
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 1

AoI-Aware, Digital Twin-Empowered IoT Query
Services in Mobile Edge Computing

Jing Li, Song Guo, Fellow, IEEE, Weifa Liang, Senior Member, IEEE, Jie Wu, Fellow, IEEE,
Quan Chen, Member, IEEE, Zichuan Xu, Member, IEEE, Wenzheng Xu Member, IEEE, and

Jianping Wang, Fellow, IEEE

Abstract—The Mobile Edge Computing (MEC) paradigm
gives impetus to the vigorous advancement of the Internet of
Things (IoT), through provisioning low-latency computing ser-
vices at network edges. The emerging digital twin technique has
been explosively growing in the IoT community, which bridges the
gap between physical objects and their digital representations in
an MEC network, enabling real-time monitoring and analysis,
simulations on the dynamics of systems, accurate predictions
on behaviours of objects, and optimization on network resource
allocation. In this paper, we consider AoI-aware query services
in an MEC network empowered by digital twin technology for
diverse IoT applications. We aim to maximize the weighted
sum of the accumulative freshness of query results measured
by the Age of Information (AoI) and the total query service
delay of admitted requests. To this end, we first formulate a
novel minimization problem that explores nontrivial trade-offs
between the two conflicting optimization objectives: the freshness
of query results and service delays, and we show the NP-
hardness of the problem. Then, we propose an approximation
algorithm with a provable approximation ratio for the problem,
at the expense of bounded computing capacity violations. We
also develop a heuristic for the problem without any capacity
violations. We finally evaluate the performance of the proposed
algorithms via simulations. The simulation results demonstrate
that the proposed algorithms are promising, and outperform the
comparison benchmarks.

Index Terms—Digital twin, mobile edge computing, query
services, age of information, IoT applications, service delays,
approximation algorithms, resource allocation and optimization

I. INTRODUCTION

The last decade witnessed the unprecedented explosion of
Internet of Things (IoT) applications by culminating the pro-
liferation of IoT devices connected with the Internet, thereby
permeating the modern-day world and flourishing the potential
for brilliant living [27]. However, most IoT devices have
limited resources and energy for running IoT applications on
themselves, instead, they usually offload computing-intensive

J. Li, W. Liang and J. Wang are with the Department of Computer Science,
City University of Hong Kong, Hong Kong, P. R. China. Emails: {jing.li,
weifa.liang, jianwang}@cityu.edu.hk

S. Guo is with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Hong Kong, P. R. China.
Email: songguo@cse.ust.hk

J. Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, USA. Email: jiewu@temple.edu

Q. Chen is with the School of Computer, Guangdong University of
Technology, 510006, P. R. China. Email: quan.c@gdut.edu.cn

Z. Xu is with the School of Software, Dalian University of Technology,
Dalian 116620, P. R. China. Email: z.xu@dlut.edu.cn

W. Xu is with the College of Computer Science, Sichuan University,
Chengdu 610000, P. R. China. Email: wenzheng.xu@scu.edu.cn

tasks to remote clouds that may cause high service costs and
prolonged service delays [8]. Such a computing paradigm is
inappropriate for many delay-sensitive IoT applications due
to stringent end-to-end delay requirements [32]. Moreover,
in traditional IoT architectures, IoT devices store data in
their backlogs for future diagnosis and improvement, which
however may lead to stale feedback, unverified updates, and
severe malfunctions [34].

Mobile Edge Computing (MEC) has been envisaged as a
promising paradigm to provide computing resource (cloudlets)
at the edge of the core network in the proximity of users
to mitigate user service delays [4], [16]–[18]. The emerging
digital twin technique creates digital avatars for IoT devices in
MEC networks catering to massive data continuously gener-
ated from IoT devices, through leveraging integrated data and
simulations to provide timely data analysis and modeling [23].
The marriage of MEC and digital twin techniques drives
new opportunities and challenges for IoT service provisioning,
accurate prediction, emulations, optimization, and decision-
making, facilitating efficient network management and re-
source allocations [15], [24].

