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Fig. 5. Overall accuracy. (a) Flow. (b) Byte.
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Fig. 6. Impact of labeled training data.

major classes. The flows from the unknown classes compose
zero-day traffic.

The size of supervised training data changes from 4000 to
20000. The results show the proposed RTC scheme is signif-
icantly superior to the other four methods. The second best is
the semi-supervised method. The accuracy difference between
RTC and semi-supervised can reach 15%.

The accuracy of the other three methods—random forest,
BoF-random forest, and one-class SVM—is poor. The cause of
the low accuracy exhibited by BoF-random forest and random
forest is the inaccurately classification of zero-day traffic into
known classes. One-class SVM cannot produce a discrimina-
tive boundary in a multiclass space without a large amount
of labeled training data. In addition, its unknown detection
capability is limited without zero-day information.

An interesting observation was the accuracy of Erman’s semi-
supervised method slightly decreasing as the size of the labeled
training data increased. To investigate the causes, we report the
TPR and false negative rate (FNR) of zero-day sample detec-
tion, as shown in Fig. 6. TPR is the rate of the sum of cor-
rectly detected zero-day traffic compared to the sum of all actual
zero-day traffic. FNR is the rate of the sum of zero-day traffic
inaccurately detected as “known” compared to the sum of all
actual zero-day traffic. The results of our RTC scheme are also
shown for comparison.
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Fig. 7. F-measure of each application class.

We notice the number of clusters produced by k-means
in semi-supervised is fixed to 2000. The results show that
for Erman’s method, as the labeled training flows increase
in size, the true positive rate declines and the false negative
rate quickly rises. This will significantly affect its unknown
detection capability. Consequently, the overall accuracy of the
semi-supervised method is limited and becomes worse. Our
RTC scheme can successfully solve this problem by automat-
ically optimizing % for different sizes of supervised training
data. The figure shows the TPR and FNR of the RTC scheme
has only slight changes.

In addition, we tested the classification speed of the five com-
peting methods. The results (lows/second) were 3.2 x 10* for
RTC, 4.5 x 10° for one-class SVM, 3.77 x 10* for BoF-random
forest, 3.28 x 10° for random forest, and 6.8 x 10® for semi-su-
pervised. In our experiments, the RTC scheme displays the com-
parable classification speed of existing methods.

3) Performance of Traffic Classes: Fig. 7 reports the flow
F-measures from five competing traffic classification methods.
In general, the results indicate the proposed RTC scheme sig-
nificantly outperforms other methods when zero-day applica-
tions are present. Other methods do not work as well due to poor
performance in predefined known classes or failure to identify
zero-day traffic.

Let us further investigate the F-measures in each class.
In class FTP, the F-measure of our scheme was higher than
the second best method, BoF-random forest, by about 0.13.
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Fig. 8. Classification result with varying zero-day applications. (a) Flow. (b) Byte.

Random forest was slightly better than the semi-supervised
method, however both were worse than our scheme by about
0.27. In class HTTP, the improvement of our scheme was about
0.18; with semi-supervised, the second best method, is about
0.18. There were no significant differences among methods
of random forest, BoF-random forest, and semi-supervised.
In class IMAP, the F-measure of our scheme achieved 0.9,
which is higher by about 0.12 than the second best method,
one-class SVM. In class POP3, the F-measure of our scheme
was about 0.97. The F-measure of the second best method,
semi-supervised, was about 0.87, which is much higher than
the other three methods. In class RAZOR, the ranking list was
our scheme, one-class SVM, semi-supervised, BoF-based, and
random forest. In class SSH, all methods displayed excellent
performance. In class SSL, the F-measure of our scheme was
higher than the second best method, semi-supervised, by over
0.15. The performance of one-class SVM was similar to that of
BoF-random forest and random forest. The three methods were
less than the semi-supervised method by about 0.14. Finally,
our scheme was superior to the methods semi-supervised and
one-class SVM in terms of zero-day traffic identification. The
difference of F-measures between our scheme and the second
best method, semi-supervised, was 0.08. One-class SVM had
very low zero-day traffic identification performance due to its
poor classification boundary for zero-day applications.

