)

time-slot based meeting probability Mi,j = 0, (3) 1-hop delivery probability Pi,j,0,Tr = 0 for all

time-slots Tr, and (4) the expected delay Di,j,0 =∞. When no routing information is available

at all, it is easy to see that OOF behaves as spray-and-wait, which spawns copies to the first

node seen. To allow OOF (OOF-) to behave as Spray-and-wait, node i will forward a message

to node j if both Pi,d,K,Tr = 0 and Pj,d,K−1,Tr−1 = 0 (if both Di,d,K =∞ and Dj,d,K−1 =∞).
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2.2 Complexity

In this subsection, we will discuss the complexity of our algorithms. The online portion of our

algorithms involves a simple table lookup and several comparing operations: its computation

complexity is O(1). The offline portion is not as simple as the former, but it only needs to be

computed when there is a substantial update in the inter-meeting times between the nodes. To

save energy, the offline computation can be performed when the mobile device is charging. It

can also be sent to a computer if the mobile device is connected to one.

The offline portion may require a large amount of computation. For OOF, we need to

compute Pi,d,K,Tr for each routing node i, each possible destination d, each remaining hop-count

K, and each residual lifetime Tr, using Algorithm 1. Therefore, if the number of routing nodes

is N1, the number of destinations is N2, the maximum hop-count is H, and the maximum TTL is

Tmax, the computation complexity is N1×N2×H×Tmax×O(N2logN2) = O(N1N
2
2 logN2HTmax,

where O(N2logN2) is the computation complexity of Algorithm 1. The storage complexity of

OOF is the size of the table needed to store Pi,d,K,Tr , which is O(N1N2HTmax).

For OOF-, we need to compute Di,d,K , for each routing node i, each possible destination d,

and each remaining hop-count K, using Algorithm 2. Therefore, the computation complexity

is N1 × N2 × H × O(N2logN2) = O(N1N
2
2 logN2H, where O(N2logN2) is the computation

complexity of Algorithm 2. The storage complexity of OOF is the size of the table needed to

store Di,d,K , which is O(N1N2H).

2.3 Limitations

Firstly, our algorithms suffer from the limitations of all routing algorithms in delay tolerant

networks that do not rely on infrastructure, which means the amount of delay can be large

due to the limited connectivity in the networks. This make it unsuitable for a large amount of

time-critical applications.

Secondly, our algorithms assume regularities in the inter-meeting times to accurately predict

the probability of delivery and the estimated delay. In networks where there is not much regu-

larity in node mobility, improvement in routing performance becomes less significant. However,

as can be found in our simulation results, our algorithms show the best performance improve-

ment as the performances of all of the routing protocols degrade, due to the lack of regularity

in mobility.
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Lastly, our algorithms, in their current forms, demand relatively large amounts of compu-

tation and storage, which limits their application in larger networks. In practical use, different

methods might need to attack the computation and storage problem, by (1) using only the

most socially active nodes as routing nodes, (2) using a compact table for delivery probabili-

ties, which only stores the largest entries for each destination, or (3) using dynamic time-slots,

e.g., we can set some several hours during the night as a single time-slot, when connectivity

among the network hardly changes.

3 Additional Evaluations

Additional simulation evaluations are performed to compare the proposed protocols, OOF and

OOF-, against other forwarding protocols, using the NUS student contact trace and the UMass-

DieselNet trace. In the NUS student contact trace, which is a synthetic trace, we measure the

performance of the compared protocols with different variable parameters. In the UMass-

DieselNet trace, we evaluate their performance with partial routing information, false routing

information, and stale routing information.

3.1 NUS student contact trace

Accurate information about human contact patterns is available in scenarios, such as university

campuses. As shown by the National University of Singapore (NUS) student contact trace model

[25], when the class schedules and student enrollment for each class on a campus are known,

accurate information about contact patterns between students, over large time scales, can be

obtained without long-term contact data collection. The schedules of the 4,885 classes and

the enrollment of 22,341 students for each of these classes for each week of 77 class hours, are

publicly available on [22]. Their contact model is simplified in several ways: (1) two students

are in contact with each other only if they are in the same classroom at the same time; (2)

sessions start on the hour and end on the hour, which means that hours are the unit of time for

the contact duration; (3) only the contacts that take place during the 11 class hours per day are

used. Non-class hours are removed. The trace synthesized in this model exhibits characteristics

observed in the real world.

