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Abstract— Mobile CrowdSensing (MCS) is a popular data
collection paradigm which usually faces the problem of sparse
sensed data because of the limited sensing cost. In order to
address the situation of sparse data, sparse MCS recruits users
to sense important areas and infers completed data by data
completion, which is crucial in sparse MCS for urban sensing
applications (e.g. enhancing data expression, improving urban
analysis, guiding city planning, etc.) To achieve accurate com-
pletion results, previous methods usually utilize the universal
similarity and conventional tendency while incorporating only
a single dataset to infer the full map. However, in real-world
scenarios, there may exist many kinds of data (inter-data), that
could help to complement each other. Moreover, for each kind
of data (intra-data), there usually exist a few but important
outliers caused by the special events (e.g., parking peak, traffic
congestion, or festival parade), which may behave in a different
way as the statistical patterns. These outliers cannot be ignored,
while it is difficult to detect and recover them in data completion
because of the following challenges: 1) the infrequency and
unpredictability of outliers’ occurrence, 2) the large deviations
against the means compared to normal values, and 3) the
complex spatiotemporal relations among inter-data. To this end,
focusing on spatiotemporal data with both intra- and inter-data
correlations, we propose a matrix completion method that takes
outliers’ effects into consideration and exploits both intra- and
inter-data correlations for enhancing performance. Specifically,
we first conduct the Deep Matrix Factorization (DMF) with
multiple auxiliary Neural Networks, which named Stacked Deep
Matrix Factorization (SDMF). Note that the loss function of
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SDMF is no longer the previous MSE loss function, but replaced
with an Outlier Value Loss (OVL) function to effectively detect
and recover the outliers. Moreover, a spatiotemporal outlier value
memory network is added for further enhancing the outlier
inference. Finally, we take extensive qualitative and quantitative
experiments on two popular datasets each with two types of
sensing data, and the experimental results indicate the advantages
of our method that outperforms the state-of-the-art methods.

Index Terms— Sparse mobile crowdsensing, matrix completion,
intra- and inter-data correlation, outlier.

I. INTRODUCTION

W ITH the rapid development of the mobile computing
in Internet of Things (IoT), Mobile CrowdSensing

(MCS) [2], [3], [4], which recruits mobile users carrying IoT
devices to collect various urban sensing data [5], [6], [7], [8],
[9], has become an increasingly powerful sensing paradigm.
In real-world scenarios, traditional MCS usually recruits a
huge amount of users to collect all of the required data, which
obviously costs a lot. To reduce sensing cost, some researchers
introduce data inference techniques, called Sparse MCS [10],
[11], which can sense a part of data, explore the correlations,
and infer the remaining ones.

Thus, sparse MCS will be a multi-step process: 1) selecting
important subareas, 2) recruiting user to sense parts of data,
3) inferring the complete data. The past several years has
witnessed that data completion (the 3rd step) receives more
attention from the field of network [12], [13] and plays an
important role in sparse MCS [14], [15]. In practical sparse
MCS application, there usually exist a few but important spa-
tiotemporal outliers that effect the urban sensing applications.
As illustrated in Fig. 1, the whole city map is equally divided
into 4 × 4 grids, and we aim to obtain the full sensing map
of m time slots. Due to the sensing budget constraint and
uncertain user mobilities, it is difficult to collect data from all
16 subareas at each time slot [16], [17]. In this case, some vital
information may be lost, which results in missing emergency
data. For example, a pedestrian flow monitoring system [18]
sustained to monitor the pedestrian flow of each urban subarea.
Supposing that there suddenly gathers a lot of people (which
leads to a high pedestrian flow) in a street or other place
and the system does not sense the abnormal pedestrian flow
increasing in this subarea, it would cause personnel trample
and even a serious loss of lives and properties. Generally,
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Fig. 1. An example to describe the outlier value effect in data inference
problem.

we call this abnormal sensing data an “outlier value,” which
is significantly out of the normal value (non-outlier value)
distribution. Fortunately, the occurrence of outlier values may
always satisfy some potential rules. For example: 1) The
high incidence of fire in an area always occurs in a fixed
period of time every year (temporal correlations); 2) The
change of forest fire risk level in two different regions may
be highly consistent (spatial correlations); 3) Low humidity
areas are more prone to fire, and fire is usually accompanied
by deterioration of air quality (inter-data correlations); etc.
The spatiotemporal correlations like example 1) and example
2) are originated by intra-data and uniformly called intra-
data correlations. When we focus on the correlations of both
intra- and inter-data, the unsensed outliers may be efficiently
detected, inferred, or predicted in time.

Nowadays, the way to infer outliers in sparse urban crowd-
sensing is still an open issue. The existing data inference
methods (e.g., Compressive Sensing [10], [19], [20], [21],
Matrix Completion [22], [23], etc.) usually utilize the universal
similarity and conventional tendency to infer the full map.
However, as shown in Fig. 1, giving a glance at the circled
grid where outliers appear, we find that the previous inference
method that relies on usual spatiotemporal correlations or
distributions can infer the outlier value as 75, which has a
large inference error compared with the real data. At this time,
the inferred value is lower than the alarm threshold. Thus, the
vital outlier is regarded as a normal value, which is danger-
ous and unacceptable for real applications (e.g. temperature
monitoring).

The main reason that previous methods misidentify the
outliers is that there are lack of outlier samples to train the
existing models. Ding et al. [24] have proved that empirical
distribution of real-world data always appears to be heavy-
tailed. By combining PauTa Criterion theory of Statistical
Mathematics, we can easily draw the conclusion that outliers
only account for less than 5% of the total data in com-
mon situations. The imbalance between normal value data
and outlier data may lead to the following two problems:
1) The model regards all sensed data as normal values, so the
unsensed outlier cannot be recovered entirely. 2) The model
fits both the normal value and the outlier perfectly, so some

Fig. 2. An example to show the data distribution of two datasets with
correlation.

unsensed normal values are recovered to outliers. Without
enough sensed outliers, traditional machine learning-based
data inference methods cannot effectively recover these data.
While the use of other type of sensed data would help, it is
difficult to establish effective associations between different
datasets because of the sparse sensed data, especially for out-
lier data points. Therefore, how to detect and recover outliers
from such rare sensed outlier data is the first challenge.

Note that the outliers usually go against the usual corre-
lations in normal data, which makes data completion more
challenging. From the perspective of intra-data probability
distribution, the normal value distribution is relatively con-
centrated around the means and the occurrence probability is
always strictly higher than outliers. This suggests us to exploit
more inter-data correlations when inferring outliers. However,
inter-data only plays an auxiliary role, and depending on
inter-data solely leads to the degradation of overall inference
accuracy. In addition, different auxiliary datasets make dif-
ferent contributions to data inference and outlier detection.
When facing multiple auxiliary datasets, we must correctly
measure the different contributions of each auxiliary dataset.
Hence, how to deal with inconsistent data distribution between
normal and outlier values from multiple datasets is the second
challenge.

While inter-data correlations provide tremendous informa-
tion gain for modeling the outlier values in crowdsensing,
it is necessary to implement algorithms to leverage the real
spatiotemporal data. We provide an example of two types of air
quality data, as shown in Fig. 2, and we find that the outliers’
inter-data correlations are more complex than intra-data. The
left part of Fig. 2 shows the value distribution of these two
types of data and the right part shows the spatiotemporal
distribution. It can be seen that there is strong correlation
between these two types of air quality data. Hence, we also
provide the linear regression line (the black line HAHB) to
show this correlation trend. Thus, we can use this correlation
to recover those unsensed outliers. We select two points A
and B from all data points. Since the data point A is closer
to the linear regression line HAHB than the data point B
(AHA < BHB), the data point B is more easily to be inferred
than the data point A, although the data point A is closer
to normal value (BNB < ANA). Therefore, how to extract
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such complex inter-data correlations of outliers is the third
challenge.