Motivated by the recent studies in digital twin-empowered
service provisioning in MEC [21], [24], [28], [31], [33], [34],
the accuracy and fidelity of a service model are determined
by how often it is retrained by the update data from its source
objects. However, objects are not always accessible by the
service model, due to their mobility and intermittent contact
with the network. To overcome the unavailability of objects,
there is a digital twin for each object in the MEC network,
which is a virtual mirror of the object to reflect the status
of the object. Thus, the service model always can access its
DT status and data instead of the object itself. To maintain
the freshness of the DT data of an object, the object needs
to upload its update data to its DT quite often. In this study,
we consider how to maintain the freshness of query results
while minimizing query response delays of IoT applications
in an MEC network empowered by digital twins of sensors,
where sensors are scattered at diverse geographical locations
to provide continuous sensory readings of time-varying en-
vironmental parameters (e.g., humidity or temperature). On
account of the system dynamics, IoT applications usually rely
on real-time and predictive data [9], however, portable sensors
have limited computing, storage and communication resources.
As a promising cure, the network service provider can create
a digital twin for each sensor in a cloudlet to process its
generated data and simulate its behaviours in the network [28].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 2

For instance, digital twins facilitate an IoT application for
forecasting weather and climate patterns, which is beneficial
for smart farming.

The digital twin of each sensor contains not only its
historical update locations, uploading times, the status of the
object but also its update data at each time. We refer to these
data as the DT data of the sensor, which can be used for service
model training and retraining with the ultimate objective of
providing intelligent services by Artificial Intelligence (AI)
or Machine Learning (ML) algorithms. To maintain the state
freshness of digital twins, it is desirable that each sensor can
upload newly collected data to its digital twin on time. How-
ever, the volume of data uploaded by each sensor usually is
constrained because of the limited energy and cost imposed on
the sensor [2]. It thus poses a great challenge for each digital
twin to instruct its sensor when performing data uploading,
in order to provide the Age of Information (AoI)-aware IoT
query services, subject to energy and cost capacities on the
sensor, where a common metric to measure the data freshness
is the AoI [1], [40], i.e., the duration of the data from its
generation to its usage.

Quality of Services (QoS) of user queries on digital twin
data usually is measured by two metrics: the freshness of
query results and query service delays [2], [31], [34]. Meeting
QoS requirements of different users for their IoT applications
in MEC poses great challenges. First, the placement of IoT
application instances to cloudlets impacts the freshness of
query results and query service delays, e.g., a long distance
between a cloudlet hosting an IoT application instance and its
digital twins leads to a stale query result and a high service
delay. How to deploy IoT application instances of users to the
MEC network to optimize these two metrics is challenging.
Second, it is very difficult to determine whether to utilize the
current data at a digital twin for a query to have a lower
query service delay, or to wait for the next update data of
the digital twin to obtain a lower AoI on the query result.
Finally, to provide fresh data for as many queries as possible,
it is challenging to determine when scheduling sensors to
upload their update data and synchronize with their digital
twins over a finite time horizon, considering limited energy
and cost budgets on sensors. In this paper, we will address
the aforementioned challenges and explore nontrivial trade-
offs between the freshness of query results and query service
delays.

The novelty of this study lies in IoT service provisioning
in a DT-empowered MEC network, by jointly considering the
freshness of query results and query service delays, through
DT update scheduling and IoT application instance place-
ments. With the aim to minimize the weighted sum of AoIs of
query results and service delays of admitted queries for a given
time horizon, efficient approximation and heuristic algorithms
for the problem are devised.

The main contributions of this paper are as follows.
• We formulate a novel minimization problem that jointly

considers the accumulative freshness of query results and
the total query service delay of admitted IoT service
requests in an MEC network empowered by digital twins,
and show the NP-hardness of the problem.

• We devise an approximation algorithm with a provable
approximation ratio for the problem at the expense of
bounded computing capacity violations. Meanwhile, we
also develop an efficient heuristic algorithm for the prob-
lem without any capacity violations.

• We evaluate the algorithm performance via simulations.
The simulation results demonstrate that the proposed
approximation algorithm is promising.
The rest of the paper is arranged as follows. Section II

surveyed related works of digital twins in MEC. Section III
includes the system model and the problem definition. Sec-
tion IV proposes an approximation algorithm for the problem
with bounded capacity violations. Section V proposes a heuris-
tic algorithm for the problem without any capacity violation.
Section VI evaluates the performance of the proposed algo-
rithms, and Section VII concludes the paper and points out a
potential research topic from the research in this paper.