We observed the superiority of the proposed RTC scheme was
due to its excellent functionality of unknown discovery. As de-
scribed in Section I1I-A, a new two-step unknown discovery was
applied for robust traffic classification. The first step borrows
the idea of the semi-supervised method to roughly detect some
zero-day samples. The experimental results show the true posi-
tive rate of zero-day traffic detection in the first step was 72%,
and the false positive rate was 6%. The second step constructs
a random forest classifier by using the outcome of the first step,
which can further improve the effectiveness of zero-day sample
extraction. In the experiment, the true positive rate was raised
to 94%, and the false positive rate was reduced to 3%. Thus,
zero-day samples can be combined with prelabeled training data
to train a super classifier that has the capability of identifying
zero-day traffic.

4) Impact of Zero-Day Applications: Fig. 8 displays the
impact of zero-day application classes to traffic classification

performance. In this figure, we amplify the pool of zero-day
traffic by adding one to five major classes. One can see the accu-
racy of RTC and semi-supervised was stable when the number
of zero-day application classes increased. Meanwhile, the
accuracy of one-class SVM, random forest, and BoF-random
forest decreased dramatically.

These results further confirm the robustness of the proposed
RTC scheme. In detail, RTC outperformed semi-supervised in
terms of accuracy and reliability.

The accuracy of RTC is always significantly higher than
semi-supervised, with a difference of proximately 12%. With
a different number of zero-day applications, semi-supervised’s
accuracy changed by 3%, while for RTC, it was only 1% .

Compared to the supervised methods, random forest and
BoF-random forest, RTC exhibited the excellent capability
of dealing with zero-day traffic. However, the accuracy of
supervised methods was strictly limited by the amount of traffic
generated by known applications, which they can correctly clas-
sify. For example, the accuracy of BoF-random forest declined
from 80% to 50% when the number of zero-day application
classes increased from 1 to 5. The accuracy of one-class SVM
was higher than random forest and BoF-random forest because
it identified a small portion of zero-day traffic. However,
one-class SVM has very limited zero-day traffic identification
ability that cannot be improved by increasing the supervised
training size. The reason is one-class SVM does not explore
zero-day information in the classification procedure.

5) Performance of System Update: A set of experiments
were carried out to evaluate the function of the system update.
We tested the classification performance of our scheme, with
and without a system update. In the experiments, the labeled
and unlabeled training data consisted of 4000 and 30 000 flows,
respectively. During the system update, the identified zero-day
traffic was categorized into 100 clusters. We randomly selected
three flows from each cluster and manually inspected them for
new class construction. It was assumed the three unknown major
classes could be recognized at this stage since their traffic was
statistically significant. A two-level classification strategy was
applied to perform traffic classification. An F-measure was used
to evaluate the classification results.

Fig. 9 reports the F-measures of our scheme before and
after the update. In this figure, the performance of the
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Fig. 9. Performance of system update.

semi-supervised method was used as the baseline. The re-
sults show the proposed RTC scheme with system update
can achieve fine-grained classification of zero-day traffic. For
example, zero-day traffic can be identified with a F-measure of
0.91 before an update. After an update, the zero-day traffic can
be perfectly classified into three new classes. The F-measures
of new classes, new_1(BT), new_2(DNS), and new 3(SMTP),
can achieve about 0.94, 0.96, 0.96, respectively. In the known
classes, the performance of our scheme did not change after the
system update because of the two-level classification strategy.
We can draw an initial conclusion that the system update can
achieve fine-grained classification of zero-day traffic without
affecting the performance of known classes.

In the experiments, there were about 60 000 flows identified
as zero-day traffic. According to the experimental setting, the
rate of manual inspection was 0.5%[= (100 * 3)/60 000]. This
rate was very low, thus making it possible for the practical use
of the module for a system update. For example, in attack detec-
tion, fine-grained identification of zero-day traffic is well worth
it and only uses minimal human effort.