To deal with the three key challenges above, we must make
full use of sparse spatiotemporal data from every dataset. If an
outlier is unsensed at the current time slot, we try to determine
whether there is similar spatiotemporal data distribution from
other time slots, other subareas and even other datasets. Along
this line, we propose the Stacked Deep Matrix Factorization
with exploiting Outlier Value (SDMF-OV), which focuses on
detecting and inferring the outliers. Specifically, considering
the complex spatiotemporal correlations of sensed data from
different datasets, we apply Stacked Deep Matrix Factorization
(SDMF) algorithm with Outlier Value Loss (OVL) function
to initially recover the sparse sensing matrix. Unlike existing
data inference models, we construct an outlier value mem-
ory network to predict the label that indicates whether the
unsensed value is an outlier value. With the help of the outlier
value memory nerwork, the proposed sparse matrix completion
method can efficiently complete and predict the unsensed data
for the city-scale map.

Our work has the following contributions:
• We formulate the sparse urban crowdsensing problem,

where we intend to recover the unsensed MCS data
including both normal value data and outlier value data
by leveraging the sparsely sensed data with both intra-
and inter-data correlations.

• We propose an urban crowdsensing method named
SDMF-OV, which aims to solve the problem of inferring
outlier from sparse sensed data based on SDMF (an
intra- and inter-data-based sparse data inference method
we proposed). Compared with the previous methods,
SDMF-OV can effectively extract the complex spatiotem-
poral relationship between the outlier values and the
normal values, and the performance of SDMF-OV is
improved by using both intra- and inter-data correlations.

• We evaluate the proposed method using two real-world
datasets with two typical urban sensing tasks. The results
based on both datasets verify the effectiveness in improv-
ing the recovery and prediction accuracy and the ability of
outliers’ classification with the sparse sensed data when
considering outliers and exploiting both intra- and inter-
data correlations.

II. RELATED WORK

A. Sparse MCS

MCS technology utilizes mobile devices carried by users
to perform series of urban crowdsensing tasks [2], [25]. For
example, in urban environmental MCS applications, mea-
surements (e.g., traffic speeds [26], noise levels [27], etc.)
enabled the mapping of various large-scale urban environmen-
tal phenomena by involving the common person. Compared
with traditional sensor networks, MCS has a number of
unique characteristics that bring opportunities to researchers
and users. To provide QoS, some existing efforts [28], [29]
recruited as many users as possible to collect data. These types
of approaches could indeed provide better service, however,
collecting a large number of users means a huge cost. In our

application scenario of the outlier value data inference, it does
help to be aware of such large amounts of data, but it was
unrealistic in most cases. Therefore, traditional MCS can not
be applied directly. In recent years, researchers have developed
many urban crowdsensing systems based on Sparse MCS,
which first sensed limited subareas and then inferred the
entire map. Wei et al. [30] made efforts in the field of task
allocation. They achieved a highly diverse and spatial quality
coverage level within a limited budget for different application
scenarios. Li et al. [31] focused on the critical problem that
which data instances should be collected to maximize the
performance of the trained model under the budget limits.
Bian et al. [32] proposed to use decentralized MF algorithm
to enable sparse MCS without location/data aggregation to a
central server.

B. Spatiotemporal Data Inference

For spatiotemporal data, sparse MCS is essential for the
completion of the sparse spatiotemporal matrix. Matrix Factor-
ization (MF) is a classical matrix completion algorithm, which
takes the advantage of the low-rank properties of the complete
matrix. With the wide application of deep neural networks in
the past several years, Fan and Cheng [22] proposed the Deep
Matrix Factorization (DMF) method by combining traditional
linear matrix factorization with deep neural network. Using
DMF to complete the sparse matrix could obtain the non-linear
spatiotemporal characteristics effectively. Wang et al. [33]
utilized the DMF method in the field of sparse urban sensing
and prediction, and combined it with the time series prediction
method to realize the use of sparse data to predict the future
value by an end-to-end model. In recent years, with the rapid
development of graph neural network (GNN), the algorithm of
matrix completion using GNN arised at the historic moment.
Zhang et al. [23] proposed an Inductive Graph-based Matrix
Completion (IGMC) model without using any side information
for recommender systems, and it was also applicable to the
data completion scene of sparse spatiotemporal data matrix
because of its inductive model.

C. Intra- and Inter-Data

With the wide application of big data in recent years,
researchers are increasingly exploring the use of intra-
and inter-data. Cui et al. [34] combined big data with
software-defined networking (SDN) and proposed SDN-based
intra- and inter-data-center networks with big data. In the next
several years, intra- and inter-data was applied in more and
more fields. Wang et al. [19] studied the inter-data correlations
in multi-task scenarios and carried out a significance test of
the Pearson correlation to find out which was the dominant
correlation. Liu et al. [35] designed a network structure
with multiple branches, where branches extract the intra-task
correlations for each task, respectively, and then catenated the
results from all branches to capture the inter-data correlations
among the multiple tasks. For the air quality and weather
prediction of practical applications, Han et al. [36] proposed
the Multi-adversarial spatiotemporal recurrent Graph Neural
Networks for jointing air quality and weather predictions.
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TABLE I

MAIN NOTATIONS

In the intra- and inter-data correlation field, existing work
usually ignored the impact of outlier values, especially outliers
of intra- and inter-data.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Our research is based on a common urban sensing scheme
that recruits mobile users to collect data from some target areas
for recovering outlier value data. In this subsection, we are
going to show the mathematical representation of the system
model we design. A large number of mathematical symbols
will be involved in this section and the following sections,
so we sort out some main notations in TABLE I.

Given a whole urban sensing area which is divided into n
subareas (grids), we aim at achieving the whole n subareas
with only ñ sensed grids (ñ � n) for each time slot. In order
to represent which grids are sensed in the i-th time slot,
we introduce the logical vector c(i) = [ci1, ci2, . . . , cin] ∈
{0, 1}n to denote which grids are sensed. If the subarea j has
been sensed, cij = 1, otherwise, cij = 0. The objective vector
y′(i) = [y′

i1, y
′
i2, . . . , y

′
in] ∈ R

n denotes the sparse sensed data.
The unsensed data are recorded as some meaningless values
(e.g., ∞). y(i) = [yi1, yi2, . . . , yin] ∈ R

n denotes the complete
data vector which includes both the sensed value data and the
unsensed value data.