II. RELATED WORK

Lots of efforts have been taken in recent years to facilitate
delay-sensitive IoT service provisioning in MEC platforms [6],
[8], [17], [27], [32], [36], [38]. Gedawy et al. [6] designed
heuristic algorithms to optimize the network throughput, as
well as the energy consumed by IoT applications. Goudarzi
et al. [8] developed an IoT application placement technique
in MEC by the Memetic Algorithm (MA) to mitigate the
execution time and energy consumption. Li et al. [17] offered
approximate and online solutions to handle admitting multi-
source IoT applications in MEC environments. Ma et al. [27]
considered truthfulness and budget-balance of IoT services,
by designing a truthful combinatorial double auction mech-
anism. Tuli et al. [32] explored the complicated workload
dynamics of IoT devices and heterogeneous resources in edge-
cloud networks. They outlined a policy gradient-based learning
method and captured the temporal patterns to build a frame-
work for resource management in stochastic environments.
Wu et al. [36] developed a distributed SDN controller for
coordinating mobile IoT devices, enabling efficient location
authentication and assignment between IoT devices and access
points. These studies however did not consider data freshness
of IoT service provisioning.

There are extensive studies on supplying fresh data of
the provided IoT services within MEC environments, through
minimizing the AoI [1]–[3], [11], [22], [35], [37], [43], [44].
Corneo et al. [2] investigated the problem of prompt dissemi-
nation of sensor updates to optimize the AoI of IoT services.
Li et al. [11] proposed a heterogeneous federated multi-agent
reinforcement learning algorithm to minimize the AoI in an
Unmanned Aerial Vehicle (UAV)-assisted MEC system. Liu
et al. [22] studied the batch generation and multi-path com-
munication in MEC, and proposed approximation algorithms
to minimize the peak and average AoI, while meeting the
throughput requirements. Wang et al. [35] devised an offline
scheduling algorithm and an online learning-based algorithm
for minimizing the average age of critical information. Xu
et al. [37] modelled the quality of big data analytic services
based on the Age of Data (AoD) for IoT applications, and

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 3

developed an online learning method to minimize the AoD
in MEC, through leveraging the multi-armed bandit approach.
Zhang et al. [43] explored a nontrivial trade-off between the
AoI and the service delay, and proposed an efficient algorithm
to mitigate the average service delay whilst meeting AoI
requirements of user requests. Zhou et al. [44] addressed the
dynamic demands of users with spectral efficiency features,
through designing a congestion-based paradigm and an AoI-
based paradigm to achieve network stability and maximize
the throughput. However, none of these mentioned works
incorporated the digital twin technique into their problem
formulations.

MEC platforms empowered by the emerging digital twin
technique enable the platforms to provide efficient services for
various IoT applications [12], [14], [15], [20], [23], [24], [28],
[31], [33], [34]. Li et al. [14], [15] estimated the reliability
of virtual network functions by digital twins, and devised
efficient algorithms to provide IoT services enabled by service
function chains. Li et al. [12], [20] also incorporated the
mobility of objects in edge-cloud environments, and proposed
approximate and online solutions to provide AoI-aware query
services to users built upon the digital twin data. Lin et al. [23]
proposed a congestion control scheme to meet the dynamic
demands of digital twin services by Lyapunov optimization.
Lu et al. [24] designed a federated learning algorithm built
on the blockchain technique to improve security and data
privacy in digital twin-assisted MEC networks. Sun et al. [31]
utilized digital twins to minimize the offloading latency by the
Lyapunov optimization, considering user mobility and service
migration. Vaezi et al. [33] devised approximation algorithms
to assign digital twins to execution servers at network edge
to minimize the longest request-response delay, considering
the data age constraints. Wang et al. [34] formulated two
problems for managing digital twins to optimize the data
fidelity and the reveal delay, respectively, where the data
fidelity is the expected time from the production of the data to
its delivery, and the reveal delay is defined as the time duration
after the production of the latest collected log. They adopted
the blockchain technique to design a sustainable digital twin
management framework. These mentioned studies however did
not investigate the joint optimization of AoIs of query results
and query service delays for digital twin-empowered IoT
services. Liang et al. [21] investigated the relationship between
the freshness of a service model and the AoIs of the DT data
for the model training. They devised an efficient algorithm
for minimizing the cost of various resources consumed to
achieve the model freshness. Zhang et al. [42] leveraged
DT models to optimize device scheduling and MEC resource
allocation, aiming to maximize utility across FL services. They
developed heuristic and constant approximation algorithms for
offline multi-FL services, and a DRL algorithm with dynamic
bandwidth and moving client conditions settings.

