
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Multi-Agent Reinforcement Learning Based File
Caching Strategy in Mobile Edge Computing

Yongjian Yang, Kaihao Lou, En Wang∗, Wenbin Liu, Jianwen Shang, Xueting Song, Dawei Li, and
Jie Wu, IEEE Fellow

Abstract—Mobile edge computing (MEC) reduces data service
latency by pushing data to the network edge. However, due to
the dynamic and diverse requests of mobile users, the problem
of mobile edge caching is more complex than cloud caching.
Therefore, the existing model-based caching strategies cannot
be directly used in the mobile edge caching environment. Be-
sides, when taking the cooperative storage relationship between
neighbor edge servers into consideration, the caching problem
becomes more difficult. To this end, we formulate an mobile
edge caching problem to minimize the total latency in mobile
edge computing. Firstly, a heuristic caching strategy is proposed
to solve the mobile edge caching problem in the single-time-
slot scenario. Then, with the consideration of users’ mobility
and the correlation of files, we propose a caching strategy
for the multiple-time-slot scenario based on multi-agent deep
reinforcement learning. To address the cold start problem in deep
reinforcement learning, we adopt the proposed heuristic caching
strategy used in the single-time-slot scenario to further optimize
the training results. Extensive experiments on generated data and
real-world datasets are conducted to verify that the proposed edge
caching strategies can achieve the minimum latency compared
with the state-of-the-art strategies.

Index Terms—mobile edge computing, file caching strategy,
multi-agent deep reinforcement learning

I. INTRODUCTION

MOBILE Edge Computing (MEC) [1] is a novel network
architecture that provides computing service at the

edge of the mobile network. MEC empowers Mobile Cloud
Computing (MCC) by deploying cloud resources, e.g., storage
and processing capacity, to the edge within the Radio Access
Network (RAN) [2], [3]. In most cases, the edge server needs
to provide the corresponding data or files to users according
to their requests. However, due to the limited storage capacity

Manuscript resubmitted January 19, 2022; revised February 22, 2023;
accepted April 24, 2023. This work is supported in part by National
Key R&D Program of China under Grant Nos. 2022YFB3103700 and
2022YFB3103702, in part by National Natural Science Foundation of China
under Grant Nos. 62272193, 62102161, 62072209 and 61972450, in part
by CCF-Baidu Open Fund (No. 2021PP15002000), in part by the National
Science Foundation (NSF) under Grant CNS 1824440, Grant CNS 1828363,
Grant CNS 1757533, Grant CNS 1629746, Grant CNS 1651947, and Grant
CNS 1564128, and in part by the Open Project Program of Engineering Re-
search Center of Ecological Big Data, Ministry of Education. (∗Corresponding
author: En Wang.)

Yongjian Yang, Kaihao Lou, En Wang, Wenbin Liu, Jianwen Shang and
Xueting Song are with Department of Computer Science and Technology,
Jilin University, Changchun, Jilin, 130012, China. (e-mail: yyj@jlu.edu.cn;
loukh20@mails.jlu.edu.cn; wangen@jlu.edu.cn; shangjw20@mails.jlu.edu.cn;
songxt20@mails.jlu.edu.cn).

Dawei Li is with the Department of Computer Science, Montclair State Uni-
versity, Montclair, USA. (e-mail: dawei.li@montclair.edu).

Jie Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, USA.

𝒆𝟐𝒆𝟏

𝑪𝒍𝒐𝒖𝒅

𝒖𝟏 𝒖2

Which files to cache
with its limited
storage to reduce the
total latency of all
users? 𝒆𝟐𝒆𝟏

𝒖𝟏𝒖2

𝑪𝒍𝒐𝒖𝒅

𝑡1timeline 𝑡0

𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑐𝑙𝑜𝑢𝑑
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑒𝑑𝑔𝑒
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 _𝑙𝑜𝑐𝑎𝑙𝑒𝑑𝑔𝑒
user′s trace at 𝑡1

Fig. 1: An example of the mobile edge caching problem.

of the edge servers, users’ requests cannot be well satisfied,
which raises the fundamental edge caching problem in MEC
[4].

To provide the edge caching service, the network service
providers usually set up the cloud servers in several locations
to serve users in a large area, thus the cloud servers are farther
away from users in the physical world than the edge servers.
Therefore, under the same network conditions (bandwidth and
routing), the latency of obtaining files from the cloud server is
usually much greater than that of the edge servers. In order to
minimize the latency of obtaining files, users should obtain
files from the edge server as much as possible. A simple
example of the mobile edge caching problem is shown in Fig.
1, it is necessary to design an effiective caching strategy for
the edge servers to make efficient use of the limited storage
capacity in order to reduce the latency of obtaining files.
Some existing works either propose prediction models based
on historical patterns [5] and social patterns [6], [7] to predict
the popularity of content, or rely on models assuming that the
popularity of content is known [8], [9], which are not adaptive
enough to the highly dynamic and heterogeneous environment
in mobile edge caching.

There are three main challenges in the above edge caching
problem, the first one is how to propose a reasonable caching
strategy in the single-time-slot scenario based on users’ current
requests. To deal with the problem, we assume that the
requests of users are known at the beginning of the time slot.
By considering the impact of the files cached in different edge
servers on the total latency, we can estimate the utility of each
file. Thus, we propose a heuristic caching strategy with an ap-
proximation ratio. The second challenge is how to quantify the
impact of cached files in different time slots, users’ mobility
and the correlation of files, then propose a caching strategy
in the multiple-time-slot scenario. In the multiple-time-slot

IEEE/ACM TRANSACTIONS ON NETWORKING 2

scenario, we explore deep reinforcement learning [10], [11]
in order to deal with the edge caching problem, where the
users’ requests are dynamic and diverse. However, traditional
deep reinforcement learning usually uses a centralized learning
agent, which is not suitable for solving the edge caching prob-
lem, because a large number of distributed edge servers will
generate an explosive action space. Hence, we further explore
multi-agent deep reinforcement learning [12], [13], where each
edge server can be regarded as an agent and can cooperate
with its neighbor servers to provide caching services. Further
considering users’ mobility and the correlation of files, we
propose an improved multi-agent deep reinforcement learning,
which uses predicted results as the observation including the
predicted users’ mobility and the correlation among different
files. However, reinforcement learning usually faces a cold
start problem, because of which the algorithm often fails to
achieve good training results and each agent cannot determine
an effective caching strategy. Therefore, the third challenge
of the mobile edge caching problem is how to optimize the
performance of the proposed caching strategy in the cold start
phase. To deal with the cold start problem, we use the proposed
heuristic caching strategy in the single-time-slot scenario to
optimize the training results i.e., each agent uses the heuristic
caching strategy to determine its own action and collects the
feedback from the environment to train its neural networks.
After the cold start phase, each agent uses its neural networks
to determine its own action for subsequent training.

The main contributions of this paper are summarized as
follows:
• For the NP-hard mobile edge caching problem, we first

propose a heuristic caching strategy in a single-time-slot
scenario and prove the strict tight approximation ratio.
This heuristic caching strategy is also used in the cold
start phase of the next multiple-time-slot scenario.

• For the multiple-time-slot scenario, we propose a caching
strategy based on the improved multi-agent deep re-
inforcement learning, which is embedded with users’
mobility and the correlation of files.

• We conduct extensive simulations based on generated
data and three real-world datasets: roma/taxi [14], epfl
[15] and EUA dataset [16]. The results show that the
proposed caching strategies can achieve the minimum
latency when compared to other strategies.

The remainder of this paper is organized as follows. In
Section II, we review the related works about mobile edge
caching and deep reinforcement learning. The edge caching
problem and system model are defined in Section III. We pro-
pose a heuristic caching strategy with an approximation ratio
in Section IV. The detailed multi-agent deep reinforcement
learning based caching strategy is proposed in Section V. In
Section VI, we evaluate our caching strategy. We conclude this
paper in Section VII.

II. RELATED WORK

A. Mobile Edge Caching

As a novel network paradigm, mobile edge caching reduces
network traffic and data access service delay by pushing data

to the network edge [1]. Most existing edge caching researches
propose edge caching strategies by focusing on users [4] or
data [17], [18]. However, due to the mobility of users and
the diversity of requests, as well as the correlation among
files, the environment of mobile edge caching is very complex,
and the existing caching strategies cannot solve the problem
in mobile edge caching. In order to solve the problem of
mobile edge caching in a dynamic heterogeneous environ-
ment, recently, caching strategies based on deep reinforcement
learning [19]–[21] have been proposed. H. Wu et al. [22]
propose a novel Edge-oriented Collaborative Caching (ECC)
in information-centric networking (ICN) to reduce response
latency, server load and bandwidth consumption with the
consideration of both content popularity and cache benefit.
To reduce the overall energy requirements in mobile edge
caching, M. Sarra et al. [23] propose an energy-efficient fuzzy
caching strategy for edge devices with the consideration of
users’ mobility, requests, and limited caching size. In [24],
S. Rahman et al. propose a caching strategy based on deep
learning to store content in the edge network in order to
provide seamless web content streaming for users. G. Qiao
et al. [25] propose a cooperative edge caching scheme to
jointly optimize the content placement and content delivery
in vehicular edge computing networks. Based on the content
popularity, vehicle driving paths, and resource availability, the
proposed caching scheme can reduce the system cost, as well
as the content delivery latency, while improving the content
hit ratio. Compared with the above edge caching strategies,
our proposed caching strategy based on multi-agent deep
reinforcement learning regards the edge servers as agents and
considers the cooperation between agents, which is suitable
for highly dynamic and heterogeneous environments in mobile
edge caching.