After m time slots, we can combine vectors with the fol-
lowing matrices: C = [c(1)ᵀ, c(2)ᵀ, . . . , c(m)ᵀ]ᵀ ∈ {0, 1}m×n

denotes which grids are sensed for each time slot; sparse
matrix Y′ = [y′(1)ᵀ,y′(2)ᵀ, . . . ,y′(m)ᵀ]ᵀ ∈ R

m×n denotes
the whole sensed data of m time slots; complete matrix
Y = [y(1)ᵀ,y(2)ᵀ, . . . ,y(m)ᵀ]ᵀ ∈ R

m×n denotes the ground
truth of complete data. Then we introduce the relationship of
the three matrices as follows:

Y′ = Y ◦ C, (1)

where the symbol ◦ denotes the Hadamard product. Then,
we want to find a data inference function g(·) to infer the

unsensed data from Y′ and we can get the estimated complete
data matrix Ŷ:

Ŷ = g(Y′). (2)

Considering the influence of outlier values on the results
of matrix completion, it is necessary to define outlier values.
We can classify the data into left outliers (−1), right outliers
(+1) and normal values (0) according to the value of the data.
vij ∈ {−1, 0, 1} denotes the type of outlier values in the j-th
subarea of the i-th time slot. An outlier label matrix V can
be formed by vij and the calculation method of the matrix V
is as follows:

V = v(Y) = I(Y > �1) − I(Y < �2), (3)

where the large constant �1 and small constant �2 are thresh-
olds. I(·) denotes the indicator function. By solving each
element of matrix Y with Eq. (3), we can get the label matrix
V = v(Y). It is noted that the unsensed elements in the matrix
Y should be regarded as normal values with a high probability.

In addition to the objective dataset that we are committed to
complete, we also try to use several sparse auxiliary datasets.
(For enhancing the accuracy of data sensing and prediction,
it will be a better case if there are complete auxiliary datasets.)
To facilitate differentiation, the mathematical symbols Co, Yo,
Y′

o, Vo and V′
o denote the matrices about the objective dataset

and the mathematical symbols C(φ)
a , Y(φ)

a , Y′(φ)
a , V(φ)

a and
V′(φ)

a denote the matrices about the φ-th auxiliary dataset.
We can calculate the correlation coefficient ρ(φ) between the
objective matrix Y′

o and any auxiliary matrix Y′(φ)
a by the

following formulas:

ȳ′
o = Mean(Y′

o|So), (4)

ȳ′(φ)
a = Mean(Y′(φ)

a |S(φ)
a ), (5)

ρ(φ) =

∑
(i,j)∈S(φ)

oa
(y′

oij−ȳ′
o)(y

′(φ)
aij −ȳ

′(φ)
a )

√∑
(i,j)∈S(φ)

oa
(y′

oij−ȳ′
o)2

∑
(i,j)∈S(φ)

oa
(y′(φ)

aij −ȳ
′(φ)
a )2

,

(6)

where So � {(i, j)|coij = 1}, S(φ)
a � {(i, j)|c(φ)

aij = 1} and

the set S(φ)
oa � So ∩S(φ)

a . Mean(·|S) denotes the mean value
of some elements (corresponding the set S) of a matrix.

It is necessary to emphasize the following two notes. First,
all of these matrices must be with the shape of m × n
in order to enhance data sensing and prediction effectively.
In other words, in any auxiliary matrix or objective matrix, the
elements in any row i and any column j must correspond to
the same time slot and subarea. Second, it does not mean that
any dataset can be used as an auxiliary dataset. We require
that there is strong positive or negative correlation between
auxiliary dataset and objective dataset.

B. Problem Formulation

Problem [Sparse Spatiotemporal CrowdSensing via Intra-
and Inter-Data with Outlier Model]: Given a sparse objective
matrix Y′

o ∈ R
m×n and the corresponding label matrix

Co ∈ [0, 1]m×n, a set of sparse auxiliary matrices Y ′
a =

{Y′(1)
a ,Y′(2)

a , · · · ,Y′(Φ)
a } and a set of corresponding label
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Fig. 3. Framework overview.

Fig. 4. Mapping relationship between low-dimensional embedding vector
and high-dimensional complete vector.

matrices Ca = {C(1)
a ,C(2)

a , · · · ,C(Φ)
a }, we need to accom-

plish the following two tasks:
• Find a function g(·) to recover the complete matrix Ŷo

and make Ŷo = g(Y′
o,Co,Y ′

a, Ca) be established.
• Ensure that the unsensed outlier value data can be

detected and inferred correctly.

In this process, the following objective value obj should be
kept as small as possible:

obj = ||Ŷo − Yo|| + ||v(g(Y′
o,Co,Y ′

a, Ca)) − Vo||. (7)

In order to minimize the objective value obj, we should
first minimize the error of matrix completion and then focus
on outlier value data to correct outlier errors. As shown in
Fig. 3, it will be a two-step process.

IV. STACKED DEEP MATRIX FACTORIZATION WITH

OUTLIER VALUE LOSS FUNCTION

Inspired by Deep Matrix Factorization (DMF) [22],
we design a novel method of matrix completion based on
DMF. Given a sparse matrix Y ∈ R

m×n, DMF uses a
Deep Neural Network (DNN) to generate a complete matrix,
as shown in Fig. 4. We hope that the output vector of the neural
network is as close as possible to each column of the sparse
matrix Y′ ∈ R

m×n. Unlike traditional DNNs, we need to treat
the input vector z ∈ R

r of the DNN as the parameters of the
DNN for training. In addition, for the output layer, we only
focus on the values of sensed elements of the output vector
instead of all output elements.

The structure of our Stacked Deep Matrix Factorization
(SDMF) is shown in Fig. 5 and the algorithm pseudo code
is shown in Alg. 1. All of the input datasets can be divided
into two parts: the objective dataset and the auxiliary datasets.
The objective dataset is the task dataset and our goal is to
infer the missing data from the objective dataset. To represent
a more general case, we assume that all auxiliary datasets

Algorithm 1 Stacked Deep Matrix Factorization With Outlier
Value Loss Function
Input: Sparse objective matrix Y′

o, logical label matrix
Co, auxiliary matrix set Y ′

a = {Y′(1)
a , Y′(2)

a , · · · , Y′(Φ)
a },

logical label matrix set Ca = {C(1)
a ,C(2)

a , · · · ,C(Φ)
a }

Output: Completed objective matrix Ŷo

1: Calculate the correlation coefficient ρ(1), ρ(2), · · · , ρ(Φ)

between Y′
o and each element in Y ′

a, respectively, by Eqs.
(4), (5) and (6);

2: Randomly initialize Zo, Z(1)
a , Z(2)

a ,…, Z(Φ)
a , respectively;

3: Build the Neural Networks by using fo(·), f
(1)
a (·), f

(2)
a (·),

· · · , f
(Φ)
a (·);

4: Set count := 0;
5: while not convergent and count < MAX_ITER_1 do
6: for φ is from 1 to Φ do
7: Fix f

(φ)
a (·), Z(φ)

a ,
calculate Ŷ(φ)

a := f
(φ)
a (Z(φ)

a ),
and then calculate and reduce Lmix by Eq. (12);

8: end for
9: count := count + 1;

10: end while
11: Reset count := 0;
12: while not convergent and count < MAX_ITER_2 do
13: Fix fo(·), Zo,

calculate Ŷ(0)
o := fo(Zo),

and then calculate and reduce Lmix by Eq. (12);
14: for φ is from 1 to Φ do
15: Fix fo(·),

calculate Ŷ(φ)
o := fo(ρ(φ)Z(φ)

a ),
and then calculate and reduce Lmix by Eq. (12);

16: end for
17: count := count + 1;
18: end while
19: Set the weight coefficient θ(0) for the objective dataset,

and then calculate θ(1), θ(2), · · · , θ(φ), respectively, by Eq.
(8);

20: return Ŷo := θ(0)Ŷ(0)
o + θ(1)Ŷ(1)

o + · · · + θ(Φ)Ŷ(Φ)
o .

also have missing data. Unlike the objective dataset, there is
no requirement to infer missing data from auxiliary datasets.
Both the objective dataset and the auxiliary datasets can
be represented by the spatiotemporal matrix, which name
is objectvie matrix or auxiliary matrix. We first try to use
traditional DMF to complete each auxiliary matrix, but our
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Fig. 5. Structure of Stacked Deep Matrix Factorization.

goal is to get the embedded representation of the auxiliary
matrix rather than the matrix completion result. Based on
the assumption that there is strong correlation between the
objective dataset and each auxiliary datasets. The dimensions
of these embedding vectors must all be set as r, which equals
to the rank of objective matrix. For the sparse objective matrix,
we only input it into a traditional neural network to complete
it. It should be noted that while training this DMF, those
embedding vectors from the auxiliary matrix are also input
by multiplying the correlation coefficient. Whether we use the
objective matrix or the embedding vector from the auxiliary
matrix for training, we all hope that the output of this DMF
converges towards the direction of objective sensed value.