C. Evaluation With DPI Unrecognized Traffic

We have used only DPI recognized flows to study the im-
pact of different “unknown” settings on traffic classification. In
this section, we report additional experiments and the results on
individual datasets by considering DPI unrecognized traffic as
zero-day traffic.

The experiments were carried out on ISP and WIDE-09
traffic traces. The ISP experiment dataset contained over
650 000 flows, with approximately 296 000 as zero-day traffic
(i.e., unrecognized by DPI). We identified the known classes
BT, DNS, EDONKEY, FTP, HTTP, IMAP, MSN, POP3, SMB,
SMTP, SSH, SSL, and XMPP. The zero-day traffic constituted
55% of flows and 12% of bytes. In experiments on the ISP
dataset, 4000 labeled flows and 30 000 unlabeled flows were
randomly sampled for training. The WIDE-09 experiment
dataset contained over 439 000 flows, in which about 158 000
were zero-day traffic. The known classes in WIDE-09 were BT,
DNS, FTP, HTTP, POP3, SMTP, and SSL. The zero-day traffic
constituted 36% of flows and 25% of bytes. In experiments on
the WIDE-09 dataset, 2500 labeled flows and 20 000 unlabeled
flows were randomly sampled for training.

Fig. 10 shows classification results on the ISP and WIDE-09
datasets. The flow and byte accuracy of traffic classification on
the ISP are reported in Fig. 10(a). One can see RTC always dis-
plays the highest flow and byte accuracy among all competing
methods. For flow accuracy, RTC is better than the second best
method, semi-supervised, by about 10%. In addition, semi-su-
pervised and one-class SVM significantly outperformed random
forest and BoF-random forest. The differences are from 30% up
to 50%. The byte accuracy of RTC was about 15% higher than
the other four methods with a similar byte accuracy. It should be
noted the byte accuracy was independent to the flow accuracy
due to the presence of elephant and mice flows. The results on
WIDE-09, as shown in Fig. 10(b), are similar to those on ISP.
Regarding flow accuracy, RTC, semi-supervised, and one-class
SVM, which have the potential to deal with zero-day appli-
cations, are much better than random forest and BoF-random
forest. However, there are big differences among the byte ac-
curacy of the five competing methods. RTC outperformed other
methods by up to 25%.

VI. DISCUSSION

A. Sub-Bag of Flows

Here, we present a further study on flow correlation in the
context of traffic classification. As mentioned previously, (10)
suggests the flow prediction error can be reduced by a factor of
M by using a simple BoF-based model. For estimating Fy,of in
the experiments, A can be calculated by

(11)

M= nﬂow/nbof

where 70w 1S the number of testing flows, and rny,q¢ is the
number of BoFs constructed by the testing flows. Unfortunately,
E},of in (10) depends on the key assumption that errors due to
individual flows in any BoF are independent.

A novel factor of our study was to accurately estimate the re-
duction in the overall error when the flow errors were highly de-
pendent in practice. We observed a number of sub-bags consti-
tute a BoF. A sub-bag consists of flows sharing 4-tuples: source
IP, destination IP, destination port, and transport protocol. One
can see flows in a sub-bag are likely generated by the same user
in a short period of time. The flows in a sub-bag have high de-
pendency, while the flows in different sub-bags have low depen-
dency. We propose M in (10) be replaced with the number of
sub-bags in a BoF to alleviate the problem of error dependency.
Equation (10) can be rewritten as

1
E{)of = — Efow-

G (12)

In practice, M” is the average number of sub-bags in a BoF. This
can be calculated by