B. Deep Reinforcement Learning

There are many applications and research papers which
focus on deep reinforcement learning in different fields, such
as transportation [26], network [10], [11], etc. In order to
better solve the problems in dynamic and heterogeneous envi-
ronments, multi-agent deep reinforcement learning [12], [13]
is proposed. M. K. Sharma et al. [27] design a Multi-Agent
Reinforcement learning framework to achieve a more effective
power control strategy. In [28], Lowe et al. propose the multi-
agent deep deterministic policy gradient (MADDPG) for co-
operative or competitive scenarios. However, when the number
of agents is large, the training convergence speed is slow. In
order to solve the exponential growth of the interaction caused
by the increase of the number of agents, Yang et al. propose
a method called Mean Field Reinforcement Learning (MFRL)
[29], where the interaction between individuals is regarded as
the interaction between individuals and collectives. In [30],
C. H. Liu et al. propose a fully-distributed control solution to
navigate a group of UAVs to provide long-term communication
service for the ground mobile users, in order to maximize the
temporal average coverage, while minimizing the total energy
consumptions. There are also researches that combine multi-
agent reinforcement learning with emerging fields, such as

IEEE/ACM TRANSACTIONS ON NETWORKING 3

𝑡1timeline

𝑓2
𝑡0

𝒆𝟑

𝒆𝟐
𝒆𝟏

𝑡0

𝑪𝒍𝒐𝒖𝒅

𝒖𝟏
𝒖3

𝒖2

Approach Time 𝒆𝟏Storage 𝒆𝟐Storage 𝒆𝟑Storage
Transmission

Latency
Total Latency

Request First
t0 𝑓2 𝑓1 𝑓1 21|24

36|42
t1 𝑓2 𝑓3 𝑓2 15|18

Latency First
t0 𝑓2 𝑓3 𝑓1 23|27

32|39
t1 𝑓2 𝑓3 𝑓2 9|12

𝑓1
𝑡0

𝑓1
𝑡0 𝑓3

𝑡1

𝒆𝟑

𝒆𝟐
𝒆𝟏

𝑪𝒍𝒐𝒖𝒅

𝒖𝟏 𝒖3

𝒖2

𝑓3
𝑡1

𝑓2
𝑡1

𝑓𝑖
𝑡 user requests file 𝑖 at time 𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑐𝑙𝑜𝑢𝑑=6|6
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑒𝑑𝑔𝑒=2|3
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 _𝑙𝑜𝑐𝑎𝑙𝑒𝑑𝑔𝑒=1|2
user′s trace at 𝑡1

Fig. 2: Motivating example.

mobile crowdsensing (MCS) [31]–[34]. C. H. Liu et al. [35]
propose a novel deep learning based framework to enable
multiple unmanned aerial vehicles (UAVs) to execute data
collection tasks efficiently and cooperatively, while charging
the battery from multiple randomly deployed charging stations.
Compared with the existing multi-agent deep reinforcement
learning, we adopt a heuristic caching strategy to improve the
performance of the multi-agent caching strategy during the
cold start phase.

III. MOBILE EDGE CACHING PROBLEM

A. Motivating Example

An example of the mobile edge caching problem is shown in
Fig. 2. There are three edge servers {e1, e2, e3}, each of which
can cache one file in a time slot. e2 is connected with both e1
and e3, so e1 and e3 are called the neighbor servers of e2. Each
edge server covers a certain area and provides services to users
in that area. The latencies of obtaining files from the local
edge server, neighbor server, and cloud server are assumed to
be 1, 2, 6 (red words) respectively. When the files requested
by the user are not cached in its local edge server, the user
can fetch the requested files from the neighbor servers or the
remote cloud server through the local edge server, since the
cloud server caches all the files. There are three different files
{f1, f2, f3} that may be requested by three users {u1, u2, u3},
who are moving across the edge server areas. f ti means that a
user requests fi at time t. During the two time slots, the users
{u1, u2, u3} request the files for a total of 6 times. At the
beginning of t0, the edge servers’ storage is empty, the users
make requests to the edge servers and the edge servers need
to decide which files to be cached and obtain the uncached
files from the neighbor edge servers or the cloud servers. The
cached file remains in the storage until the edge server obtains
other files to replace the cached files. It is worth noting that
the edge servers may obtain files from the neighbor servers
or the cloud server for the users without replacing the cached
files in storage.

To minimize the total latency, a simple strategy is Request
First, where the edge servers cache the requested files of its
local users at each time slot. As shown in Fig. 2, the users
request {f2, f1, f1} at t0, hence the edge servers decide to
cache {f2, f1, f1}, respectively. In order to cache the above

TABLE I: Main notations

Symbol Meaning
E,F, U the sets of edge servers, files, mobile users.
C the cloud server.
Ne the set of neighbor servers of edge server e.
Rt

u user u’s request at time slot t.
rtu,f whether user u requests file f at time slot t.
lu,s the latency between a user u and a server s.
le,s the latency between edge server e and another

server s (edge server or cloud server).
Lt the transmission latency to satisfy users’ requests

at time slot t.
Rt

e the replacement latency of the edge server e at
time slot t.

xt
u,s,f whether a user u’s requested file f should be

fetched from server s at time slot t.
yt
e,f whether a file f is cached in the edge server e at

time slot t.
U t

e the set of users whose location is in the area of
the edge server e.

Dt
e(f) the utility of file f being cached by an edge server

e.
mt

u(le) the probability of user u arrives edge server e’s
area.

rte,f the probability of file f will be requested in the
next t time slots for edge server e.

files, the edge servers obtain the files from the cloud server 3
times at t0 and the latency is 3× 6 = 18. Then the users can
fetch the requested files from the local edge servers and the
latency is 3×1 = 3. The total latency at t0 is 18+3 = 21. At
the beginning of time slot t1, the users change their locations,
and then, they propose their file requests to the local edge
servers. In the same way, the latency at t1 is 6×2+3×1 = 15
and the total latency is 21 + 15 = 36. Obviously, this caching
strategy does not consider the mobility of users and their future
requests. Thus, the edge servers need to repeatedly obtain files
from the cloud server or the neighbor edge servers to satisfy
the requests of users.

In order to further reduce the latency, another caching
strategy called Latency First is proposed, where the edge
servers cache the requested files based on the predicted users’
mobility and requests. The detailed caching strategy is shown
in the table of Fig. 2. In this case, the edge servers should
cache {f2, f3, f1} at t0 instead of {f2, f1, f1}. The latency of
edge servers obtaining the uncached files from the cloud server
is 3 × 6 = 18. u1 and u3 can fetch the requested files from
the local edge servers and u2 needs to fetch the f1 from the
neighbor edge server e3 through e2. Therefore, the latency of
the user fetching from the edge servers is 2× 1 + 1 + 2 = 5.
Thus the latency at t0 is 18 + 5 = 23. In the same way,
the latency at t1 is 6 + 3 × 1 = 9 and the total latency is
23+9 = 32. Obviously, the total latency of the second caching
strategy is lower than that of the first caching strategy. For
another example, when the three latency is set to 2, 3, and 4
(blue words), the performance of Latency First is still better
than that of Request First. Therefore, the caching strategy
based on the predicted users’ requests may achieve a better
performance. However, it is challenging for the edge servers

IEEE/ACM TRANSACTIONS ON NETWORKING 4

to decide the caching strategies, especially when the users’
requests and locations change over time.

B. Problem Definition
The system model of mobile edge caching problem is

firstly discussed in this section. There are n edge servers
E = {e1, e2, ..., en}. The interconnected edge servers are
called each others’ neighbor edge servers. The neighbor edge
servers of the edge server e are denoted as Ne. There are
d different files F = {f1, f2, ..., fd}, each has the same
size. Each edge server e has limited storage capacity ce and
the cloud server C has storage capacity to cache all the
files F . Each edge server e is located in a specific area
and serves users in the area. The edge server in a user’s
area is called the local edge server of the user. The mobile
users U = {u1, u2, ..., um} are moving across different areas.
At the beginning of each time slot t, each user u proposes
the request Rtu = {rtu,1, rtu,2, ..., rtu,d}, rtu,f ∈ {0, 1} to the
local edge server in the current area. rtu,f represents whether
the user u requests the file f at time slot t, if the user u
requests f then rtu,f = 1; otherwise, rtu,f = 0. A binary
variable xtu,s,f ∈ {0, 1}, s ∈ {E,C} represents whether a
user u’s requested file f should be obtained from the server
s, where s could be an edge server or the cloud server.
yte,f ∈ {0, 1}, e ∈ E represents whether a file f is cached in
the edge server e at time slot t. After a file request arrives, the
edge server e will check its storage for the requested file; if the
file is not cached, then it will check its neighbor edge servers
in Ne. Finally, the edge server has to obtain the requested file
from the cloud server if the requested file is not cached in
the storage of the edge server or its neighbor edge servers.
Generally speaking, the latency of obtaining files from the
cloud server is larger than that of edge server. Therefore, in
order to minimize the total latency, the edge servers should
cache the files that the users request at present and in the
future as many as possible.

In the mobile edge caching scene, users may move across
different areas and their requests may change. At the beginning
of each time slot, the edge servers obtain different requests
from the users and decide which files to be cached in their
storage. If the files to be cached in this time slot are different
from those currently cached in the server’s storage, the edge
server needs to obtain the uncached files from its neighbor
servers or the cloud server to replace the cached file in its
storage. The latency that the edge server takes to obtain the
uncached files (from neighbor edge servers or the cloud server)
and replace the cached files is called the replacement latency.
Hence, in this paper, we divide the total latency into two parts:
the transmission latency and the replacement latency. The
transmission latency includes user-to-edge latency, edge-to-
edge latency and edge-to-cloud latency. The latency between
a user u and a server s is denoted as lu,s, u ∈ U, s ∈ {E,C},
and the latency between two servers is denoted as le,s, e ∈
E, s ∈ {E,C}. The transmission latency at t is defined as
follows:

Lt =

U∑
u

F∑
f

xtu,s,f × lu,s × rtu,f (1)

It is worth noting that the user u needs to fetch the
requested files from the neighbor edge servers or the cloud
server through the local edge server eu if the requested file
is not cached in the storage of the local edge server. The
transmission latency of user fetching files should include the
latency between the user and the local edge server and the
latency of the local edge server obtaining files from the
neighbor edge servers or the cloud server. Therefore, lu,s
should be calculated as follows:

lu,s =

{
lu,eu , if s = eu

lu,eu + leu,s, otherwise
(2)

The replacement latency of the edge server e at time t is
defined as follows:

Rte =

F∑
f

Ne∪C∑
s

max{yt−1e,f − y
t
e,f , 0} × xt−1s,f × le,s (3)

where max{yt−1e,f − yte,f , 0} is used to determine whether the
edge server e needs to obtain the file f from other servers.
xt−1s,f is the source of the file f obtained by the users in the
server e at time slot t−1, which is used to determine whether
the current edge server e needs to obtain the file f from its
neighbor servers or the cloud server.

Based on the above system model, we can define the
problem as follows:

Problem (Mobile Edge Caching Problem): At the beginning
of each time slot t, each user u may change its location
and then propose file request rtu,f to the local edge server
in the current area. Under the limitation of storage capacity,
each edge server needs to decide which files to cache in its
storage so that the total latency can be minimized, which can
be denoted as follows:

Minimize L =

T∑
t

U∑
u

F∑
f

xtu,s,f × lu,s × rtu,f +

T∑
t

E∑
e

F∑
f

Ne∪C∑
s

max{yt−1e,f − y
t
e,f , 0} × xt−1s,f × le,s (4)

s.t. xtu,s,f ∈ {0, 1}, s ∈ E ∪ C (5)
E∪C∑
s

xtu,s,f = 1,∀t ∈ T (6)

F∑
f

yte,f ≤ ce,∀e ∈ E (7)

F∑
f

rtu,f ≥ 1, rtu,f ∈ {0, 1} (8)

Constraint (6) ensures that user u’s request for file f can
be satisfied by one server (including edge server and cloud
server). Constraint (7) ensures that the number of files cached
in edge server is less than or equal to its storage capacity.
Constraint (8) ensures that each user u requests at least one
file per time slot.

C. NP-hard Proof

Lemma 1. The Mobile Edge Caching Problem is NP-hard.