Through the above steps, we will get (Φ + 1) complete
matrices related to the objective dataset and auxiliary datasets.
The weighted sum of these matrices will be the output of
SDMF. The weight coefficient of the auxiliary dataset is
calculated as follows:

θ(φ) =
|ρ(φ)|(1 − θ(0))∑Φ

φ=1 |ρ(φ)| , (8)

where θ(0) ∈ (0, 1) is the weight coefficient for the objective
dataset and the value of θ(0) represents the weight of intra-
data. Then, we will get the output matrix of SDMF which is
completed and shown as follows:

Ŷo =
Φ∑

φ=0

θ(φ)Ŷ
(φ)

o . (9)

Then, it is necessary to introduce how to set the loss
function to generate outliers. We use the function f(·) to
represent the structure of the SDMF neural network. The loss
function of traditional DMF is a MSE loss function with two
regularization penalty terms and is shown in Eq. (10):

LMSE =
1

2mn
||(Y−f(Z))◦C||2 + λπ(f) + μ||Z||2, (10)

where π(f) and ||Z||2 represent the regularization penalty
terms of the deep neural network and input vector, respectively.
λ and μ are weight parameters.

However, considering the impact of outlier values, it is
necessary to add a penalty term to identify outlier value data
correctly. According to the probability distribution of outlier
value data, inspired by Extreme Value Loss (EVL) function for
extreme event prediction problem [24], we design our Outlier
Value Loss (OVL) function as follows:

LOVL = −
∑

(i,j)∈S
(1 − β(vij))(1 − p

(vij)
ij

γ
)γ log(p(vij)

ij ), (11)

where S � {(i, j)|cij = 1}, β(0), β(−1) and β(1) are the
proportion of normal values, left outlier values, and right
outlier values in the dataset, respectively. γ is the hyper-
parameter, which is the outlier value index in the approx-
imation. p

(0)
ij , p

(−1)
ij , and p

(1)
ij are calculated through Z by

a full connection layer neural network. The input of this
neural network is vector zj ∈ R

r and the output vector is
[p(0)

1j , p
(−1)
1j , p

(1)
1j , . . . , p

(0)
mj, p

(−1)
mj , p

(1)
mj ]

ᵀ ∈ R
3m.

From what has been discussed about loss functions, we may
easily conclude that we can not only reduce the matrix
completion error effectively but also identify the outlier values
correctly by combining the MSE and OVL loss functions.
So the mixed loss function we get is:

Lmix = ξLMSE + (1 − ξ)LOVL, (12)

where ξ represents the weight parameter. The influence of two
loss functions on the experimental results can be balanced by
adjusting the weight parameter ξ.

When applying SDMF, we can select different loss functions
according to different usage scenarios. For the convenience of
the following description, SDMF algorithm is abbreviated as
the following expression:

(Ŷo,Zo,Za) = SDMF (Y′
o,Y ′

a, loss), (13)

where loss denotes the loss function we choose (e.g. loss =
Lmix) and the embedding matrix set of auxiliary matrices is
Za = {Z(1)

a , · · · ,Z(Φ)
a }. Ŷo denotes the completed objective

matrix and Zo denotes the corresponding embedding matrix.
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The matrix Z(φ)
a denotes the embedding presentation of the

φ-th auxiliary matrix Y′(φ)
a .

V. OUTLIER VALUE MEMORY NETWORK FOR ENHANCING

OUTLIER INFERENCE

There is also diversity among outliers. The outliers that
are just exceeding the threshold are different from those far
exceeding the threshold. In order to memorize these outliers,
we propose to use a memory network, which has been proved
to be effective in recognizing inherent patterns contained in
sensed information. So far, we can design a whole model
named SDMF-OV model. The SDMF-OV model exploits
the SDMF algorithm with the mixed loss function and an
outlier value memory network which aims to remember and
identify the distribution characteristics of the outlier value
data. We combine the SDMF algorithm with the OVL function,
which can not only use SDMF to achieve high-precision matrix
completion, but also effectively reduce the influence of outlier
inference results.

The detailed SDMF-OV algorithm is introduced in the
following several paragraphs. In order to make it easier for
readers to understand, we provide a pseudo code flow table of
SDMF-OV in Alg. 2, and an example memory network figure
is also given in Fig. 6.

First, we define the concept of a window in our con-
text. In this paper, we will block or sample the data
matrix and label matrix according to a certain shape
m0 × n0. We divide the objective matrix Y′

o into objec-
tive sub-matrices Y′

o1,Y
′
o2, . . . ,Y

′
oK ∈ R

m0×n0 and divide
every auxiliary matrix Y′(φ)

a into auxiliary sub-matrices
Y′(φ)

a1 ,Y′(φ)
a2 , · · · ,Y′(φ)

aK ∈ R
m0×n0 , respectively. It is obvious

that K = � m
m0

�×� n
n0
�. Meanwhile, we also randomly sample

a sequence of windows by W′
o1,W

′
o2, . . . ,W

′
oL ∈ R

m0×n0

from the objective matrix Y′
o and W′(φ)

a1 ,W′(φ)
a2 , . . . ,W′(φ)

aL ∈
R

m0×n0 from every auxiliary matrix Y′(φ)
a by a same sample

form, where L is the length of the memory network we build.
Then, we propose applying the SDMF module with the

mixed loss function to complete each target sub-matrix and
each reference sub-matrix then build a memory network to
remember characteristics of outliers. Suppose we train an
SDMF neural network SDMF (·, ·,Lmix). We can easily get
the completed sub-matrices and the corresponding embed-
ding matrices: (Ŷok,Zok,Zak) = SDMF (Y′

ok,Y ′
ak,Lmix),

where Zak = {Z(1)
ak , · · · ,Z(Φ)

ak } denotes the embedding
matrix set of auxiliary matrices and k = 1, 2, · · · , K . Simi-
larly, (Ŵol,ZWol,ZWal) = SDMF (W′

ol,W ′
al,Lmix), where

ZWal = {Z(1)
Wal, · · · ,Z(Φ)

Wal} denotes the embedding matrix set
of auxiliary matrices and l = 1, 2, · · · , L.