In contrast to the aforementioned studies, in this paper we
study IoT service provisioning in an MEC network empowered
by the digital twin technique. We deal with AoI-aware query
services with the aim to minimize the weighted sum of the
accumulative AoI of query results and the total query delay of
admitted queries, by striving for fine trade-offs between these

CloudletAccess Point
(AP)

Digital twin
 of a sensor

Sensor 2 Sensor 3 Sensor 4

Sensor 1
User 1

User 2

User 3

User 4

Fig. 1. An MEC network consists of 5 Access Points (APs) and their co-
located cloudlets. There are 4 sensors with each having a deployed digital
twin, and 4 users requesting query services.

two conflicting optimization objectives. It must be mentioned
that part of this paper also appeared in a conference paper [13].

III. PRELIMINARIES

In this section, we introduce the system model and define
the problem.

A. System model

An MEC network can be modelled by an undirected
graph G = (V,E), where V is the set of Access Points (APs),
and E is the set of links connecting APs. Each AP is co-located
with a cloudlet that is connected through an optical cable, and
the transmission delay between them is negligible [26]. Denote
by v ∈ V a cloudlet or its co-located AP for simplicity, and let
Cv be the computing capacity of cloudlet v. Each link e ∈ E
is associated with a transmission delay de to transmit one unit
data along the link [39].

Let S be a set of sensors deployed across diverse geo-
graphical locations under the coverage of APs. We assume
that each sensor s ∈ S has a digital twin DT (s) deployed
in a cloudlet. Each digital twin DT (s) needs to synchronize
with its sensor s often to maintain its state consistency as
follows. Sensor s sends its collected data to its nearest AP
vs, assuming that its DT (s) has been placed in cloudlet vs.
Figure. 1 illustrates an example of an MEC network with
digital twins deployed in its cloudlets.

B. User queries on digital twin data of sensors

We assume that MEC network G runs in a discrete-time
manner, and the monitoring time horizon T is composed of |T|
equal time slots. Denote by U the set of users with different
IoT applications requesting data from digital twins of sensors.
Assume that each user u ∈ U deploys an instance for his
IoT application in a cloudlet that requires the amount cu of
computing resource in the beginning of time horizon T, and
user u issues queries (as his IoT application) for processing
data from digital twins of different sensors in the beginning
of different time slots.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 4

Denote by Tu ⊆ T the set of time slots in which user u
will issue his queries of data retrieving and processing, i.e.,
the deployed IoT application of user u requests the data from
the digital twin of a sensor su at each time slot t ∈ Tu ⊆ T.
For example, given T = {1, 2, 3}, the IoT application of user
u requests data from digital twins of sensors s1 and s2 in the
beginning of time slots 1 and 3, respectively, with Tu = {1, 3}.

C. Updating digital twins of sensors

Given a limited energy budget on each sensor s ∈ S,
we assume that sensor s can deliver at most Ks updates to
its digital twin DT (s) within time horizon T. The number of
updates of any sensor is no larger than the number of time
slots for the given monitoring time horizon, i.e., Ks ≤ |T|,
∀s ∈ S. For example, given T = {1, 2, 3} and Ks = 2, sensor
s can send its updates at the beginning of time slots 1 and 3,
respectively.

The data uploading rate µs from sensor s to its allocated
AP vs can be calculated by the Shannon-Hartley theorem [7],
where µs = Bs ·log2(1+Ps/(dist

α
s ·η2)), Bs is the bandwidth

capacity of AP vs, Ps is the transmission power of sensor s,
dists is the distance between sensor s and AP vs, η2 is the
noise power, and α is the path loss factor, i.e., α = 2 or 4
with regard to a short or large distance [4]).

Denote by ρs the volume of data per update of sensor s.
Let ρs/µs be the data uploading delay from s to cloudlet vs
in which its digital twin DT (s) is located. Denote by fs the
processing rate of DT (s) in cloudlet vs. The processing delay
of DT (s) thus is ρs/fs.

The update delay tupdates of digital twin DT (s) consists
of the data uploading delay from sensor s to cloudlet vs and
the processing delay of DT (s) in cloudlet vs, i.e.,

tupdates = ρs/µs + ρs/fs. (1)

Suppose the current time slot is t, and the current data of
digital twin DT (s) (or the received result of a user) is the last
updated one at time slot t0 with t0 ≤ t, the Age of Information
(AoI) of this generated data is defined as (t− t0) [40]. It can
be seen that tupdates is the minimum AoI of data at DT (s).