IEEE/ACM TRANSACTIONS ON NETWORKING 5

Algorithm 1 Edge Caching Strategy (ECS)
Input: a set of edge servers E, a set of files F , a set of

users U and their requests Rt, latency of obtaining files from
servers L, storage capacity of servers CE
Output: caching lists Θ = {Θe},∀e ∈ E
1: Initialize yte,f = 0,∀e ∈ E,∀f ∈ F
2: while E 6= ∅ do
3: e, f = arg maxDt

e(f)
4: Θe = Θe

⋃
f, yte,f = 1

5: Update Θ
6: if

∑
yte,f ≥ ce then

7: E = E − e
return Θ

Proof. Firstly, we introduce the multicommodity facility lo-
cation problem. Consider that there is a facility location set
L = {l1, l2, ..., lm}, and a commodity set C = {c1, c2, ..., cn}.
Each user u requests different commodities Cu ⊆ C and the
cost for each user to obtain products from facilities in different
locations is different. The multicommodity facility location
problem is to select M locations from the location set L to
build facilities and decide which commodities each facility
should produce, so that the total cost of serving all users’
requests can be minimized.

Now, we first consider a simplified case of the Mobile Edge
Caching Problem. Consider that there are m edge servers and
n different files. At time t, each user u requests different files
from the local edge server and the latency is different for
the user to fetch files from different servers. We can regard
the edge servers as the facilities, and regard the files as the
commodities. Then the simplified edge caching problem can
be regarded as the multicommodity facility location problem,
where we do not need to decide where the edge servers should
be built, but we need to decide which files to be cached on
each edge server. It is obvious that the multicommodity facility
location problem is NP-hard. Hence, the edge caching problem
is also NP-hard.

IV. HEURISTIC CACHING STRATEGY

In this part, a simplified case of mobile edge caching
problem is discussed, where there is only one time slot and
the mobility of the users is ignored. At the beginning of the
time slot, the storage of the edge servers is empty, and the
latency that the edge servers need to obtain files from other
servers is also ignored.

A. File Utility

First of all, we calculate the utility of a file f being cached
by an edge server e, which is denoted as De(f). In this paper,
the utility of a file is the expectation of how much latency can
be reduced if the file is cached by the edge server e, which
can be defined as follows:

Dt
e(f) =

e∪Ne∑
s

Ue∪Ne∑
u

rtu,f × lfu(s) (9)

where Ue∪Ne is the set of users whose locations are in the
area of edge server e or the area of the neighbor edge server

of e. In other words, Ue∪Ne is the set of users who can fetch
files from the edge server e. lfu(s) is the latency that can be
reduced if the edge server e caches f and the user u requests
f , which can be calculated as follows:

lfu(s) =

{
lfu,j − l

f
u,s, if lfu,j > lfu,s, xu,j,f = 1

0, otherwise
(10)

j ∈ {E,C} is the server, where user u currently obtains the
requested file f . lfu,s represents the latency that user u needs
to fetch file f from server s.

B. Heuristic Caching Strategy

In this section, we propose a heuristic caching strategy,
which is shown in Algorithm 1. At the beginning of the time
slot, the edge servers receive the requests of the users and
initialize variable yte,f = 0 for each edge server and file to
ensure the storage of the edge servers is empty. Then, at each
iteration, all edge servers will calculate the utility of each file.
Then, the edge server e with the highest file utility will cache
the file f , which has the highest utility. In other words, the
variable yte,f will be set to 1. This process is repeated until all
edge servers are unable to continue caching files.

C. Approximation Ratio

In this section, the latency of user u obtaining file f from
edge server e is denoted as x, the latency of user u obtaining
file f from the neighbor servers of edge server e is denoted
as y, and the latency of user u obtaining file f from the cloud
server C is denoted as z, 0 < x < y < z.

Theorem 1. The approximation ratio of Algorithm 1 is
1+k1k2

2k1
, if k1 >= 1 and k2 ≥ 2k1, where k1 = y

x and k2 = z
x .

Proof. First of all, we consider a simplified case of the Mobile
Edge Caching Problem. Assume that there are three edge
servers (a, b, c) located in three different areas and that two
different files 0 and 1 may be requested by users. Edge server
b is connected to a and c, and three users are located in the
three areas of a, b and c, respectively. The edge servers receive
file requests 1, 0 and 1 from the users respectively. It is obvious
that the optimal caching policies for the edge servers are (1, 0,
1) and the total latency is 3x. The caching file list of algorithm
1 will be (0, 1, 1) or (1, 1, 0) and the total latency is x+ 2y.
There are two edge servers caching the non optimal files,
which we call the non-optimal edge servers. In this situation,
the approximation ratio is x+2y

3x = 1+2k1
3 . It is not difficult

to find that 1+k1k2
2k1

− 1+2k1
3 ≥ 0, and the approximation ratio

holds. Next, we will prove Theorem 1 under three different
cases.

Case 1: The structure of edge servers is the same as the
simplified case, and the number of servers is increased to N ,
the requests of users are (1, 0, 1, 0, 1, 0, ...).

Suppose there are n non-optimal edge servers, and we can
get:

(N − n)x+ ny

Nx
− x+ 2y

3x
(11)

=
2k1(N − n) + 2k21n−N − k1k2N

2k1N
. (12)

IEEE/ACM TRANSACTIONS ON NETWORKING 6

Based on algorithm 1 and the definition of Mobile Edge
Caching Problem, the number of non-optimal edge server is
calculated as follows:

n = dN − 2

4
e × 2. (13)

Then we can get:
2k1(N−n)+2k21n−N−k1k2N

2k1N
≤ k1(2+N)(1−k1)−N

2k1N
≤ 0.

(14)

Then the approximation ratio holds.
Case 2: The numbers of requests received by the three edge

servers for file 0 and 1 are (na0 , n
a
1 , n

b
0, n

b
1, n

c
0, n

c
1). We can

prove it by contradiction. For a optimal solution (e.g., (1,0,1)),
suppose there exists a solution (e.g., (1,1,0)) that breaks the
bound limit (1+k1k22k1

), then it can be illustrated as follows:

(na1 + nb1 + nc0)x+ (na0 + nb0 + nc1)y

(na1 + nb0 + nc1)x+ (na0 + nb1 + nc0)y
>

1 + k1k2
2k1

. (15)

Then:

(2k1−k1k2−1)na1+(k1−k
2
1k2)nb1+(2k21−k1k2−1)nc1+

(2k21−k1−k
2
1k2)na0+(2k21−k1k2−1)nb0+(k1−k

2
1k2)nc0 > 0.

(16)

Based on the assumptions of k1 and k2 (k1 >= 1 and
k2 ≥ 2k1), we can get:

2k1−k1k2−1 =k1−1+k1(1−k2) ≤ (1−k2)(k1−1) < 0, (17)

k1−k
2
1k2=k1(1− k2) < 0, (18)

2k21−k1k2−1 < 2k21−2k21−1 < 0, (19)

2k21−k1−k
2
1k2=k

2
1(2− k2)− k1 < 0, (20)

k1−k
2
1k2=k1(1− k1k2) < 0, (21)

Based on Eq. (17) to (21), we can get

(2k1−k1k2−1)na1+(k1−k
2
1k2)nb1+(2k21−k1k2−1)nc1

+(2k21−k1−k
2
1k2)na0+(2k21−k1k2−1)nb0+(k1−k

2
1k2)nc0 < 0.

(22)

In other words,
(na1 + nb1 + nc0)x+ (na0 + nb0 + nc1)y

(na1 + nb0 + nc1)x+ (na0 + nb1 + nc0)y
<

1 + k1k2
2k1

, (23)

which contradicts Eq. (15). Therefore, the assumption that
a solution breaks the bound limit is not tenable, and the
approximation ratio holds.

Case 3: Add an edge server d and connect it with server b,
which serves one user.

The request obtained by server d could be 0 or 1. If the
request is 0, the number of non-optimal edge server is 2 or
0. The ratio of heuristic result to optimal solution is x+y

2x =
1+k1

2 < 1+k1k2
2k1

or 1, and the approximation ratio holds. If
the request is 1, the number of non-optimal edge server is 2.
The ratio of the heuristic result to optimal solution is x+y

2x =
1+k1

2 < 1+k1k2
2k1

, and the approximation ratio holds.
According to the above three cases, we can prove theorem

1 holds.

0.2

0.3

0.5

E2

E1 E3

To
From E1 E2 E3

E1 0.2 0.3 0.5

E2 0 0 0

E3 0 0 0

Mobility Prediction Matrix 𝑀

User Request Queue

Request Prediction Matrix 𝑅 for t4

t0 t1 t2 t3 ···

f2 f3 f1 f2 ···

User Mobility Prediction

To
From f1 f2 f3

f1 0 0.5 0.5

f2 0.3 0.1 0.6

f3 1 0 0
f1 f2 f3

E1 0.06 0.02 0.12

E2 0.09 0.03 0.18

E3 0.15 0.05 0.3

File Correlation Matrix 𝑃

timeline 𝒕𝟑 𝒕𝟒

𝑅𝐸𝑗,𝑓𝑛 = 1 −ෑ 1−𝑀𝐸i,𝐸𝑗 × 𝑃𝑓𝑚,𝑓𝑛

𝒕𝟐

Fig. 3: Prediction of user’s mobility and request.

V. MULTI-AGENT DEEP REINFORCEMENT LEARNING
STRATEGY

In the multiple-time-slot scenario, the edge servers may
cache different files in each time slot, and thus there will
be replacement latency, which is described in Section III.
In this case, the edge caching problem can be considered
as a Markov Decision Process (MDP) [36] [37], which is
a common model of deep reinforcement learning. Briefly
speaking, in MDP, an agent will repeatedly observe the current
state st of the environment and execute an action a from
all available actions. Then, the state of the environment will
transfer to st+1 and the agent will get a reward rt from the
environment according to its action. In this paper, the edge
servers can be regarded as different agents. At the beginning
of each time slot, users may change their locations. Then, they
send their requests to the local edge servers. The edge servers
need to decide which files should be cached based on the
users’ requests and their mobility, so that the total latency
of users can be minimized. To accelerate the convergence
speed, we adopt the Mean Field Reinforcement Learning
(MFRL) [29] to address the problem, which is one of the
Multi-Agent Reinforcement Learning algorithms. In MFRL,
the interaction between agents is regarded as the interaction
between individuals and collectives, which is suitable to deal
with the problem in multi-agent deep reinforcement learning
with a large number of agents.