After the processing of matrix completion, we will get
some parameters that can characterize the memory network
that we want to build. We require that these parame-
ters represent the characteristics of sensed data and rep-
resent the characteristics of outlier values. In order to
achieve these goals, we build the architecture of our mem-
ory network that mainly consists of the following two
modules:

Algorithm 2 Outlier Value Memory Network

Input: Sparse objective matrix Y′
o, logical label matrix

Co, auxiliary matrix set Y ′
a = {Y′(1)

a , Y′(2)
a , · · · , Y′(Φ)

a },
logical label matrix set Ca = {C(1)

a ,C(2)
a , · · · ,C(Φ)

a }, and
the shape of windows: (m0, n0)

Output: Ô
1: Divide the objective matrix Y′

o into K blocks each with
the shape of m0 ×n0: Y′

o1, Y′
o2, · · · , Y′

oK and sample L
blocks randomly each with the same shape as Y′

ok: W′
o1,

W′
o2, · · · , W′

oL from the objective matrix Y′
o.

2: for φ is from 1 to Φ do
3: Divide the φ-th sparse auxiliary matrix Y′(φ)

a into blocks
Y′(φ)

a1 ,Y′(φ)
a2 , · · · ,Y′(φ)

aK ∈ R
m0×n0 and sample blocks

W′(φ)
a1 ,W′(φ)

a2 , · · · ,W′(φ)
aL ∈ R

m0×n0 by the same sam-
ple form as W′

ol;
4: end for
5: Build and train the neural network SDMF (·, ·,Lmix)

by Alg. 1 and then calculate the output for objective
sub-matrices (Ŷok,Zok,Zak) = SDMF (Y′

ok,Y ′
ak,Lmix)

for each k in {1, 2, · · · , K} and (Ŵol,ZWol,ZWal) =
SDMF (W′

ol,W ′
al,Lmix) for each l in {1, 2, · · · , L};

6: Calculate the correlation coefficient ρ(1), ρ(2), · · · , ρ(Φ)

between Y′
o and each element in Y ′

a, respectively, by Eqs.
(4), (5) and (6);

7: for k is from 1 to K do
8: for l is from 1 to L do
9: Calculate αk−l0 by Eq. (14);

10: for φ is from 1 to Φ do
11: Calculate αk−lφ by Eq. (15);
12: end for
13: end for
14: for l is from 1 to L do
15: for φ is from 1 to Φ do
16: Calculate ωk−lφ by Eq. (16);
17: end for
18: end for
19: Calculate Ô(k) = Ŷok + bU(k);
20: end for
21: return Ô = Splice(Ô(1), Ô(2), . . . , Ô(K)).

• Embedding Module
ZWol ∈ R

r×n0 and ZWal = {Z(1)
Wal, · · · ,Z(Φ)

Wal} are the
latent representations of window l.

• Label Matrix Module
VWol = v(W′

ol) ∈ R
m0×n0 and the outlier label

matrix set VWal = {V(1)
Wal, · · · ,V(Φ)

Wal}, which V(φ)
Wal =

v(W′(φ)
al ), are the outlier label matrices of window l from

the φ-th auxiliary dataset.

At each sub-matrix k, we use SDMF to complete the matrix
with (Ŷok,Zok,Zak) = SDMF (Y′

ok,Y ′
ak). Thus, Zok could

be regarded as a potential representation of Ŷok . As we have
discussed, Ŷok may lack the ability to detect outlier values in
the future. Therefore, we also require our model to retrospect
its memory to check whether there is a similarity between
the target value and outlier value in the sensed data. Hence,
we propose to employ an attention mechanism in our model.
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Fig. 6. Spatiotemporal memory network for outliers.

In order to measure the similarity between the target matrix
and the reference matrix by cosine similarity, we utilize the
matrix vector operator vec(·) to convert a matrix into a vector.
We abbreviate vec(Zok) as vector −→z ok, abbreviate vec(ZWol)
as vector −→z Wol and abbreviate vec(Z(φ)

Wal) as vector −→z (φ)
Wal.

Then we can easily use cosine similarity to measure the
similarity between the k-th target matrix and the l-th reference
matrix from the φ-th auxiliary dataset or objective dataset self
(φ = 0). The mathematical expression of the cosine similarity
αk−lφ between −→z ok and −→z Wol or −→z (φ)

Wal can be expressed as
the following Eqs. (14) and (15):

αk−l0 =
−→z ᵀ

ok
−→z Wol

||−→z ok|| · ||−→z Wol|| , (14)

αk−lφ =
−→z ᵀ

okρ(φ)−→z (φ)
Wal

||−→z ok|| · ||ρ(φ)−→z (φ)
Wal||

, (15)

where || · || denotes the L2 vector norm. αk−lφ only represents
the similarity between the k-th target matrix and the l-th
reference matrix from the φ-th auxiliary dataset or objective
dataset self (φ = 0). In fact, we hope that the k-th target
matrix can be compared to every reference matrix, and the
comparison results can be scored in the range of [−1, 1].
Therefore, we use a softmax function to realize the weighted
average. So ωk−lφ, the new similarity between the k-th target
matrix and the l-th reference matrix from the φ-th auxiliary
dataset or objective dataset self (φ = 0), can be calculated as
the following equation:

ωk−lφ =
exp(αk−lφ)∑L

l=1

∑Φ
φ=0 exp(αk−lφ)

. (16)

A large value of ωk−lφ means that the k-th target matrix
is more similar to the l-th reference matrix from the φ-th
auxiliary dataset or objective dataset self (φ = 0). Therefore,
we can use the linear combination of label matrices VWol,
V(1)

Wal, · · · , V(Φ)
Wal as the k-th score matrix U(k) corresponding

to the k-th target matrix Y′
ok and ωk−lφ (l = 1, 2, · · · , L and

φ = 0, 1, · · · , Φ) can be set as weight factors of the summation
operation, i.e.,

U(k) = θ(0)
L∑

l=1

ωk−l0VWol +
Φ∑

φ=1

θ(φ)
L∑

l=1

ωk−lφVWal. (17)

Unlike the label matrix VWol, V(1)
Wal, · · · , V(Φ)

Wal, the ele-
ments of the score matrix U(k) with the size of m0 × n0 are
in the range of [−1, 1], i.e., U(k) ∈ [−1, 1]m0×n0 . U(k)

impresses the probability that there will be an outlier value
or a normal value. If the value of an element in the score
matrix is negative, then the position may correspond to a left
outlier value. On the contrary, a positive element value may
correspond to a right outlier value. We use absolute values to
measure the probability and the sign (positive or negative) to
indicate the classification (right or left outlier value) of outlier
points.

The previous matrix completion algorithm based on DNN
is usually acceptable for normal value, but not for outlier
value. Take the right outlier value as an example: the value
recovered by previous methods is usually smaller than the
ground truth value. If we can judge which unsensed data are
outlier value data and compensate them in different degrees,
the data inference error of outlier value will be reduced.
In fact, we achieve this goal by calculating the matrix U(k).
By compensating the matrix Ŷok, we can get a better matrix
completion result. The compensation result of the k-th target
matrix is as shown in Eq. (18):

Ô(k) = Ŷok + bU(k), (18)

where b ∈ R+ is the scale parameter and named compensation
factor. The value b is determined by that sensed outliers.

Intuitively, the main advantage of our model is that it
enables a flexible switch between yielding predictions of
normal values and outlier values.

Similarly, by processing K target matrices, we can splice
all the K matrices and get the complete matrix of optimized
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TABLE II

STATISTICS OF TWO EVALUATION DATASETS

recovery outlier value data as shown in Fig. 6 and Eq. (19):

Ô = Splice(Ô(1), Ô(2), . . . , Ô(K)). (19)

Finally, since values of sensed data are known, it is nec-
essary to fix these values to sensed value instead of inferred
value. The corrected output is:

Ôfix = Y′
o ◦ C + Ô ◦ (1− C), (20)

where bool matrix 1 is with all True elements.
From what has been discussed above, we may safely claim

that we can recover the unsensed data by our proposed method.
With its seemingly magic power, it can not only recover
normal value data, but also serve as an important role in
recovering outliers.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the datasets and the
baselines. Then we present performance evaluation results
for our proposed method. In particular, the most important
research questions are:

• RQ1: How does we set or select the hyper-parameters
for SDMF-OV?