We assume that each DT (s) of sensor s ∈ S has
generated the initial data with the AoI of tupdates in the
beginning of time horizon T. In the sequel, the AoI of the
data at DT (s) will linearly increase until the next update
from sensor s. Assuming that sensor s sends its first update
to DT (s) at time slot t, then DT (s) will generate the data
that will be available for IoT applications at time (t+tupdates),
and the AoI of the data at DT (s) decreases to tupdates at time
(t + tupdates). The AoI of the data of DT (s) then linearly
increases again until receiving the next update from s. This
procedure continues until the time horizon T finishes.

D. QoS Model

We introduce a novel metric to measure the Quality of
Service (QoS) of query services built upon digital twin data of
sensors, which is the weighted sum of AoIs of query results,
and query service delays (i.e., the duration between the query
issuing time and query result receiving time). Recall that the

IoT application of user u ∈ U requests data from DT (su,t)
of sensor su,t at each time slot t ∈ Tu ⊆ T. In the following,
we omit subscripts of su,t for notation simplicity, i.e., replace
su,t with s. Cloudlet vs hosts DT (s) of sensor s. We assume
cloudlet vu hosts the IoT application instance of user u. Denote
by ds,u the transmission delay of transmitting a unit of data
through the shortest path from cloudlet vs to cloudlet vu [39].
Let λs be the volume of data at DT (s) to be transferred, its
transmission delay from DT (s) to the IoT application instance
of u is λs · ds,u. With the processing rate fu of the IoT
application instance of user u, the processing delay of the
IoT application of user u in vu is λs/fu.

At each time slot t ∈ Tu, a user u needs to determine
whether to retrieve the current data at DT (s) or wait for its
next update. If the user prefers a lower query service delay to a
fresher AoI of the data, the user can retrieve the data of DT (s)
immediately; otherwise the user can wait for the next update
of DT (s) to obtain fresher AoI, at the expense of more query
service delays. Note that the volume of a query result usually is
small compared with query data, and the transmission delay
of the query result between the cloudlet processing the IoT
application and the user thus can be negligible [31].

Assume that the IoT application of user u has been
deployed in cloudlet vu and user u issues a query for the data
of digital twin DT (s) of sensor s at time slot t. We analyze
the freshness of the query result and query service delay of
this query by distinguishing the following two cases.

Case 1. User u retrieves the current data at DT (s). Let t0
be the updating time of sensor s to generate the current data
of DT (s). The AoI of query result of user u is λs · ds,u +
λs/fu + t − t0, where λs · ds,u is the transmission delay of
transmitting the data from DT (s) in cloudlet vs to cloudlet vu
hosting the IoT application of user u, λs/fu is the processing
delay of the IoT application in cloudlet vu, and (t− t0) is the
AoI of the generated data at DT (s). The query service delay
of user u is λs · ds,u + λs/fu.

Case 2. User u will retrieve the newly generated data of
DT (s) through waiting for its next update. Because the least
AoI of the generated data at DT (s) is tupdates by Eq. (1), the
AoI of the query result is λs · ds,u + λs/fu + tupdates . Let t
and t′ be the current time slot and the next update time slot
of DT (s). It can be seen that the data generated by the next
update of DT (s) will be available for IoT applications at time
(t′+tupdates). Therefore, the IoT application of u needs to wait
for (t′ + tupdates − t) time for the next update of DT (s). The
query service delay of user u thus is λs · ds,u + λs/fu + t′ +
tupdates − t.

In summary, if user u ∈ U issues a query at time slot
t ∈ Tu ⊆ T, then the AoI WAoI(u, t) of the query result is

WAoI(u, t)=

{
λs ·ds,u+λs/fu+t−t0, Case 1

λs · ds,u+λs/fu+tupdates , Case 2
(2)

and the query service delay Wdelay(u, t) is

Wdelay(u, t)=

{
λs ·ds,u+λs/fu, Case 1

λs ·ds,u+λs/fu+t′+tupdates −t, Case 2
(3)

Let β be a constant with 0 ≤ β ≤ 1. We define the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 5

weighted sum W (u, t) of the AoI of the query result and query
service delay of a query issued by user u at time t as follows.