A. Problem Formulation

1) State and Observation: First of all, we will discuss the
state space of mobile edge caching problem. The state of an
edge server e at time slot t is denoted as Ste = {Yte,Rte,Ne},
where Yte = {yte,f},∀f ∈ F represents whether a file f is
cached in the edge server e at the beginning of the time slot
t. Rte is the requests, which the edge server e receives at the
beginning of the time slot t and Ne is the neighbor edge servers
of edge server e. In the real world, sharing states between edge
servers does not require much bandwidth resources, thus the
overhead is ignored in this paper. The observation of an edge
server e includes its own state and its neighbor servers’ states,
which is denoted as follows:

Ote = {Ste, {Sti}i∈Ne ,M t+1
U , Pe,F } (24)

IEEE/ACM TRANSACTIONS ON NETWORKING 7

where M t+1
U = {mt+1

u (le)},∀u ∈ U,mt+1
u (le) ∈ [0, 1] and

mt+1
u (le) is the prediction of the user u arriving at the current

edge server e’s area le in the next time slot (t + 1). Pe,F =
{pt+1
e,f },∀f ∈ F, pe,f ∈ [0, 1] is the predicted probability of

file f being requested at edge server e. The details will be
described in the next two parts.
• User Mobility Prediction: In the mobile edge caching

scene, users are moving between the areas, which may have a
huge impact on the total latency. In this paper, we assume that
we have collected the users’ historical trajectories. Thus, we
can map the trajectories into a square area [38]. Then the area
can be divided into h grids and the users’ historical trajectories
can be converted into a series of grid coordinates. Based on
the processed users’ trajectory data, in this paper, we adopt the
semi-markov model [39], [40] to predict the users’ mobility,
and a simple case is shown in the lower part of Fig. 3. One of
the most important equations of semi-markov, Z(·) is defined
by Eq. (25), which is shown as follows:
Zu(li, lj , T) =P (Sn+1

u = lj , t
n+1
u − tnu ≤ T |S0

u, ..., S
n
u ;

t0u, ..., t
n
u)

=P (Sn+1
u = lj , t

n+1
u − tnu ≤ T |Snu = li) (25)

where Zu(li, lj , T) is the probability that the user u will move
to the grid (location) lj in the next move from his/her current
grid li. Sku represents the user u’s k-th location in his/her
movement and its corresponding arrival time is denoted as tku.
The grid that the customer will enter in the next time unit is
related to his/her current grid, which can be obtained from
the customer’s historical trace records. Then, we can define
another key equation Q(·), denoted by Eq. (26).

Qu(li, lj , T)=



Σhk=1ΣTt=1(Zu(li, lk, t)−Zu(li, lk, t− 1))·
Qu(lk, lj , T − t), i 6= j

1− Σhk=1,k 6=iZu(li, lk, T)+

Σhk=1,k 6=iΣ
T
t=1(Zu(li, lk, t)−Zu(li, lk, t− 1))·

Qu(lk, li, T − t), i = j
(26)

Qu(·) denotes the probability that a user u arrives lj from li
after T time slots. Since the user cannot move from one grid
to another when T = 0, it is obvious that Qu(li, li, 0) = 1 and
Qu(li, lj , 0) = 0 (i 6= j). Next, we calculate the probability
of a user u arriving at any edge server e’s area le at time slot
t, which is shown as follows:

mt
u(le) =1−

h∏
i=0

(1−Qu(li, le, t)) (27)

• File Request Prediction: The other important factor
affecting the caching strategy of edge servers is the future
requests of the users. If the edge server can accurately predict
the future requests of the users, then it can make better caching
strategies. To predict the users’ future requests, we consider
the correlation between files. In this paper, file correlation
is defined as the probability that a file f ′ will be requested
in the next time slot after another file f is requested, which
is widespread in reality. Taking online video service as an
example, after the user watches the first video clip f , if the user
is interested in the video content, then he is likely to request

the next video clip f ′ in the next time slot. The correlation
between files can be obtained by the history of users’ requests,
which is assumed to be collected in this paper.

Similar to the prediction of users’ mobility, we can count
how many times users requesting the file f , which is denoted
as nf . The number of times that file f ′ is requested in the
next time slot after the file f is requested can also be counted
as nf,f ′ . Then, in this paper, the file correlation is calculated
by Eq. (28), which is shown as follows:

pf,f ′ =
nf,f ′

nf
(28)

After the file correlation is calculated, we will predict the
requests of different files on edge servers. Since the probability
of users arriving at different edge servers areas is different,
the probability of each file being requested in the future is
also different for different edge servers. Therefore, we need to
predict the probability that each file f is requested in the future
for each server e. Based on the prediction of users’ mobility
and file correlation, the probability of a file f being requested
in the next t time slots for the edge server e is calculated as
follows:

rte,f = 1−
U∏
u

[1−mt
u(le)× pf ′,f] (29)

where f ′ is the file that is requested in this time slot by the
user u. A simple case is shown in the upper part of Fig. 3.
Obviously, the probability that file f is requested in the next t
time slots can be achieved by calculating the probability that
at least one user requests the file f in the next t time slots.

2) Action Space: At the beginning of each time slot, each
edge server e needs to decide which files to be cached in its
storage to minimize the total latency of all users. The action
of an edge server e is denoted as ate = {ate,f},∀f ∈ F, ate,f ∈
{0, 1}. If e decides to cache file f in this time slot, ate,f = 1,
else ate,f = 0. Obviously,

∑
ate,f ≤ ce,∀f ∈ F .

3) Reward Function: After each edge server has taken an
action, the current state of each edge server and the whole
environment will change and the edge servers will obtain the
rewards based on their actions and the requests of users. In
this paper, the reward of edge server e at time slot t is defined
as the negative total latency of the users in the edge server e’s
area, including transmission latency and replacement latency.
And the reward function of the edge server e is defined as
follows:

rte = −(α

Ue∑
u

Ru∑
r

xtu,s,f × lu,s × rtu,f+

β

F∑
f

Ne∪C∑
s

max{at−1e,f − a
t
e,f , 0} × xt−1s,f × le,s) (30)

where the first part is the transmission latency of users in
this edge server area and the second part is the replacement
latency of edge server e’s action. α and β are the weights of
importance of the latency.

4) Problem Formulation: We have defined the entire mobile
edge caching scene. At the beginning of each time slot, the
edge servers will obtain the requests from the users after
the users move. Then the edge servers will take the users’

IEEE/ACM TRANSACTIONS ON NETWORKING 8

𝒓𝒆
𝒕 𝒐𝒆

𝒕+𝟏 𝒂𝑵𝒆
𝒕

…
𝑸𝒆 𝑳

Update

𝑱

Environment

𝒂𝒆
𝒕

LSTM

Target Network

Critic Network

···
···

···

···
···

···

Target Network

Actor Network

···
···

···

···
···

···

Update

…
…

Replay Buffer

…

N-Batch

…
…

Oldest

Latest

Agent e

𝒐𝒆
𝒕

𝒐𝒆
𝒕 , 𝒂𝒆

𝒕 , 𝒓𝒆
𝒕 , 𝒂𝑵𝒆

𝒕
, 𝒐𝒆

𝒕+𝟏

𝒐𝒆
𝒕

𝒐𝒆
𝒕

CriticActor

𝑸𝒆

Heuristic Strategy ECS

Cold Start Phase？

Y

𝒐𝟏
𝒕

CriticActor

𝑸𝟏

···

···

Environment

𝒂𝟏
𝒕 𝒂𝒆

𝒕

𝒓𝒆
𝒕𝒓𝟏

𝒕 ···

···

N

Fig. 4: Mobile Edge Caching Framework.

requests and the prediction of users’ mobility and requests as
the observation. Each edge server decides what action to take
to reduce the total latency, based on its observation. For each
edge server e, the problem can be formulated as:

V te (Ote) = max
ate

[
rte(Ote, ate) + γV t+1

e (Ot+1
e)

]
(31)

where V te (Ote) is the expectation of total latency for edge
server e under the observation Ote. It is worth noting that
V te (Ote) is negative, so the total latency can be minimized
by maximizing V te (Ote) .

For each edge server e, the optimal caching strategy πe is
given by:

πe = arg max
ate

[
rte(Ote, ate) + γV t+1

e (Ot+1
e)

]
(32)

B. Caching Strategy

1) Taking Actions Based on Observations: At the beginning
of a time slot, each edge server e will obtain the observation
of its state and its neighbor servers’ states. Then, based on
the observations, the edge servers will decide which files to
be cached as their actions and execute the actions.

2) Storing Transitions: After the edge servers have exe-
cuted their actions, the users will try to fetch files from the
current edge server to satisfy their requests. The files could
be fetched from the current edge server and the neighbor
edge servers, or the cloud server. At the end of the time
slot, users may change their locations and their requests, and
each edge server would obtain a reward for its action in
this time slot. Hence, the edge server e could obtain a tuple
consisting of the current observation, action, reward, average
action of neighbor servers, and next observation, which is
denoted as (Ote, ate, rte, atNe ,O

t+1
e). The tuples at different time

slots should be stored in the edge server’s replay buffer for
training. The average action of neighbor servers is defined as
follows:

atNe =
1

|Ne|

Ne∑
s

ats (33)

Random

MF-ECS
ECS

Reward

Time
Cold Start Phase

Fig. 5: An example of cold start phase.

3) Training Neural Networks: There are two main neural
networks in our MFRL model: the actor network πe and the
critic network Qe. The detailed neural network structure is
shown in Fig. 4. It should be noted that including the historical
requests into the observation will also greatly increase the
input space, making it difficult for training. To solve this
problem, we adopt long short term memory (LSTM), which is
an advanced learning model that is widely used for time series
processing, to capture the hidden content request patterns.
Specifically, the LSTM layer is deployed at the last layer
before the actor and critic networks, so that the feature
representations of the past time periods can be integrated
together for the action decision at the current time period.
The actor network πe is used to determine the action for the
agent in this time slot. At the beginning of a time slot, each
edge server inputs its observation to its actor network and gets
the action for this time slot. The critic network Qe is used to
estimate the reward of different actions. For example, after
an edge server e has executed the action, the next time this
edge server obtains the same observation, if this edge server
executes a different action and gets a higher reward, then the
actor network should increase the probability of taking the
new action. Hence, we can propose the method to update two
neural networks.

For the critic network, each edge server e should sample N
batches from its replay buffer, and update the critic network
by minimizing the loss function. The loss function is defined
as Eq. (34).

IEEE/ACM TRANSACTIONS ON NETWORKING 9

Algorithm 2 Edge Caching Strategy (MF-ECS)
Input: a set of edge servers E, a set of users U , and a set

of files F
Output: target actor and critic networks
1: Initialize discount factor γ, update rate τ ;
2: for edge server e ∈ E do
3: Randomly initialize critic network Qe and actor net-

work πe;
4: Initialize target critic network Q′e = Qe and target

actor network π′e = πe;
5: Initialize the replay buffer Be;
6: for episode = 1, 2, ..., N do
7: Initialize environment;
8: for epoch t = 1, 2, ..., T do
9: for edge server e ∈ E do

10: if episode < N ′ then
11: Get observation Ote, and select action ate by

heuristic caching strategy ECS from Algorithm 1
12: else
13: Get observation Ote, and select action ate =

πe(Ote) by actor network πe

14: Execute each edge server’s action ate, get observa-
tion Ot+1

e and reward rte
15: for edge server e ∈ E do
16: Calculate atNe = 1

|Ne|
∑Ne
s ats

17: Store transition (Ote, ate, rte, atNe ,O
t+1
e) into Be

18: Randomly sample N batches from Be
19: Update critic network and actor network by

algorithm 3

Algorithm 3 Update the Critic and Actor Networks

1: y = rte(Ote, ate) + γQ′e(Ot+1
e , at+1

e , at+1
Ne

)
2: L(Qe) = 1

N

∑
(Qe(Ote, ate, atNe)− y)2

3: Update the critic network by minimizing L(Qe)
4: Update the actor network by using gradients:
5: ∇φeJ(φe) ≈ 1

N

∑
∇φe log πφe(Ote)

6: Qe(Ote, ae, aNe)|a=πφe (Ote)
7: Update the weights of corresponding target networks by:
8: wQ′e = τwQe + (1− τ)wQ′e

9: wπ′e = τwπe + (1− τ)wπ′e

L(Qe) = E[(Qe(Ote, ate, atNe)− y)2]

y = rte(Ote, ate) + γQ′e(Ot+1
e , at+1

e , at+1
Ne

)
(34)

After we have trained the critic network, we need to train
the actor network, which is shown in Eq. (35).