• RQ2: Does SDMF-OV really work for outliers effec-
tively, especially compared with traditional DMF?

• RQ3: Does SDMF-OV improve the accuracy of matrix
completion and prediction?

• RQ4: Is each submodule of SDMF-OV necessary for
enhancing performance?

• RQ5: What is the training cost of SDMF-OV?

A. Datasets and Settings

For evaluating our proposed outlier value data inference
problem, we applied two famous and popular urban crowd-
sensing datasets, including Sensor-Scope [37] and U-Air [38].
Sensor-Scope contained various typical sensing data of urban
environment, such as humidity, temperature, etc. U-Air col-
lected the sensing readings from an urban air quality monitor-
ing systems. We provide a detailed description of these two
datasets in TABLE II and more detailed information of these
two datasets is shown as follows:

• The Sensor-Scope [37] dataset contained various typical
sensing data of urban environmental from the readings of
static sensors deployed in the campus of École Polytech-
nique Fédérale de Lausanne (EPFL). We only selected
the representative temperature data for testing our outlier
value data inference problem although there were also

other type data such as humidity. In order to facilitate
the statistical data of different subareas, the EPFL campus
with the size of about 300m×500m was divided into 10×
10 grids, each with the size of 30m×50m. After a simple
data preprocessing, we finally obtained 57 subareas with
continual sensing data readings.

• The U-Air [38] dataset contained various typical signif-
icant data about air quality, such as PM10 and PM2.5,
by monitor stations deployed in Beijing City, China.
Since there was a similar tendency from the different
type data about air quality, we selected one of the most
important PM2.5 value to evaluate our outlier value data
inference problem. Similar to [38], we finally obtained
36 subareas, each with the size of 1km × 1km from the
U-Air dataset, and thus we worked these urban sensing
data for our evaluations.

Note that although these two datasets were collected by
static sensors, we can also obtain the same sensing data from
mobile devices or even a human self. Moreover, these two
selected sensing tasks, including temperature and PM2.5 were
typical urban crowdsensing tasks and also in need of outlier
value data inference. Therefore, we use these datasets in our
evaluations to show the effectiveness and the improvement
of our proposed urban crowdsensing problem by different
methods.

B. Baselines and Measures

In order to effectively utilize the sparse sensed data to infer
outlier value data, we present the matrix completion algorithm
referred as SDMF-OV. We mainly compare our method with
the following matrix completion algorithms:

• KNN (K-Nearest Neighbor) [39], which selects the top-
K nearest sensed time slots and calculates the average
value. KNN is a linear data inference method.

• GP (Gaussian Process) [40], [41], which assumes that the
spatial distribution of data in the same time slot obeys the
Gaussian distribution. Unlike the KNN algorithm we have
introduced, GP algorithm is a non-linear data inference
algorithm.

• KDE (Kernel Density Estimation) [42], which is a non-
parametric test method that is used to estimate the
unknown probability density function. Compared with
GP, the probability density constructed by KDE is more
in line with the actual data distribution.

• DMF (Deep Matrix Factorization) [22], which is a deep
neural network based on matrix full rank factorization,
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TABLE III

COMPARISON OF DIFFERENT DATA INFERENCE METHODS

is a popular matrix completion algorithm. Data from
different subareas are still inferred one by one. However,
unlike KNN, GP and KDE, when we infer a subarea’s
data, we also use the characteristics of the data from other
subareas.

• IGMC (Inductive Graph-based Matrix Completion) [23],
which is an inductive matrix completion method based
on Graph Neural Networks without side information for
recommender systems and is applicable to the comple-
tion of sparse spatiotemporal data matrix because of its
inductive model.

• DMF-OV (Deep Matrix Factorization with exploiting
Outlier Values) [1], which is a matrix completion
method that takes outlier value effects into consideration.
It should be noted that DMF-OV does not add the use of
inter-data to the model framework.

Then, we will introduce how these baselines are applied
for the two sensing tasks. For KNN, GP, and KDE, we focus
on one subarea j. If there is no sensed data in the i-th time
slot, KNN will collect sensed data for k time slots closest
to time slot i. Then we calculate the average value of these
k time slots as the estimated value of KNN for time slot i.
If there are m̃ time slots of sensed data, GP and KDE will
build a Gaussian distribution and generate a kernel density,
respectively. The mean value of the Gaussian distribution is
set to be the statistical mean of this m̃ sensed data, and the
Gaussian distribution’s variance value is set to be the statistical
variance of this m̃ sensed data. Then, GP generates a series of
random values that obey the Gaussian distribution we built as
the estimated value of the unsensed data of the subarea j. For
DMF and IGMC, we transform the unsensed data inference
problem into a sparse matrix completion problem. For a sparse
matrix Y′ ∈ R

m×n, the DMF method divides the matrix Y′

into n sparse column vectors y′(1),y′(2), · · · ,y′(n) ∈ R
m.

It means we have a dataset of a deep neural network whose
batch size equals n. In addition, IGMC algorithm uses the cur-
rently popular GNN method to implement matrix completion
instead of traditional DNN structure. It’s easy to see that there
are complex relationships and various characteristics among
these baselines. Therefore, we summarize the relationships and
characteristics between these methods in TABLE III.

In this paper, we use two famous urban sensing datasets
with two representative types of urban crowdsensing tasks
(Sparse spatiotemporal matrix completion for Temperature and

Fig. 7. Inference accuracy and normal value percentage under different
thresholds over Sensor-Scope.

Fig. 8. Inference accuracy and normal value percentage under different
thresholds over U-Air.

PM2.5.) For qualitative analysis, we compare our method
(SDMF-OV) with traditional DMF method to verify whether
our method improves the completion of outliers. We first test
the effect of four hyper-parameters on the model and select the
best values. For quantitative analysis, compared to KNN, GP,
KDE, IGMC, etc., we verify SDMF-OV can not only improve
the completion accuracy of the sparse spatiotemporal matrix,
but also enhance performance of outlier classification. What’s
more, we also prove that each submodule of SDMF-OV is
necessary by ablation Experiments. In this section, unless
otherwise specified, the error we mention means Rooted Mean
Square Error (RMSE).

C. Impact of Hyper-Parameters (RQ1)

1) Outlier Value Threshold: First, we test the influence
of outlier value thresholds in our SDMF-OV model, where
the results are shown in Figs. 7(a) and 8(a). In this paper,
the right outlier value threshold �1 (“Right threshold” in
Figs. 7(a) and 8(a) and the left outlier value threshold �2
(“Left threshold” in Figs. 7(a) and 8(a) are the most important
two hyper-parameters. The setting of the right and left thresh-
old has a great influence on the performance of the model.
We infer that, a large right outlier value threshold or a small
left outlier value threshold will cause more values to be classi-
fied as normal values, which in turn reduces the effectiveness
of our method. On the contrary, a small right outlier value
threshold or a too large left outlier value threshold will cause
some normal values to be classified as outlier values, which
will interfere with the model’s extraction of outlier values.
In other words, the frequency and range of outlier data affect
the quality of the experimental results. Therefore, the selection
of appropriate thresholds has a great impact on the effect of the
SDMF-OV model. Empirically, we usually choose the values
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Fig. 9. Inference accuracy under different rank over Sensor-Scope and U-Air.

of Mean ± Std or Mean ± 2 × Std to set the initial values
of these two thresholds.