W (u, t) = β ·WAoI(u, t) + (1− β) ·Wdelay(u, t). (4)

E. Problem definition

Definition 1: Given an MEC network G = (V,E), a set
S of sensors with limited energy capacity on each of them,
a positive integer Ks for each sensor s ∈ S, a set U of
users issuing queries for IoT applications on sensors, and a
finite time horizon T. Assuming digital twins of sensors have
already been deployed in cloudlets of V of G. Also, assume
that the query profile of each user u ∈ U for time horizon
T is given (i.e., it is given that user u will retrieve which
sensors at which time slots) too, and user u may retrieve data
from digital twins of sensors in the beginning of time slots in
Tu ⊆ T. The minimization problem of jointly considering the
accumulative freshness of query results and the total service
delay of admitted queries, by placing IoT application instances
of users to cloudlet, such that the average weighted sum of the
accumulative AoI of query results and the total query delay
of admitted queries for time horizon T is minimized, i.e.,

Minimize
∑

u∈U

∑
t∈Tu

W (u, t)/
∑

u∈U
|Tu|, (5)

subject to computing capacities on cloudlets.
All symbols adopted are listed in Table I.

F. NP-hardness of the defined problem

Theorem 1: The minimization problem is NP-hard.

Proof The NP-hardness of the minimization problem is shown
through a reduction from the minimum-cost Generalized As-
signment Problem (GAP).

Consider a special case of the problem with a given
update scheduling of each sensor over the time horizon,
and users can only retrieve the current data at digital twins.
Then, we only need to determine the IoT application instance
placements of users. Let W ′(u, t, v) be the value of W (u, t)
by Eq. (4) for the query of user u ∈ U issuing at time t if his
IoT application instance is deployed in cloudlet v ∈ V . We
reduce the problem to the minimum-cost GAP as follows.

In a minimum-cost GAP instance, there are |V | bins, and
each bin v ∈ V possesses a capacity Cv , i.e., computing
capacity of cloudlet v. There are |U | items and each item
u ∈ U has a size cu, i.e., the computing resource demand of
IoT application instance of user u. Assigning item u to bin
v will introduce a cost

∑
t∈Tu

W ′(u, t, v). The minimum-cost
GAP is to minimize the total cost via assigning items to bins.

This minimum-cost GAP is equivalent to a special case
of the minimization problem. The minimization problem is
NP-hard as the minimum-cost GAP is NP-hard [29]. ■

IV. APPROXIMATION ALGORITHM WITH BOUNDED
CAPACITY VIOLATIONS

In this section, we deal with the minimization prob-
lem. Specifically, we decompose the problem into two sub-
problems: the update scheduling problem, and the IoT appli-
cation placement problem. We propose an optimal solution to

the former and an approximate solution for the latter, thereby
proposing an approximation algorithm for the minimization
problem.

We observe that optimization objective (5) is equivalent
to minimizing the total weighted sum of AoIs of query results
and the total query service delay of all queries over a given
time horizon, i.e.,

Minimize
∑

u∈U

∑
t∈Tu

W (u, t). (6)

Considering a query issued by user u at time slot t for
the data at DT (s). Let t0 be the updating time of sensor s
to generate the data at DT (s) at time slot t with t0 ≤ t.
We distinguish it into two cases: Case 1. There is no further
update of sensor s before the time horizon ends. Case 2. The
next update of sensor s is sent at time t′ with t0 < t′ and
t < t′ + tupdates .

To minimize the optimization objective (6), two functions
W1(u, t) and W2(u, t) are defined as follows.

W1(u, t)=

β · (t− t0), if Case 1

min{β ·(t− t0), tupdates +(1−β)·(t′−t)},
if Case 2

(7)

and

W2(u, t) = λs · ds,u + λs/fu. (8)

Especially, if there is no further update, W1(u, t) is β·(t−
t0), with (t− t0) the AoI of the data at DT (s) when issuing
the query. Otherwise, W1(u, t) is the smaller one between
β · (t− t0) and tupdates + (1− β) · (t′ − t), and (t′ − t) is the
duration between the query issuing time and the sending time
of the next update. W2(u, t) is the query service delay of user
u that consists of the transmission delay of data transfer from
DT (s) in cloudlet vs to cloudlet vu hosting the IoT application
and the processing delay of the IoT application in cloudlet vu.

We claim that (i) the value of W1(u, t) is determined by
the update scheduling of sensor s, that is whether to retrieve
current data at DT (s) or wait for its next update; and (ii)
the value of W2(u, t) is determined by the IoT application
placement of user u, as shown in Lemma 2 later.

We now define two sub-problems: the update scheduling
problem and the IoT application placement problem, which
correspond to the two defined functions W1(u, t) in Eq. (7)
and W2(u, t) in Eq. (8), respectively.