∇φeJ(φe) = ∇φe log πφe(Ote)
Qe(Ote, ae, aNe)|a=πφe (Ote)

(35)

It is worth noting that at the beginning of the training of
reinforcement learning, which is called the cold start phase,
there is not enough feedback collected from the environment,
and the initialization of neural network is random, the edge
caching strategy in the cold start phase often leads to bad per-
formance. An example of cold start phase is shown in Fig. 5,
with the continuous iteration, the reward of strategy MF-ECS
is increasing, which is based on Multi-Agent Reinforcement

10 15 20 25 30
6

7

8

9

T
o

ta
l

 L
at

en
cy

(s
)

 ECS

 ONETURN

 RANDOM

x10
4

(a) File Type Number

3 4 5 6 7
7

8

9

T
o

ta
l

 L
at

en
cy

(s
) ECS

 ONETURN

 RANDOM

x10
4

(b) Storage Capacity

20 30 40 50 60 70 80
7.5

8.0

8.5

9.0

9.5

T
o

ta
l

 L
at

en
cy

(s
) ECS

 ONETURN

 RANDOM

x10
4

(c) Topology Complexity

Fig. 6: Total latency on roma/taxi in single-time-slot scenario.

10 15 20 25 30
40

50

60

70

80

90

100

E
d

g
e

H
it

 R
at

io
(%

)

 ECS

 ONETURN

 RANDOM

(a) File Type Number

3 4 5 6 7

50

60

70

80

90

100

E
d

g
e

H
it

 R
at

io
(%

)

 ECS

 ONETURN

 RANDOM

(b) Storage Capacity

20 30 40 50 60 70 80
50

60

70

80

90

100

E
d

g
e

H
it

 R
at

io
(%

)

 ECS

 ONETURN

 RANDOM

(c) Topology Complexity

Fig. 7: Hit ratio on roma/taxi in single-time-slot scenario.

10 15 20 25 30
8

9

10

11

T
o

ta
l

 L
at

en
cy

(s
) ECS

 ONETURN

 RANDOM

x10
4

(a) File Type Number

3 4 5 6 7
8

9

10

11

T
o

ta
l

 L
at

en
cy

(s
) ECS

 ONETURN

 RANDOM

x10
4

(b) Storage Capacity

15 20 25 30 35
9.0

9.5

10.0

T
o

ta
l

 L
at

en
cy

(s
)

 ECS

 ONETURN

 RANDOM

x10
4

(c) Topology Complexity

Fig. 8: Total latency on EUA in single-time-slot scenario.

10 15 20 25 30
40

50

60

70

80

90

100

E
d

g
e

H
it

 R
at

io
(%

)

 ECS

 ONETURN

 RANDOM

(a) File Type Number

3 4 5 6 7

50

60

70

80

90

100

E
d

g
e

H
it

 R
at

io
(%

)

 ECS

 ONETURN

 RANDOM

(b) Storage Capacity

15 20 25 30 35

60

70

80

90

E
d

g
e

H
it

 R
at

io
(%

)

 ECS

 ONETURN

 RANDOM

(c) Topology Complexity

Fig. 9: Hit ratio on EUA in single-time-slot scenario.

Learning. However, in the cold start phase, the reward of MF-
ECS is less than ECS, or even less than Random strategy.
Therefore, in order to reduce the total latency of the cold start
phase, we adopt the results of the proposed heuristic strategy
as agents’ actions and collect feedback from the environment
for subsequent training.

4) Algorithm Descriptions: The detailed edge caching strat-
egy is shown in algorithm 2. At the beginning of the training
process, we initialize the parameters, environment and neural
networks for the training (lines 1-5). Each edge server e
is regarded as an agent and obtains its observation at the
beginning of each epoch (time slot). In the initial N ′ episodes
(cold start phase), the agents decide their actions by using
the heuristic strategy ECS (line 11) and the neural networks
are updated according to the collected tuples. After cold start
phase, each agent decides its action by feeding its actor
network with its observation (lines 6-13). After all agents
have decided their actions, the caching list of agents will be
updated and the users will try to fetch files from the local edge
servers. The rewards are calculated based on the transmission
latency and replacement latency. The above information is
stored as tuples by each agent into its replay buffer. Next,
the neural networks are updated by sampling tuples from the
replay buffer (lines 14-19).

IEEE/ACM TRANSACTIONS ON NETWORKING 10

3 4 5 6 7

2.4

2.8

3.2

3.6

A
v

e
ra

g
e
 L

a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49

2.4

2.8

3.2

3.6

A
v

e
ra

g
e
 L

a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12
2.0

2.5

3.0

3.5

4.0

A
v

e
ra

g
e
 L

a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 10: Average latency on roma/taxi in multiple-time-slot
scenario.

3 4 5 6 7
60

65

70

75

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49

40

50

60

70

80

90

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12
60

65

70

75

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 11: Hit ratio on roma/taxi in multiple-time-slot scenario.

0 1 2 3 4 5 6 7 8 9 10

Episode ×10
4

260

280

300

320

L
o

s
s

MF-ECS

MADRL

(a) roma/taxi

0 1 2 3 4 5 6 7 8 9 10

Episode ×10
4

400

500

600

L
o

s
s

MF-ECS

MADRL

(b) epfl

0 1 2 3 4 5 6 7 8 9 10

Episode ×10
4

400

500

600

700

L
o

s
s

MF-ECS

MADRL

(c) EUA

Fig. 12: Average Training Loss

TABLE II: Approximation Ratio on roma/taxi.

Edge Servers 6 7 8 9 10
ECS / Optimal 1.0094 1.0039 1.0029 1.0027 1.0073

1+k1k2
2k1

2.25 2.25 2.25 2.25 2.25

VI. PERFORMANCE EVALUATION

A. The Simulation Traces and Settings

In this paper, three real-world datasets are adopted:
• roma/taxi trace set [14]: In roma/taxi trace set, 320 taxi

drivers that work in the center of Rome city are included.
The trajectories in this dataset are collected every 7
seconds and sent to a central server, which represent
the positions of those taxi drivers. It includes more than
15,000 trajectory information from more than 150 users.

• epfl trace set [15]: In the epfl trace set, there are about 500
taxis’ GPS coordinates, which are collected over 30 days
in the San Francisco Bay Area. Each taxi is equipped with
a GPS receiver and sends a location-update to a central
server. It includes more than 35000 trajectory information
from more than 300 users.

• EUA dataset [16]: This dataset is collected by the Aus-
tralian Communications and Media Authority (ACMA)
including the geographical location of all cellular base
stations in Australia, which are used as the locations of
edge servers. The coverage of each edge server is ran-
domly set within a range of 450-750 meters. It includes
more than 90,000 base stations and 100,000 user location
information.

For the users’ requests, because we cannot get the real
request dataset, we adopt the generated data. In order to

3 4 5 6 7
2.0

2.5

3.0

3.5

4.0

A
v

e
ra

g
e
 L

a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49
2.5

3.0

3.5

4.0

A
v

e
ra

g
e
 L

a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12

2.8

3.2

3.6

A
v

e
ra

g
e
 L

a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 13: Average latency on EUA in multiple-time-slot sce-
nario.

3 4 5 6 7

55

60

65

70

75

80

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49
40

50

60

70

80

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12

55

60

65

70

75

80

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 14: Hit ratio on EUA in multiple-time-slot scenario.

0 1 2 3 4 5 6 7 8 9 10

Episode ×10
4

5

6

7

8

L
a

te
n

c
y

×10
4

MF-ECS

MADRL

Random

ECS

(a) roma/taxi

0 1 2 3 4 5 6 7 8 9 10

Episode ×10
4

6

8

10

12

L
a

te
n

c
y

×10
4

MF-ECS

MADRL

Random

ECS

(b) epfl

0 1 2 3 4 5 6 7 8 9 10

Episode ×10
4

1

1.5

2

2.5

L
a

te
n

c
y

×10
5

MF-ECS

MADRL

Random

ECS

(c) EUA

Fig. 15: Average Training Latency

TABLE III: Approximation Ratio on EUA.

Edge Servers 6 7 8 9 10
ECS / Optimal 1.0052 1.0046 1.0057 1.0047 1.0027

1+k1k2
2k1

2.25 2.25 2.25 2.25 2.25

highlight the impact of file correlation on the results, the users’
requests data is generated based on targeted settings.

We implement the MF-ECS using tensorflow [41], which
runs on a server with RTX 2080 Ti GPU cards, Intel Core-i9
3.7 GHz CPU cards and 64GB memory. The α and β in Eq.
(30) are set to 1. The detailed size of actor and critic networks
is 512× 256× 128 (not including the input layer and output
layer, which are set according to the state-action space). The
edge servers area is divided into a grid-shape. To simplify the
problem, the neighbor edge servers of an edge server are the
edge servers in the upper, lower, left and right regions. The
learning rate and the update rate τ are set as 0.001, discount
factor γ = 0.9. The batch size N is set to 1024. The latency
of obtaining files from the local edge server is set to 1, while
the latency of obtaining files from neighbor edge server and
cloud server is set to 2 and 4.

B. Baseline Methods

• MADRL [20]: Multi-agent deep reinforcement learning
based on A2C.

• Deep Q-Learning (DQN): Each edge server determines
its caching policy by using Deep Q-Learning [42].

• ONETURN: Each edge server caches the files with max-
imum file utilities.

IEEE/ACM TRANSACTIONS ON NETWORKING 11

3 4 5 6 7
2

4

6

8

T
o

ta
l

 L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) Request Length

9 16 25 36 49
2

4

6

8

10

T
o

ta
l

 L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(b) Edge Server Number

8 9 10 11 12
3

4

5

6

7

T
o

ta
l

 L
a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(c) Storage Capacity

Fig. 16: Total latency on roma/taxi in multiple-time-slot sce-
nario.

3 4 5 6 7
10

15

20

25

30

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49

20

25

30

35

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12
10

15

20

25

30

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 17: Neighbor hit ratio on roma/taxi in multiple-time-slot
scenario.