M' = ngpot /bor (13)
where ng,or and nyo¢ are the number of sub-bags and the
number of BoFs in the testing set. One can see Ef ; in (12)
is estimated under the weak assumption that errors due to
individual sub-bags are independent.
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We perform a number of traffic classification experiments
to verify the theoretical analysis. The experiments were
conducted on the experimental dataset without considering
zero-day traffic. Random forest was applied for supervised
traffic classification. The BoF-based method was implemented
by combining the random forest algorithm and the majority
vote rule. The classification error was used to measure the
traffic classification performance. Fig. 11 shows the actual
error rates versus the estimated error rates. The results show
the estimated BoF error rate using (12) can match the actual
BoF error rate a lot better than the error rate estimated using
(10). In other words, given the flow error rate Fyq,y, We can
accurately estimate the BoF error rate according to the average
number of sub-bags in a BoF. We observed that in the four real
traffic traces, the average number of sub-bags in BoFs, M’ was
always larger than 2. Therefore, the BoF model can effectively
incorporate flow correlation into traffic identification, thus
strongly supporting the new scheme presented in this paper.

Based on the above analysis, one idea is to randomly se-
lect a flow to represent a sub-bag to speed up the proposed
RTC scheme for practical applications. For example, there are
638 388 flows, 64 444 BoF's, and 165 858 sub-bags in our com-
plex traffic dataset. If we apply the idea of sub-bag, our scheme
needs to classify only 165 858 flows instead of the whole dataset
(638 388 flows) before prediction aggregation. Therefore, the
classification time may reduce to about one fourth of that used
by the original scheme. We have evaluated the performance of

the RTC scheme with and without considering sub-bags. The
results show the classification performance has no significant
decrease.

The RTC scheme can be used for real-time classification. We
can directly incorporate the ideas of packet milestones [35] and
subflows [13] into the RTC scheme. For example, a packet mile-
stone is reached when the count of the total number of packets
a flow sends or receives reaches a specific value. What we need
to do is extract the statistical features on each packet milestone
and train the corresponding RTC classifier. Moreover, we can
further speed up traffic classification by considering sub-bags
in the RTC scheme.

B. Classifier Retraining

Our work shares a basic assumption with most pattern clas-
sification algorithms in that class distribution will not change
in the training and testing stages. However, in real-world net-
works, class distribution may change over a long period of time.
For example, one of the NV known applications changes, and a
cluster appears in a different position to the space. According
to the RTC scheme, a new cluster will be identified however
this is related to an old application. Therefore, a new ; is not
added to the training set, i.e., the new characteristic of the ap-
plication is not tracked. To address this issue, one possibility is
to retrain the traffic classifier by incorporating new samples of
old applications.

Erman et al. [35] suggested two measures for measuring reli-
ability of classifiers that can be used to indicate when retraining
is necessary. The first is the number of flows not assigned a
label. If this number increases, it indicates a need for classi-
fier retraining so underrepresented flow types can be captured
and classification accuracy improved. The second measure is
the average distance of new flows to their nearest cluster mean.
A significant increase in the average distance indicates the need
for retraining.

We plan to extend this work in the future and address the
problem of changing class distribution by developing new
strategies for system updates and classifier retraining. One
idea is to count the flows of any known classes recognized
by semi-automatic identification during a system update. If
the number increases, this indicates class distributions of the
corresponding known classes have changed and the traffic
classifier should be retrained. In other words, when changed
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class distributions or new classes are detected, the system
update will be triggered.

VII. CONCLUSION

This paper addresses the new problem of zero-day appli-
cations in Internet traffic classification. Conventional traffic
classification methods suffer from poor performance when
zero-day applications are present due to misclassification of
zero-day traffic into predefined known classes. We proposed
a novel robust traffic classification scheme, RTC, which can
identify zero-day traffic as well as accurately classify the traffic
generated by predefined application classes. The proposed
scheme has three important modules: unknown discovery,
BoF-based traffic classification, and system update. In partic-
ular, we presented a formal analysis on the performance benefit
of flow correlation compared to traffic classification. A new
optimization method was developed to intelligently tune the
parameter of the proposed RTC scheme. To evaluate the new
scheme, a large number of well-designed experiments were car-
ried out on real-world traffic traces. The results demonstrated
that the proposed RTC scheme significantly outperformed four
state-of-the-art methods.
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