Definition 2: Given an MEC network G = (V,E), a set S
of sensors, a positive integer Ks for each sensor s ∈ S, a set U
of users with queries for IoT applications on sensors, and time
horizon T, assuming digital twins of sensors have already been
deployed in cloudlets of V , each user u ∈ U may retrieve data
from digital twins of sensors at the beginning of time slots in
Tu ⊆ T, and we further assume that the query profile of each
user u is given (i.e., at which time slot, it will retrieve the
data of digital twins of which sensors). The update scheduling
problem in G is to

Minimize
∑

u∈U

∑
t∈Tu

W1(u, t), (9)

where W1(u, t) is defined in Eq. (7), by scheduling the Ks

updates for each sensor s ∈ S over the time horizon T.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 6

TABLE I
TABLE OF SYMBOLS

Notations Descriptions

G = (V,E) G is an MEC network, V is the set of APs (cloudlets) and E is the set of links between APs.

Cv The computing capacity of cloudlet v.

de The transmission delay de to transmit one unit data along the link e ∈ E.

S, DT (s), vs and vu A set of sensors, a digital twin of sensor s ∈ S, the cloudlet holding DT (s), and the cloudlet holding the IoT application
of user u.

T The monitoring time horizon.

U and cu A set of users and the amount of computing resource of the IoT application of user u.

Tu The set of time slots in which user u will issue his queries of data retrieving and processing.

Ks The number of the updates of sensor s delivered to its digital twin within the time horizon.

µs The data uploading rate from sensor s to its allocated AP vs.

Bs, Ps, and dists The bandwidth of AP vs, the transmission power Ps of sensor s, the distance between sensor s and AP vs.

η2 and α The noise power and the path loss factor.

ρs The volume of data per update of sensor s.

fs The processing rate of DT (s) in cloudlet vs

tupdates The update delay of digital twin DT (s) defined by Eq. (1)

ds,u The transmission delay of transmitting a unit of data through the shortest path from cloudlet vs to cloudlet vu.

λs The size of provided data at DT (s).

t0 The update sending time of sensor s to generate the current data at DT (s).

t′ The next update sending time of sensor s.

WAoI(u, t) and Wdelay(u, t) The AoI of the query result by Eq. (2) and the query service delay by Eq. (3).

β A constant with 0 ≤ β ≤ 1 associated with the AoI of the query result.

W1(u, t) and W2(u, t) The functions defined by Eq. (7) and Eq. (8), respectively.

xu,v A binary variable, indicating whether the IoT application instance of user u ∈ U is deployed in cloudlet v ∈ V .

W ′
2(u, t, v) The value of W2(u, t) for the query of user u issuing at time slot t if the IoT application instance of user u is deployed

in cloudlet v.
Qs The set of queries of users in U to request data of digital twin DT (s) of sensor s over time horizon T.

Definition 3: Given an MEC network G = (V,E), a set
S of sensors, a positive integer Ks for each s ∈ S, a set U
of users with IoT application queries, and time horizon T,
assuming digital twins of sensors have already been deployed
in cloudlets of V in G, each user u ∈ U may retrieve data
from digital twins of sensors at the beginning of time slots in
Tu ⊆ T. The IoT application placement problem in G is to

Minimize
∑

u∈U

∑
t∈Tu

W2(u, t), (10)

where W2(u, t) is defined in Eq. (8), by deploying IoT
applications of users in U on cloudlets, subject to computing
capacities on cloudlets.

Alternatively, there is an Integer Linear Programming
(ILP) formulation for the IoT application placement problem
as follows.

Let xu,v be a binary variable, where xu,v = 1 means the
IoT application instance of user u ∈ U is deployed in cloudlet
v ∈ V , and xu,v = 0 otherwise. Let W ′

2(u, t, v) be the value
of W2(u, t) by Eq. (8) for the query of user u issuing at time
slot t if its IoT application instance is deployed in cloudlet v.
An ILP solution for the IoT application placement problem is
provided as follows.

Minimize
∑

u∈U

∑
t∈Tu

∑
v∈V

(W ′
2(u, t, v)·xu,v) (11)

subject to: ∑
u∈U

cu · xu,v ≤ Cv, ∀v ∈ V (12)

∑
v∈V

xu,v = 1, ∀u ∈ U (13)

xu,v ∈ {0, 1}, ∀u ∈ U, ∀v ∈ V. (14)

Constraint (12) ensures that the computing capacity con-
straints on cloudlets can be met. Constraint (13) ensures that
each user deploys an IoT application instance in a cloudlet.