(a) Hit ratio on roma/taxi (b) Total latency on roma/taxi

Fig. 18: Hit ratio and total latency on roma/taxi in multiple-
time-slot scenario.

3 4 5 6 7
4

6

8

10

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) Request Length

9 16 25 36 49
4

6

8

10

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(b) Edge Server Number

8 9 10 11 12
7.0

7.5

8.0

8.5

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(c) Storage Capacity

Fig. 19: Total latency on epfl in multiple-time-slot scenario.

• RANDOM: Each edge server randomly selects the files
to be cached in its storage.

• MF-NMP: The MF-ECS strategy without users’ mobility
prediction.

• MF-NRP: The MF-ECS strategy without users’ request
prediction.

C. Metrics

We adopt five metrics in our simulations:
• Total Latency: The total latency for all users’ requests to

be satisfied in a time period.
• Average Latency: Average latency for a user’s request to

be satisfied.
• Edge Hit Ratio: The probability of a user’s requests can

be satisfied by the current edge server and its neighbor
edge servers.

• Neighbor Hit Ratio: The probability of a user’s requests
can be satisfied by the current edge server’s neighbor edge
servers.

3 4 5 6 7
10

15

20

T
o

ta
l

 L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) Request Length

9 16 25 36 49
0

10

20

30

T
o

ta
l

 L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(b) Edge Server Number

8 9 10 11 12
14

16

18

T
o

ta
l

 L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(c) Storage Capacity

Fig. 20: Total latency on EUA in multiple-time-slot scenario.

3 4 5 6 7

12

16

20

24

28

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49

15

20

25

30

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12

15

20

25

30

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 21: Neighbor hit ratio on EUA in multiple-time-slot
scenario.

(a) Hit ratio on EUA (b) Total latency on EUA

Fig. 22: Hit ratio and total latency on EUA in multiple-time-
slot scenario.

3 4 5 6 7

55

60

65

70

75

E
d

g
e
 H

it
 R

a
ti

o
(%

) MF-ECS

 MADRL

 DQN

 RANDOM

(a) Request Length

9 16 25 36 49

40

50

60

70

80
E

d
g

e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Edge Server Number

8 9 10 11 12
45

50

55

60

65

70

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Storage Capacity

Fig. 23: Hit Ratio on epfl in multiple-time-slot scenario.

• D-value of Latency: The difference value of total latency
between MF-ECS and RANDOM.

• D-value of Hit Ratio: The difference value of hit ratio
between MF-ECS and RANDOM.

D. Heuristic Caching Strategy

1) Performances on Total Latency and Hit Ratio: We show
the total latency and the hit ratio of the proposed heuristic
caching strategy in the single-time-slot scenario, and the
results are shown in Fig. 6 - Fig. 9. It is not difficult to find
that our proposed heuristic caching strategy ECS can achieve
lower latency and higher hit ratio compared with other caching
strategies. With the increase of the storage capacity of the edge
servers, the edge servers can cache more files, so the hit ratio
of the edge servers will be improved. At the same time, the
total latency will also decrease because the users’ requests can
be satisfied by the edge servers. When the topology complexity
of an edge server increases, the number of neighbor edge
servers of the edge server will increase, and users’ requests

IEEE/ACM TRANSACTIONS ON NETWORKING 12

3 4 5 6 7
3

4

5

6

7

8

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MF-NMP

 MF-NRP

 MADRL

x10
4

(a) Request Length

9 16 25 36 49

3

4

5

6

7

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MF-NMP

 MF-NRP

 MADRL

x10
4

(b) Edge Server Number

8 9 10 11 12
4.5

5.0

5.5

6.0

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MF-NMP

 MF-NRP

 MADRL

x10
4

(c) Storage Capacity

Fig. 24: Total latency on roma/taxi.

0 10 20 30 40
1.4

1.6

1.8

2.0

2.2

2.4

F
re

q
u

en
cy

File Number

 File popularity

 Fit of file popularity

x10
-2

(a) Uniform Distribution

0 10 20 30 40
0

1

2

3

4

F
re

q
u

en
cy

File Number

 File popularity

 Fit of file popularity

x10
-2

(b) Normal Distribution

0 10 20 30 40
0

5

10

15

F
re

q
u

en
cy

File Number

 File popularity

 Fit of file popularity

x10
-2

(c) Exponential Distribu-
tion

Fig. 25: Different distributions of file popularity on roma/taxi.

3 4 5 6 7
0

1

2

3

4

5

D
-v

al
u

e
o

f
L

at
en

cy

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(a) Request Length

9 16 25 36 49
0

1

2

3

4

5

D
-v

al
u

e
o

f
L

at
en

cy

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(b) Edge Server Number

8 9 10 11 12
0

1

2

3

4

5

D
-v

al
u

e
o

f
L

at
en

cy

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(c) Storage Capacity

Fig. 26: D-value of latency on roma/taxi.

3 4 5 6 7
8

10

12

14

16

18

20

22

D
-v

a
lu

e
 o

f
H

it
 R

a
ti

o

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

(a) Request Length

9 16 25 36 49

10

15

20

D
-v

a
lu

e
 o

f
H

it
 R

a
ti

o ExponentialDistribution

 NormalDistribution

 UniformDistribution

(b) Edge Server Number

8 9 10 11 12

8

10

12

14

16

D
-v

a
lu

e
 o

f
H

it
 R

a
ti

o

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

(c) Storage Capacity

Fig. 27: D-value of hit ratio on roma/taxi.

can be better satisfied by the neighbor edge servers; thus, the
total latency is reduced.

2) Performances on Approximation Ratio: Next, we con-
duct simulations to verify the correctness the approximation
ratio, which are shown in Table II and Table III. We can find
that with different numbers of the edge servers, the ratios of
the heuristic results to the optimal results are always smaller
than the approximation ratio proved in this paper, which can
further prove the correctness and validity of the approximation
ratio in this paper.

E. Multi-agent Caching Strategy

1) Performances on Average Latency: We first evaluate
the performances of different caching strategies on average
latency; the results for these simulations are shown in Fig. 10
and Fig. 13. The user request length indicates the maximum
number of files that the user can request in a time slot. We can
find that with the increase of user request length, the average
latency increases, and the hit ratio decreases. The reason for
this phenomenon is that the diversity of requests caused by the
increase of the length of user requests leads to the decrease
of hit ratio of edge servers, and improves the average latency.

When the storage capacity of the edge servers increases,
since the edge servers can cache more files at each time slot,

3 4 5 6 7
10

15

20

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MF-NMP

 MF-NRP

 MADRL

x10
4

(a) Request Length

9 16 25 36 49
0

10

20

30

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MF-NMP

 MF-NRP

 MADRL

x10
4

(b) Edge Server Number

8 9 10 11 12
14

16

18

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MF-NMP

 MF-NRP

 MADRL

x10
4

(c) Storage Capacity

Fig. 28: Total latency on EUA.

0 10 20 30 40
1.4

1.6

1.8

2.0

2.2

2.4

F
re

q
u

en
cy

File Number

 Frequency

 Fit of file popularity

x10
-2

(a) Uniform Distribution

0 10 20 30 40
0

1

2

3

F
re

q
u

en
cy

File Number

 File popularity

 Fit of file popularity

x10
-2

(b) Normal Distribution

0 10 20 30 40
0

2

4

6

8

10

F
re

q
u

en
cy

File Number

 File popularity

 Fit of file popularity

x10
-2

(c) Exponential Distribu-
tion

Fig. 29: Different distributions of file popularity on EUA.

3 4 5 6 7
0

2

4

6

8

10

D
-v

a
lu

e
 o

f
L

a
te

n
c
y ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(a) Request Length

9 16 25 36 49
0

2

4

6

8

10

12

D
-v

a
lu

e
 o

f
L

a
te

n
c
y ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(b) Edge Server Number

8 9 10 11 12
0

2

4

6

8

10

D
-v

a
lu

e
 o

f
L

a
te

n
c
y ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(c) Storage Capacity

Fig. 30: D-value of latency on EUA.

3 4 5 6 7
8

10

12

14

16

18

20

D
-v

a
lu

e
 o

f
H

it
 R

a
ti

o ExponentialDistribution

 NormalDistribution

 UniformDistribution

(a) Request Length

9 16 25 36 49
5

10

15

20

25

D
-v

a
lu

e
 o

f
H

it
 R

a
ti

o ExponentialDistribution

 NormalDistribution

 UniformDistribution

(b) Edge Server Number

8 9 10 11 12
9

12

15

18

D
-v

a
lu

e
 o

f
H

it
 R

a
ti

o

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

(c) Storage Capacity

Fig. 31: D-value of hit ratio on EUA.

the probability that the user can be directly served by the
local edge server and its neighbor edge servers will increase,
and thus the average latency can be reduced. In this case, the
average latency of our caching strategy is about 25% lower
than that of RANDOM. In addition, the average training loss
and latency are shown in Fig. 12 and Fig. 15. Compared with
the Actor-Critic based MADRL method, the proposed MF-
ECS strategy converges faster in average training loss.

2) Performances on Edge Hit Ratio: After we test the
performances of different strategies on average latency, we
test the performances of these strategies on edge hit ratio, the
results of which are shown in Fig. 11, Fig. 14 and Fig. 19.
The edge hit ratio of these strategies can be ranked as MF-ECS
> MADRL > DQN > RANDOM. The RANDOM strategy
cannot specifically adjust the files cached by the edge servers
according to the users’ requests. Therefore, the edge servers’
hit ratio of RANDOM strategy is the lowest. Compared with
other strategies, MF-ECS considers the interaction between
agents, and also considers the impact of users’ mobility and
the correlation between different files, so it can achieve the
highest hit ratio under different conditions.

3) Performances on Total Latency and Neighbor Hit Ratio:
Next, we conduct the simulations to test performances of
different caching strategies on total latency, the results of

IEEE/ACM TRANSACTIONS ON NETWORKING 13

50 60 70 80 90
3

4

5

6

7

8

T
o

ta
l

L
at

en
cy

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) User number

50 60 70 80 90

60

70

80

90

E
d

g
e
 H

it
 R

a
ti

o
(%

) MF-ECS

 MADRL

 DQN

 RANDOM

(b) User number

50 60 70 80 90

20

25

30

35

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) User number

Fig. 32: Performance when changing the number of users on
roma/taxi.

50 60 70 80 90 100
4

6

8

10

12

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) File type number

50 60 70 80 90 100

40

50

60

70

80

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) File type number

50 60 70 80 90 100

15

20

25

30

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) File type number

Fig. 33: Performance when changing the type of files on
roma/taxi.