We generate networks for our experiments by selecting some of the students instead of using

all of the students in the network for the following two reasons: (1) the generated networks
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Table 1: Settings for NUS student trace.

parameter name default range

number of students (N) 400 100∼500

number of messages 3N2

attendance rate (Pattend) 0.8 0.1∼0.9

connectivity factor (C) 0.4 0.1∼0.9

message time-to-live (TTL) 7 days 1∼7 days

tickets in spray-and-wait (L) 10

initial hop-count (K) 3

length of time-slot (U) 1 hour

simulation time 7 days

allow us to perform experiments with networks that have different characteristics, including

network size and degree of connectivities; and (2) the storage requirement, which is O(N2) in a

network of N students, and the corresponding computational overhead in backward induction

are overwhelming when N = 22, 341. We select a number of N (100 ≤ N ≤ 500) students in

different simulations. We define a connectivity factor C to determine the degree of connectivity

of the nodes in the network. Specifically, C = |S1|/(|S1| + |S2|), where for each student s,

two sets of students, S1 and S2, are defined such that s is similar to the students in S1 and is

dissimilar to those in S2. Here, the similarity between two students is defined in terms of the

number of common class sections they enrolled in. Please refer to [19] for details on student

selection.

We generate non-deterministic traces by taking absentees into consideration. Each student

that attends a class has an attendance probability, Pattend. The settings in our simulation are

shown in Table 1. In the beginning of each simulation, every node sends three messages to every

other node, and the total number of messages is 3N2, where N is the number of students. In

these traces, we assume unlimited messages can be forwarded in each contact whose duration

is one hour.

3.1.1 Simulation results

The delivery rates of the protocols are compared in Figures 1(a), 1(b), 2(a), and 2(b) with

different attendance rates, connectivity factors, message time-to-lives, and numbers of nodes

(students). We do not include Epidemic in the NUS traces because there are too many nodes in
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this trace, which results in too many copies with Epidemic. If the result of Epidemic is shown,

the number of forwardings of other routing protocols all look close to the x-axis and are hard

to compare. The results show that, in default settings, OOF and OOF- deliver around 40%

more than MaxProp∗ and Delegation, and 150% more than Spray-and-wait. The delivery rates

of OOF and OOF- are very close.

While OOF and OOF- maintain high delivery rates, they also have a low cost in terms of

number of forwardings, which is shown in Figures 1(c), 1(d), 2(c), and 2(d). The forwarding

cost of OOF is on average 15% less than Spray-and-wait, 8% more than MaxProp∗, and 45%

more than Delegation. As shown in Figure 1(d), the difference between OOF and OOF- shows

that OOF is able to refrain from forwarding when forwarding opportunities are in abundance.

It shows that OOF can have a smaller cost than OOF- under the same delivery rate. On the

other hand, OOF- does not have a sense of message residual lifetime. Note that, although

Delegation has a smaller cost than OOF in these simulation results, the cost of the former is

not bounded in general situations.

OOF and OOF- also have the lowest delay, which is (as shown in Figures 1(e), 1(f), 2(e),

and 2(f)) on average 10% lower than MaxProp∗ and Delegation, and 20% lower than Spray-

and-wait. OOF- has a slightly smaller delay than OOF because its sends a slightly higher

amount of messages than OOF.

3.2 UMassDieselNet trace

In the main paper, we have shown the simulation method, simulation settings, as well as the

simulation results and the discussion of routing in the UMassDieselNet trace with full routing

information. Here, we will show how the compared protocols perform when routing information

is not perfect in three ways: (1) routing information is incomplete; (2) routing information is

false; (3) routing information is stale. In the following, we will explain how we produce these

simulations and present their simulation results, respectively.

3.2.1 Incomplete routing information

We evaluate the routing performance of the protocols with incomplete routing information in

the UMassDieselNet trace in the default setting, as shown in Table 1 of the main paper. We

simulate incomplete routing information by setting a percentage of inter-meeting times between

nodes as unknown. When the inter-meeting time between i and j is unknown, we set Ii,j =∞,
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Figure 1: Delivery rate, delay, and number of forwardings versus attendance rate and connec-

tivity factor in the NUS trace.
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(f) Delay versus number of nodes

Figure 2: Delivery rate, delay, and number of forwardings versus message time-to-live and

number of nodes in the NUS trace.