As shown in Figs. 7-8, we keep the sensed ratio at a constant
50% and use our proposed SDMF-OV method to recover
the complete matrix. By setting different thresholds, we get
different matrix completion errors. In this way, we not only
test the influence of hyper-parameters �1 and �2 on the matrix
completion error, but also find the best right outlier value
threshold �1 and left outlier value threshold �2 that minimize
the matrix completion error. Therefore, when SDMF-OV algo-
rithm is applied to other scenarios, we should set a reasonable
outlier value threshold according to the data distribution firstly,
so as to make the best effect.

What’s more, we also tested the percentage of nor-
mal value under different outlier thresholds, as shown in
Figs. 7(b) and 8(b). We not only show the distributions of
the normal value percentage, but more importantly, we find
that when the outlier thresholds are set as the optimal solu-
tion, the corresponding normal value percentage is close to
95%. For example, the optimal setting of temperature task is
�1 = 7.8 and �2 = 4.2, and the corresponding normal value
percentage is just 95.19%. This is consistent with the results
of our theoretical analysis.

2) Rank of the Matrix: Second, we test the effect of the
rank’s value on the results of matrix completion. We sample
50% of the data in each cycle of the two tasks for testing.
In order to compare the error variation rules under different
tasks more clearly, we represent six test results in the same
coordinate system. As shown in Fig. 9, the errors of the two
tasks are in an inverse ratio with the increasing rank. And in
each task, the speed of error decline shows a trend of rapid
decline first and then slow decline. A larger rank makes the
structure of the neural network more complicated, and thus can
obtain more information, but it also brings a longer running
time. In order to balance the running time and the matrix
completion error, we set r = 10 in subsequent experiments.

3) Compensation Factor: Third, we test the effect of the
compensation factor b on the results of matrix completion.
The compensation factor b determines the correction degree
of outliers. If the value of the compensation factor b is too
small, it will lead to insufficient correction, and if the value of
the compensation factor b is too large, it will lead to excessive
correction. Both cases will lead to the reduction of matrix
completion accuracy. We tested the effect of the compensation
factor b in both two urban sensing tasks. The result can be

Fig. 10. Inference accuracy under different compensation factor over Sensor-
Scope and U-Air.

Fig. 11. Inference accuracy under different weight coefficient over Sensor-
Scope and U-Air.

found in Fig. 10. Indeed, the curve image of the compensation
factor b is a concave function in every task. We will select the
value of b which minimizes the matrix completion error for the
next series of tests (b = 0.35 for the dataset of Sensor-Scope
and b = 12 for the dataset of U-Air).

4) Weight Coefficient: Compared with previous methods,
one of the advantages of our SMDF-OV is the use of both
intra- and inter- data for sparse data completion. However, the
use of auxiliary datasets is not always “the more the better”.
Excessive use of auxiliary datasets will result in the less use
of objective dataset information, which is not conducive to
high-precision matrix completion. Therefore, we try to find
the most suitable weight coefficient θ(0) in order to achieve
the best auxiliary effect. We set the weight coefficient θ(0)

from 0.1 to 0.9 and then calculate the RMSE value. The
experimental results are shown in Fig. 11. We found the
best weight coefficient setting scheme from the experimental
results: θ(0) = 0.8 for Sensor-Scope and θ(0) = 0.7 for U-Air.
It indicates that the auxiliary function of auxiliary datasets is
limited but promotive.

5) Parameter Setting Summary: From what has been tested
above, we summarily provide the parameter setting of the
experiment, as shown in TABLE IV. Although we did not
provide the setting process of all parameters in the previous
words, we provide a more complete list in TABLE IV. Readers
can reproduce our experimental results for Sensor-Scope and
U-Air by referring to our parameter settings. It should be noted
that for more datasets, it may be necessary to reset different
parameters to get better performance.

D. Complementary Effects of Outlier Values (RQ2)

1) Time Series Analysis: We first qualitatively verify that
our method can effectively deal with outliers. We randomly

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on August 11,2023 at 09:25:27 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: OUTLIER-CONCERNED DATA COMPLETION EXPLOITING INTRA- AND INTER-DATA CORRELATIONS 659

TABLE IV

PARAMETER SETTINGS

Fig. 12. Complementary effects of outlier values over Sensor-Scope.

Fig. 13. Complementary effects of outlier values over U-Air.

extract 50% of the data from the two tasks, and then use
DMF and SDMF-OV algorithms to complete the matrix,
respectively. To show the experimental results, we randomly
select a column from the matrix completion results of each
dataset, and provide the ground truth of the original data
simultaneously. As shown in Figs. 12 and 13, we find that
SDMF-OV can recover data effectively, especially the outliers
compared with the traditional DMF. Among all the two exper-
imental results, the most obvious effect is the task over U-Air
and the experimental result is shown in Fig. 13. As shown
in Fig. 13, it is easy to find that the traditional DMF can not
recover the values greater than 300 between the 100th time slot
and the 150th time slot. However, when we use SDMF-OV to
complete the data again, the values greater than 300 can be
recovered at a lower error.

2) Outlier Error Analysis: Through the data inference
results of DMF and SDMF-OV algorithm, we notice a phe-
nomenon that SDMF-OV can improve the data inference effect
of not only normal value data, but also outlier value data. This
is because our SDMF-OV method has such a characteristic
that SDMF-OV also judges a normal value as an outlier value
with a small probability. In the other words, SDMF-OV fixes
all data instead of only outlier value data. Therefore, we also
calculate the completion errors of that column by DMF and
SDMF-OV, the results of which are shown in TABLE V. It is
obvious that the error of SDMF-OV is less than that of DMF,
especially when considering the effect of outlier value data.
The above experiments show that our proposed SDMF-OV

TABLE V

RMSE OF OUTLIER VALUES OVER BOTH TWO TASKS

Fig. 14. Several classical classification effect evaluation indexes over Sensor-
Scope.

Fig. 15. Several classical classification effect evaluation indexes over U-air.

algorithm can deal with outlier value problems and increase
the accuracy of matrix completion.

3) Outlier Classification Analysis: Through the analysis of
the theoretical parts, SDMF-OV has advantages in inferring
outliers and the most important reason is that we effectively
classify the outliers and normal values. So, for the inference
of real data, does SDMF-OV really improve the classification
level? In order to verify this view, we calculated the classi-
fication of inference results by using DMF and SDMF-OV,
respectively. Due to the great difference between the number
of outliers and normal value in our data set, we don’t choose
accuracy to measure our classification results. We calculated
three classical evaluation indexes of classification results: pre-
cision score, recall score, and F1 score. As shown in Figs. 14
and 15, when the data inference method is converted from
DMF to SDMF-OV, the precision score of normal value and
the recall score of outlier values are improved at the same time.
This means that the number of outliers incorrectly classified as
normal value is decreasing, and the data classified as normal
value does have more normal values. This is consistent with
our original intention to solve the outlier problem.