2 3 4 5 6
4

5

6

7

8

T
o

ta
l

L
at

en
cy

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) Neighbor number

2 3 4 5 6

50

60

70

80

90

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Neighbor number

2 3 4 5 6
10

15

20

25

30

35

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Neighbor number

Fig. 34: Performance when changing the number of neighbor
on roma/taxi.

which are shown in Fig. 16, Fig. 20 and Fig. 23. Similar to the
previous results, the proposed MF-ECS strategy can achieve
the lowest total latency under several different conditions.
Besides, the performances on neighbor hit ratio of different
strategies are shown in Fig. 17 and Fig. 21. Obviously, the
proposed caching strategy MF-ECS can achieve the highest
neighbor hit ratio. It is worth noting that there is a negative
correlation between hit ratio and latency. This is reasonable
since, due to the increase in the hit ratio, users’ requests can
be better satisfied by the edge servers, which can reduce the
probability of users obtaining files from the cloud server, and
thus the latency is reduced.

We also illustrate the results of changing the number of
edge servers and storage capacity, which are shown in Fig.
18 and Fig. 22. Similar to the previous results, as the server’s
storage capacity increases, the servers’ hit ratio will increase,
and the total latency will decrease. When the number of edge
servers increases, due to the increase of the number of users,
the servers’ hit ratio decreases due to the diverse requests of
users, and some requested files need to be obtained from the
cloud server, so the total latency will also increase.

4) Impact of Mobility and Request Prediction: As discussed
in Section V, we take the prediction of the users’ mobility and
requests as part of the observation. We conduct the simulations
on the two datasets to evaluate the impact of mobility and
request prediction on performances.

First of all, we analyze the impact of users’ mobility
prediction on the results. The performances of total latency on
two datasets are shown in Fig. 24 and Fig. 28. Compared with

80 90 100 110 120

10

20

30

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) User number

80 90 100 110 120

60

70

80

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) User number

80 90 100 110 120

20

25

30

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) User number

Fig. 35: Performance when changing the number of users on
EUA.

50 60 70 80 90 100
10

20

30

40

T
o

ta
l

L
a
te

n
c
y

(s
) MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) File type number

50 60 70 80 90 100

45

60

75

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) File type number

50 60 70 80 90 100

15

20

25

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) File type number

Fig. 36: Performance when changing the type of files on EUA.

2 3 4 5 6

10

12

14

16

18

T
o

ta
l

L
a
te

n
c
y

(s
)

 MF-ECS

 MADRL

 DQN

 RANDOM

x10
4

(a) Neighbor number

2 3 4 5 6
30

40

50

60

70

80

E
d

g
e
 H

it
 R

a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(b) Neighbor number

2 3 4 5 6

20

25

30

35

N
e
ig

h
b

o
r

H
it

 R
a
ti

o
(%

)

 MF-ECS

 MADRL

 DQN

 RANDOM

(c) Neighbor number

Fig. 37: Performance when changing the number of neighbor
on EUA.

MF-ECS, the total latency of MF-NMP is obviously larger.
This is because MF-NMP does not consider the users’ mobility
during the training of the caching strategy, so the total latency
will be larger.

Next, the simulations are conducted where the prediction
of users’ requests is ignored during the agents’ training. As
shown in Fig. 24 and Fig. 28, we can find that the performance
of MF-NRP is worse than that of MF-ECS and MF-NMP. It it
worth noting that the performance of MF-NMP is better than
that of MF-NRP. This is because in this paper, we consider the
mobility of the users when we predict the users’ requests, so
the effect of ignoring the users’ mobility on the result is less
than that of ignoring the request prediction. In other words,
in the mobile edge caching scenario, the prediction of users’
requests is more important than that of users’ mobility.

5) Performances on Different File Popularity Distributions:
We conduct different simulations on the two datasets under
different file popularity distributions, which are shown in Fig.
25 and Fig. 29. It is worth noting that in the simulations, the
total latency of RANDOM is larger than that of MF-ECS and
the hit ratio of RANDOM is lower than that of MF-ECS, so
the larger the D-value is, the better the performance of MF-
ECS is.

As shown in Fig. 26 and Fig. 30, compared with RANDOM,
the proposed caching strategy MF-ECS can achieve better
performances in three different distributions. Compared with
normal distribution and exponential distribution, MF-ECS can
achieve better performances in the case of uniform distribu-
tion. This is because in the case of normal distribution and

IEEE/ACM TRANSACTIONS ON NETWORKING 14

1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

F
re

q
u

e
n

c
y

Request Length

 Request length distribution

 Fit of request length distribution

x10
-1

(a) Uniform Distribution

1 2 3 4 5 6 7
0

1

2

3

4

F
re

q
u

e
n

c
y

Request Length

 Request length distribution

 Fit of request length distribution

x10
-1

(b) Normal Distribution

1 2 3 4 5 6 7
0

2

4

6

F
re

q
u

e
n

c
y

Request Length

 Request length distribution

 Fit of request length distribution

x10
-1

(c) Exponential Distribu-
tion

Fig. 38: Different distributions of user request length.

exponential distribution, the users will request some files with
high probabilities, thus the agents can make better caching
decisions and the D-value will decrease. With the increase of
storage capacity, D-value first increases and then decreases.
The reason for this phenomenon is that MF-ECS can better
decide which files should be cached in the storage when
the storage capacity is insufficient. After the storage space
is increased, the performances of different caching strategies
are gradually increased, since the users’ requests remain
unchanged. Similarly, as shown in Fig. 27 and Fig. 31, in terms
of hit ratio, MF-ECS can also achieve better performances than
RANDOM, which can make better use of neighbor and local
storage capacity.

6) Performances When Changing The Number of Users:
The performances when changing the number of users on two
datasets are shown in Fig. 32 and Fig. 35. It is not difficult
to find that the total latency increases with the increase of
the number of users, and the hit ratio and neighbor hit ratio
decrease with the number of users. This is reasonable because
as the number of users increases, the number of requests
received by the edge servers also increases; at the same
time, the requests made by different users may be different.
Therefore, under the limited storage capacity, the local and
neighbor edge servers cannot fully meet the users’ requests,
and need to obtain files from the cloud server, which greatly
increases the total latency and decreases the hit ratio.

7) Performances When Changing The Type of Files: The
total type of files is the number of contents, which means
how many files the users can request. In other words, the edge
server needs to decide which files to cache into its own storage
according to the type of files. As shown in Fig. 33 and Fig. 36,
the total latency increases with the increase of the file types,
this is because the increase of file types increases the action
space of the agents. However, the limited storage capacity
makes the users’ requests cannot always be met locally or
in the neighborhood, and need to be obtained from the cloud
server, which improves the total latency. For the same reason,
the total hit ratio and neighbor hit ratio will decrease with the
increase of file types, which can be seen from Fig. 33 and Fig.
36.

8) Performances When Changing The Number of Neighbor
Edge Servers: The performances of different caching strate-
gies on two datasets when changing the number of neighbor
edge servers are shown in Fig. 34 and Fig. 37. In terms of
total latency, the total latency decreases gradually with the
increase of the number of neighbor edge servers. This is
because with the increase of the number of neighbor edge
servers, users’ requests can be met more locally or in neighbor

9 16 25 36 49
0

1

2

3

4

D
-v

al
u

e
o

f
L

at
en

cy

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(a) Edge Server number

8 9 10 11 12
0.0

0.5

1.0

1.5

2.0

2.5

D
-v

al
u

e
o

f
L

at
en

cy

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(b) Storage Capability

9 16 25 36 49

10

12

14

16

D
-v

al
u

e
o

f
H

it
 R

at
io

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

(c) Edge Server number

8 9 10 11 12

8

10

12

14

16

D
-v

al
u

e
o

f
H

it
 R

at
io

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

(d) Storage Capability

Fig. 39: Performance when changing request length distribu-
tion on roma/taxi.

9 16 25 36 49
3

4

5

6

7

8
D

-v
al

u
e

o
f

L
at

en
cy ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(a) Edge Server number

8 9 10 11 12
1.5

2.0

2.5

3.0

3.5

4.0

D
-v

al
u

e
o

f
L

at
en

cy

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

x10
3

(b) Storage Capability

9 16 25 36 49

8

10

12

14

16

D
-v

al
u

e
o

f
H

it
 R

at
io ExponentialDistribution

 NormalDistribution

 UniformDistribution

(c) Edge Server number

8 9 10 11 12
8

10

12

14

D
-v

al
u

e
o

f
H

it
 R

at
io

 ExponentialDistribution

 NormalDistribution

 UniformDistribution

(d) Storage Capability

Fig. 40: Performance when changing request length distribu-
tion on EUA.

edge servers, thus reducing the number of requests for files
from the cloud server, then the total latency will be reduced.
Accordingly, the total hit ratio and neighbor hit ratio have
also increased. From the simulation results, we can see that
even if the number of neighbor edge server is not large, the
proposed caching strategy MF-ECS still performs better than
other caching strategies, and it is appliable.

9) Performances on Different Request Length Distributions:
We also conduct simulations under different user request
lengths distributions, which are shown in Fig. 38. The user
request length indicates the maximum number of files that
the user can request in a time slot. As shown in Fig. 39
and Fig. 40, the performance of the proposed caching strategy
MF-ECS has little difference under uniform distribution and
normal distribution, and the performance difference between
MF-ECS and RANDOM strategy is the smallest under expo-

IEEE/ACM TRANSACTIONS ON NETWORKING 15

nential distribution. This is because in the case of exponential
distribution, most users will only request one file in a time
slot, so the number of requests received by each edge server is
less than that in other distributions. In this case, the difference
between MF-ECS and RANDOM is the smallest. Under the
uniform distribution and normal distribution, the edge servers
will receive a large number of different requests, so the
difference between MF-ECS and RANDOM is large.

VII. CONCLUSION

In this paper, we investigate the mobile edge caching
problem under the storage capacity constraint, in order to
minimize the latency of users’ requests. To deal with the
mobile edge caching problem in the single-time-slot scenario,
we first estimate the utility of each file and propose a heuristic
caching strategy with an approximation ratio of 1+k1k2

2k1
to

decide which files to be cached in the edge servers. In order
to address the edge caching problem for the multiple-time-
slot scenario, we propose a caching strategy based on multi-
agent deep reinforcement learning called MF-ECS, where each
edge server is regarded as an agent and decides which files
should be cached in its storage. To deal with the cold start
problem, we use the proposed heuristic caching strategy to
optimize the results during the cold start phase. We conduct
extensive simulations based on generated data and three real-
world datasets: roma/taxi [14], epfl [15] and EUA datasets
[16]. The results show that our proposed caching strategies can
achieve the minimum latency compared with other strategies.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2018.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of Mobile Big Data, 2015, p.
37–42.

[3] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub,
and E. Benkhelifa, “Sdmec: Software defined system for mobile edge
computing,” in Proceedings of IEEE International Conference on Cloud
Engineering, 2016, pp. 88–93.

[4] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans-
actions on Mobile Computing, vol. 17, no. 8, pp. 1791–1805, 2018.

[5] N. Di, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance
prediction in peer-assisted on-demand streaming systems,” in Proceed-
ings of IEEE INFOCOM, 2011, pp. 421–425.

[6] H. Li, X. Ma, F. Wang, J. Liu, and K. Xu, “On popularity prediction
of videos shared in online social networks,” in Proceedings of the ACM
International Conference on Information & Knowledge Management,
2013, p. 169–178.