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10  20  30  40  50  60  70  80  90  100

D
e
liv

e
ry

 r
a
te

Percentage of routing information

Spray&wait
MaxProp

Delegation
OOF

OOF-
Epidemic

(a) Delivery rate versus percentage of routing infor-

mation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10  20  30  40  50  60  70  80  90  100

F
o
rw

a
rd

in
g
s

Percentage of routing information

MaxProp
Delegation

OOF
OOF-

Spray&wait
Epidemic

(b) Forwardings versus percentage of routing infor-

mation

Figure 3: Delivery rate and delay versus percentage of routing information in the UMassDiesel-

Net trace.

Mi,j = 0, Pi,j,0,Tr = 0. and Di,j,0 = ∞. The percentage of routing information ranges from

10% to 90%, in increments of 10%. For example, when the percentage of routing information

is 10%, we randomly set 90% of the mean inter-meeting times to ∞.

As shown in Figure 3(a), as the percentage of routing information lowers, OOF and OOF-

behave as Spray-and-wait. The figure shows that the routing performance of OOF degrades very

slowly as routing information decreases. With only 50% of routing information, the delivery

rate of OOF is 80% of that with full routing information.

Figure 3(b) shows that the number of forwardings increases gradually as the percentage

of routing information increases in all of the algorithms, including Epidemic. This is because

we only calculate the number of forwardings for the messages that are delivered by all of the

routing algorithms. As the percentage of routing information decreases, the algorithms using

forwarding metrics are more reluctant to forward messages. As a result, as the percentage of

routing information decreases, only the messages, which require less forwardings to be delivered,

get delivered by all of the algorithms.

3.2.2 False routing information

We investigate how false routing information can affect our algorithms and the compared algo-

rithms. We produce false information by swapping a percentage p of the inter-meeting times
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Figure 4: Delivery rate and delay versus percentage of true routing information in the UMass-

DieselNet trace.

of each node, with p ranging from 0% to 90%. Specifically, for each node i and each of its

inter-meeting time Ii,j, the value of Ii,j and another randomly selected inter-meeting times Ii,k

(j 6= k) are swapped with probability p.

As shown in Figure 4(a), as the percentage of true routing information lowers, the delivery

rates of all of the algorithms using contact history decrease very quickly: the average delivery

rate drops to around 40% with a 10% loss of the true routing information. While all routing

algorithms are very vulnerable to false routing information, the order of their performance is

preserved as the percentage of true information decreases. Figure 4(b) shows that the number

of forwardings is hardly affected by the false routing information.

3.2.3 Stale routing information

We investigate how stale routing information can affect our algorithms and the compared al-

gorithms. In these simulations, staleness is defined as a percentage of the latest information

being removed. The percentage of information ranges from 10% to 100%, where 10% means

that 90% of the latest information is removed, and the algorithm uses the oldest 10% of the

routing information. Simulations are run on the latest 10% trace.

As shown in Figure 5(a), as the percentage of true routing information lowers, the delivery

rates of all of the algorithms using contact history decrease very quickly: the average delivery
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Figure 5: Delivery rate and delay versus percentage of latest routing information in the UMass-

DieselNet trace.

rate drops to around 50% with a 10% loss of the latest routing information. While all routing

algorithms are very vulnerable to stale routing information, the order of their performance is

preserved as the percentage of true information decreases. Figure 5(b) shows that the number

of forwardings is hardly affected by the stale routing information.

3.3 Summary of evaluation

Evaluation results show that, compared with other algorithms, OOF and OOF- have higher

delivery rates and smaller delays under a bounded number of forwardings per message. For

example, in the NUS student contact traces, the delivery rate of OOF and OOF- are very close,

which is around 40% greater than MaxProp∗ and Delegation, and 15% greater than Spray-and-

wait. On the other hand, the number of forwardings of OOF and OOF- is equal or moderately

larger than the other protocols within the bound of number of forwardings. We conclude that

the proposed routing algorithms perform well when the routing nodes have regular mobility,

preferred locations, or preferred contacts, and perform moderately otherwise.

Simulation results with incomplete routing information, using the UMassDieselNet traces,

show that the routing performance of OOF degrades very slowly as routing information de-

creases. With only 50% of the routing information, the delivery rate of OOF is 80% of that

with full routing information. On the other hand, simulation results with false routing infor-
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mation and stale routing information show that the proposed routing protocols, as well as the

other compared routing protocols, are very vulnerable to incorrect routing information. While

their routing performance drops, the proposed routing protocols keep better than those others

using historical routing information.
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