E. Matrix Completion and Short-Term Prediction (RQ3)

We start to test the robustness of sensed ratio on the
sparse matrix completion for the SDMF-OV algorithm. In each
urban sensing task, we randomly select 50%-90% of the
data in the spatiotemporal data matrix as unsensed data,
and the remaining unextracted data is regarded as sensed
data. We use different matrix completion methods to infer
the unsensed data and calculate the matrix completion error.
The experimental results are shown in Fig. 16 (upper part).
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TABLE VI

INFERENCE ACCURACY UNDER DIFFERENT SENSED RATIOS OVER Sensor-Scope

Fig. 16. Inference and prediction accuracy under different sensed ratios over
Sensor-Scope and U-Air.

We can see that no matter which matrix completion algorithm
is used for unsensed data inference, the matrix completion
error will decrease with the sensed ratio increases. This is
because the effect of data inference is related to the amount
of sensed data. Simultaneously, it can also be seen that the
matrix completion error of SDMF-OV method is lower than
other comparison methods, especially when the data is sparse.
SDMF-OV inherits the advantage of traditional deep learning
methods in matrix completion, and focuses on handling outlier
values, so the accuracy of matrix completion will be improved
by SDMF-OV.

The matrix completion error shows that the result of data
inference is very close to the real data. However, the smaller
matrix completion error does not necessarily mean that the
model can better fit the data’s spatiotemporal characteristics.
Considering that the accuracy of time series prediction is
closely related to the spatiotemporal characteristics of histor-
ical data, we use the matrix completion results of SDMF-OV
and other comparison methods to predict the next time slot by
Gated Recurrent Unit (GRU) [43]. The experimental results
of next time slot prediction are shown in Fig. 16 (lower part).
We can find that the prediction error of SDMF-OV is also
lower than other comparison methods, which indicates that
SDMF-OV not only optimizes the outlier value inference, but
also extracts spatiotemporal features effectively. Similarly, the
increase in the sensed ratio is also helpful in improving the
prediction accuracy. This means that the more mobile users we
recruit, the better urban crowdsensing services we can provide.
Obviously, the experimental result is consistent with both our
intuitive inferences and theoretical analysis results.

At the end of this experiment, we will discuss the
differences among different matrix completion methods.
From the results of matrix completion and short-term
prediction, we can find that KNN, GP, and KDE algorithms
have low accuracy of matrix completion and prediction. KNN,
GP, and KDE only use simple statistics instead of exploring
particularly complex spatiotemporal relationships. It may get
better results in some cases, but it is not a general method. The
matrix completion accuracy of IGMC is higher than KNN,
GP, and KDE and close to SDMF-OV. But the prediction
accuracy of IGMC is obviously lower than SDMF-OV.
This is because IGMC is mostly used in recommendation
systems, and the effect of capturing time series correlation
is poorer. Because KNN, GP, KDE, and IGMC do not
consider the influence of outliers, the data inference error
in some locations may be large, which leads to the final
matrix completion effect not being as good as SDMF-OV.
On the other hand, as the sensed ratio increases, the outlier
value data in unsensed data decreases, and the advantage of
SDMF-OV algorithm may be weakened in many tasks.

F. Ablation Experiments (RQ4)

Compared with the previous data inference methods, the
structure of SDMF-OV is very complex. Without considering
some subtle processing, the utilization of multiple datasets
and the construction of outlier memory network bring a huge
amount of computation. So, is each sub module necessary? If
the addition and removal of a module have little impact on
the results of data inference, it seems that this module is not
necessary. In order to verify the necessity of each sub module,
we conducted ablation experiments. We use DMF, DMF-OV
and SDMF to verify the necessity of multiple datasets and
outlier memory network. DMF is the most original matrix
completion method, which uses a single dataset and does
not focus on outliers. SDMF is added a multiple dataset
module and DMF-OV is added a outlier memory network
based on DMF, respectively. Except that we tested more
sensed ratios (10%-90%), we conducted the same experiment
as Subsection VI-E. The experimental results are shown in
TABLE VI - TABLE IX, respectively. We find that the
advantages of SDMF-OV become more obvious as the sensed
ratio decreases.

Through the experimental results, we found that SDMF-OV
is the smallest in both completion error and prediction error.
This means that each sub module of SDMF-OV is indispens-
able. Although SDMF-OV is so complex, it is necessary to
increase the amount of calculation in order to obtain higher
completion and prediction accuracy. In addition, we also
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TABLE VII

PREDICTION ACCURACY UNDER DIFFERENT SENSED RATIOS OVER Sensor-Scope

TABLE VIII

INFERENCE ACCURACY UNDER DIFFERENT SENSED RATIOS OVER U-Air

TABLE IX

PREDICTION ACCURACY UNDER DIFFERENT SENSED RATIOS OVER U-Air

found that the outlier memory network seems to play a more
important role than multi dataset module because the error of
DMF-OV is less than SDMF.

G. Training Cost (RQ5)

1) Data Scale Requirements: In previous several para-
graphs, we tested the performance of SDMF-OV in data
inference accuracy. However, the data scale required to train
an SDMF-OV model is still an important technical index.
Therefore, in this part, we start with only one time slot and
gradually increase the amount of data and then calculate the
data inference error. It is very difficult to train the model due to
very few time slots. Therefore, we test at least 10 time slots.
According to the experimental results in Fig. 17, we found
that the data inference error decreases with the increase of
data scale in both two crowdsensing tasks. What’s more, while
the data scale increases to a certain extent, the fluctuation of
data inference error will tend to be stable. For the temperature
task of Sensor-Scope dataset, at least about 100 time slots are
required to make the model perform best. When we focus on
the PM2.5 task of U-Air dataset, This number will change to
about 70. It means that our model does not need too many
training samples to work. In other words, our SDMF-OV is
easier to apply in actual MCS tasks.

2) Training Time: Finally, we test the methods proposed in
this paper in terms of training time, as shown in TABLE X.
Our experiment platform is equipped with Intel(R) Core(TM)
i5-7300HQ CPU @ 2.50GHz and 8 GB RAM, and we
implement the sparse spatiotemporal crowdsensing scheme
using Python 3 programming language with a popular toolkit

Fig. 17. Inference accuracy under different input time slots over Sensor-
Scope and U-Air.

TABLE X

TRAINING TIME OVER Sensor-Scope AND U-Air

PyTorch. For the temperature task of Sensor-Scope dataset,
the SDMF-OV costs 56.372s to recover a complete matrix for
all sensing time slots and the SDMF-OV costs 48.263s for
the PM2.5 task of U-Air dataset. The size of the dataset used
in our experiment is dozens of subareas and hundreds of time
slots. Therefore, the training time of SMDF-OV on two classic
tasks is less than 1 minute. But in most practical application
cases, with the increase of data set size, it may take longer
than the experiment in this paper.

VII. CONCLUSION

In this paper, we investigate the problem of MCS via
spatiotemporal data matrix completion with unsensed outlier
value data recovery. Specifically, we use sensed data of sparse
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spatiotemporal matrix to infer unsensed normal and outlier
values. In order to solve this problem, we propose a data
completion method named SDMF-OV, which is based on DMF
with an outlier value model. Specifically, we first conduct an
intra- and inter-data-based matrix completion network named
Stacked Deep Matrix Factorization (SDMF). The loss function
of SDMF is no longer the previous MSE loss function, but
replaced by an Outlier Value Loss (OVL) function that can
effectively deal with outliers. Then, a spatiotemporal outlier
value memory network is added for enhancing the outlier
inference. Experiments on two popular urban sensing datasets
show that the proposed SDMF-OV method can complete the
sparse matrix with a high accuracy and recover outlier value
data effectively.
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