[7] J. Xu, V. D. S. Mihaela, J. Liu, and H. Li, “Forecasting popularity of
videos using social media,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 2, pp. 330–343, 2015.

[8] H. Jad, K. Nikhil, and D. Suhas, “Content caching and delivery over
heterogeneous wireless networks,” in Proceedings of IEEE INFOCOM,
2015, pp. 756–764.

[9] A. Khreishah and J. Chakareski, “Collaborative caching for multicell-
coordinated systems,” in Proceedings of IEEE INFOCOM, 2015, pp.
257–262.

[10] F. B. Mismar, B. L. Evans, and A. Alkhateeb, “Deep reinforcement
learning for 5g networks: Joint beamforming, power control, and inter-
ference coordination,” IEEE Transactions on Communications, vol. 68,
no. 3, pp. 1581–1592, 2020.

[11] F. Tang, Y. Zhou, and N. Kato, “Deep reinforcement learning for dy-
namic uplink/downlink resource allocation in high mobility 5g hetnet,”
IEEE Journal on Selected Areas in Communications, pp. 1–1, 2020.

[12] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement
learning for large-scale traffic signal control,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 1086–1095, 2020.

[13] K. Lou, Y. Yang, E. Wang, Z. Liu, T. Baker, and A. K. Bashir,
“Reinforcement learning based advertising strategy using crowdsensing
vehicular data,” IEEE Transactions on Intelligent Transportation Sys-
tems, pp. 1–13, 2020.

[14] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi,
“CRAWDAD dataset roma/taxi (v. 2014-07-17),” Downloaded from
https://crawdad.org/roma/taxi/20140717, Jul. 2014.

[15] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD dataset epfl/mobility (v. 2009-02-24),” Downloaded from https:
//crawdad.org/epfl/mobility/20090224, Feb. 2009.

[16] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with variable
sized vector bin packing,” Lecture Notes in Computer Science, vol.
11236 LNCS, pp. 230 – 245, 2018.

[17] Y. Zhang, M. S. Hossain, A. Ghoneim, and M. Guizani, “Cocme:
Content-oriented caching on the mobile edge for wireless communica-
tions,” IEEE Wireless Communications, vol. 26, no. 3, pp. 26–31, 2019.

[18] T. Zhang, X. Fang, Y. Liu, and A. Nallanathan, “Content-centric mobile
edge caching,” IEEE Access, vol. 8, pp. 11 722–11 731, 2020.

[19] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforcement
learning-based edge caching in wireless networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 6, no. 1, pp. 48–61,
2020.

[20] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement learning
approach,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 2499–2508.

[21] K. Zhang, J. Cao, H. Liu, S. Maharjan, and Y. Zhang, “Deep reinforce-
ment learning for social-aware edge computing and caching in urban
informatics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5467–5477, 2020.

[22] H. Wu, J. Li, J. Zhi, Y. Ren, and L. Li, “Edge-oriented collaborative
caching in information-centric networking,” in 2019 IEEE Symposium
on Computers and Communications (ISCC), 2019, pp. 1–6.

[23] M. Sarra, B. Samia, S. Khaled, and D. Mehammed, “New caching
system under uncertainty for mobile edge computing,” in 2019 Fourth
International Conference on Fog and Mobile Edge Computing (FMEC),
2019, pp. 129–134.

[24] S. Rahman, M. G. R. Alam, and M. M. Rahman, “Deep learning-based
predictive caching in the edge of a network,” in 2020 International
Conference on Information Networking (ICOIN), 2020, pp. 797–801.

[25] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 247–257, 2020.

[26] T. Zhao, P. Wang, and S. Li, “Traffic signal control with deep reinforce-
ment learning,” in Proceedings of International Conference on Intelligent
Computing, Automation and Systems, 2019, pp. 763–767.

[27] M. K. Sharma, A. Zappone, M. Assaad, M. Debbah, and S. Vassilaras,
“Distributed power control for large energy harvesting networks: A
multi-agent deep reinforcement learning approach,” IEEE Transactions
on Cognitive Communications and Networking, vol. 5, no. 4, pp. 1140–
1154, 2019.

[28] R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems 30, 2017,
pp. 6379–6390.

[29] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field
multi-agent reinforcement learning,” in Proceedings of International
Conference on Machine Learning, 2018, pp. 8869–8886.

[30] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient
multi-uav navigation for long-term communication coverage by deep
reinforcement learning,” IEEE Transactions on Mobile Computing,
vol. 19, no. 6, pp. 1274–1285, 2020.

[31] H. Wang, E. Wang, Y. Yang, J. Wu, and F. Dressler, “Privacy-preserving
online task assignment in spatial crowdsourcing: A graph-based ap-
proach,” in Proc. IEEE INFOCOM, 2022, pp. 570–579.

[32] H. Wang, Y. Yang, E. Wang, X. Liu, J. Wei, and J. Wu, “Bilateral
privacy-preserving worker selection in spatial crowdsourcing,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–14, 2022.

[33] W. Liu, Y. Yang, E. Wang, and J. Wu, “User recruitment for enhancing
data inference accuracy in sparse mobile crowdsensing,” IEEE Internet
of Things Journal, vol. 7, no. 3, pp. 1802–1814, 2020.

IEEE/ACM TRANSACTIONS ON NETWORKING 16

[34] W. Liu, L. Wang, E. Wang, Y. Yang, D. Zeghlache, and D. Zhang, “Rein-
forcement learning-based cell selection in sparse mobile crowdsensing,”
Computer Networks, vol. 161, pp. 102–114, 2019.

[35] C. H. Liu, C. Piao, and J. Tang, “Energy-efficient uav crowdsensing with
multiple charging stations by deep learning,” in IEEE INFOCOM 2020
- IEEE Conference on Computer Communications, 2020, pp. 199–208.

[36] D. P. Bertsekas, Dynamic programming and optimal control, 1995,
vol. 1.

[37] C. H. Liu, T. He, K. Lee, K. K. Leung, and A. Swami, “Dynamic
control of data ferries under partial observations,” in Proceedings of
IEEE Wireless Communication and Networking Conference, 2010, pp.
1–6.

[38] M. Lin, W.-J. Hsu, and Z. Q. Lee, “Predictability of individuals’ mobility
with high-resolution positioning data,” in Proceedings of the ACM
Conference on Ubiquitous Computing, 2012, pp. 381–390.

[39] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, “An efficient prediction-
based user recruitment for mobile crowdsensing,” IEEE Transactions on
Mobile Computing, vol. 17, no. 1, pp. 16–28, 2018.

[40] Y. Yang, W. Liu, E. Wang, and J. Wu, “A prediction-based user selection
framework for heterogeneous mobile crowdsensing,” IEEE Transactions
on Mobile Computing, vol. 18, no. 11, pp. 2460–2473, 2019.

[41] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

Yongjian Yang received his B.E. degree in au-
tomatization from Jilin University of Technology,
Changchun, Jilin, China in 1983; his M.E. degree
in computer communication from Beijing University
of Post and Telecommunications, Beijing, China
in 1991; and his Ph.D. in software and theory of
computer from Jilin University, Changchun, Jilin,
China in 2005. He is currently a professor and a
PhD supervisor at Jilin University, the Vice Dean
of the Software College of Jilin University, Direc-
tor of Key lab under the Ministry of Information

Industry, Standing Director of the Communication Academy, and a member
of the Computer Science Academy of Jilin Province. His research interests
include: network intelligence management, wireless mobile communication
and services, and wireless mobile communication.

Kaihao Lou received the B.E. degree in software
engineering from Jilin University, Changchun, Jilin,
China, in 2017, his M.S. degree in computer science
and technology from Jilin University, Changchun in
2020. He is currently pursuing the Ph.D. degree in
computer science and technology from Jilin Univer-
sity, Changchun, Jilin, China. His current research
focuses on mobile crowdsensing and multi-agent
reinforcement learning.

En Wang received his B.E. degree in software engi-
neering from Jilin University, Changchun, in 2011,
his M.E. degree in computer science and technology
from Jilin University, Changchun, in 2013, and his
Ph.D. in computer science and technology from Jilin
University, Changchun, in 2016. He is currently a
Professor in the Department of Computer Science
and Technology at Jilin University, Changchun. He
is also a visiting scholar in the Department of Com-
puter and Information Sciences at Temple University
in Philadelphia. His current research focuses on the

efficient utilization of network resources, scheduling and drop strategy in
terms of buffer-management, energy-efficient communication between human-
carried devices, and mobile crowdsensing.

Wenbin Liu received the B.S. degree in physics
and the Ph.D. degree in computer science and
technology from Jilin University, China, in 2012
and 2020, where he is currently a Postdoctoral
Researcher in Dingxin Scholar Program with the
College of Computer Science and Technology. He
was also a visiting Ph.D. student in the Wire-
less Networks and Multimedia Services Department,
Telecom SudParis/Institut Mines-Telecom, France.
His research interests include Mobile CrowdSensing,
Mobile Computing, and Ubiquitous Computing.

Jianwen Shang received the B.E. degree in com-
puter science and technology from Jilin University,
Changchun, Jilin, China, in 2020. He is currently
pursuing the M.S. degree in computer science and
technology from Jilin University, Changchun, Jilin,
China. His current research focuses on mobile edge
computing.

Xueting Song received the B.E. degree in software
engineering from Jilin University, Changchun, Jilin,
China, in 2020. She is currently pursuing the M.S.
degree in computer science and technology from
Jilin University, Changchun, Jilin, China. Her cur-
rent research focuses on mobile edge computing.

Dawei Li is an Assistant Professor in the Depart-
ment of Computer Science, Montclair State Univer-
sity. He received the Ph.D. degree in the Department
of Computer and Information Sciences, Temple Uni-
versity in 2016. He received the Bachelor’s degree
from the Advanced Class, Department of Electron-
ics and Information Engineering, Huazhong Uni-
versity of Science and Technology, Wuhan, Hubei,
People’s Republic of China. His research interest
includes energy-aware task scheduling on multi-
cores/multiprocessors, data center networks, cloud

computing, and big data processing.

Jie Wu is the Director of the Center for Networked
Computing and Laura H.Carnell professor at Temple
University. He also serves as the Director of Interna-
tional Affairs at College of Science and Technology.
He served as Chair of Department of Computer and
Information Sciences from the summer of 2009 to
the summer of 2016 and Associate Vice Provost for
International Affairs from the fall of 2015 to the
summer of 2017. Prior to joining Temple University,
he was a program director at the National Science
Foundation and was a distinguished professor at

Florida Atlantic University. His current research interests include mobile
computing and wireless networks, routing protocols, cloud and green com-
puting, network trust and security, and social network applications. Dr.
Wu regularly publishes in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, including IEEE Transactions
on Mobile Computing, IEEE Transactions on Service Computing, Journal
of Parallel and Distributed Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006, IEEE
IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016, and
IEEE CNS 2016, as well as program co-chair for IEEE INFOCOM 2011 and
CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Committee
on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