We claim that the optimal value of the optimization
objective (6) is the sum of the optimal values of optimization
objectives of the update scheduling problem and the IoT appli-
cation placement problem, which will be shown in Lemma 4.
Thus, minimizing the optimization objective (5) of the original
problem is equivalent to minimizing the optimization objec-
tives of the two sub-problems independently.

A. Optimal algorithm for the update scheduling problem

We propose an optimal solution for the update scheduling
problem. We first propose an optimal solution for the update
scheduling of a single sensor s. We then obtain an optimal
solution to schedule the updates of all sensors by the extension
of the solution for sensor s.

Denote by Qs the set of queries of users in U to request
data of digital twin DT (s) of sensor s over time horizon T.
Let uq ∈ U be the user who issues a query q ∈ Qs at time
slot tq with 1 ≤ tq ≤ |T|. We define four subsets of queries
of Qs as follows. (1) Qs(0, t1) ⊆ Qs is the set of queries
issued earlier than (t1 + tupdates), where tupdates is the update
delay of DT (s) by Eq. (1), i.e., 1 ≤ tq < t1 + tupdates with

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 7

S

D destination

n1,1

n2,2 n2,3 n2,4

n1,2 n1,3 n1,4

n2,1

n3,2 n3,3 n3,4n3,1

shortest path source

Fig. 2. An example of the auxiliary network G′
s = (N ′

s, E
′
s) for sensor s,

which can send Ks (=3) updates over time horizon T = {1, 2, 3, 4}.

1 ≤ t1 ≤ |T|; (2) Qs(t1, t2) ⊆ Qs is the set of queries issued
no earlier than (t1 + tupdates) but earlier than (t2 + tupdates),
i.e., t1 + tupdates ≤ tq<t2 + tupdates with 1≤ t1<t2≤|T|; (3)
Qs(t2, |T| + 1) ⊆ Qs is the set of queries issued no earlier
than (t2+tupdates), i.e., t2+tupdates ≤ tq≤|T| with 1≤ t2≤|T|;
(4) Let Qs(0, |T|+ 1) = Qs.

Because the queries of all users over the time horizon are
the queries requesting data of the digital twins of all sensors
over the time horizon, we have

∑
s∈S

∑
q∈Qs

W1(uq, tq) =∑
u∈U

∑
t∈Tu

W1(u, t).

To determine whether to utilize the current data at DT (s)
or to wait for its next update, we construct an auxiliary graph
G′

s = (N ′
s, E

′
s) with edge weight w : E′

s 7→ R≥0 for sensor
s ∈ S as follows. The set N ′

s = {S,D} ∪ {ni,j | 1 ≤ i ≤
Ks, j ∈ T} of nodes and the set E′

s = {(S, n1,j) | j ∈ T} ∪
{(nKs,j , D) | j ∈ T}∪{(ni,j , ni+1,j′) | 1 ≤ i ≤ Ks−1, 1 ≤
j < j′ ≤ |T|} of edges. Especially, we first add virtual nodes
S and D as the source and destination, respectively. We also
add nodes ni,j with 1 ≤ i ≤ Ks and j ∈ T, i.e., the nodes
are contained in a Ks-layer structure with |T| nodes in each
layer. We then add edges (S, n1,j) in the first layer for each
node n1,j with j ∈ T, and edges (nKs,j , D) for node nKs,j

with j ∈ T in the Ksth layer (the last layer). We add edges
(ni,j , ni+1,j′) with 1 ≤ i ≤ Ks−1 and 1 ≤ j < j′ ≤ |T|, i.e.,
for each ni,j in the ith layer, we add an edge (ni,j , ni+1,j′)
for each ni+1,j′ in the (i+ 1)th layer. A shortest path in G′

s

from source S to destination D will deliver an optimal update
scheduling of sensor s, which will be shown later.

The weight assignment of edges in E′
s is given as follows.

For each edge (S, n1,j) ∈ E′
s with j ∈ T, its weight is

w(S, n1,j) =
∑

q∈Qs(0,j)
W1(uq, tq), with W1(uq, tq) defined

in Eq. (7). If edge (S, n1,j) is included in a shortest path in
G′

s from S to D, it implies that the first update of sensor
s is sent at the beginning of time slot j. For each edge
(ni,j , ni+1,j′) ∈ E′

s with 1 ≤ i ≤ Ks − 1 and 1 ≤ j < j′ ≤
|T|, its weight is w(ni,j , ni+1,j′) =

∑
q∈Qs(j,j′)

W1(uq, tq).
Similarly, if edge (ni,j , ni+1,j′) is included in a shortest path
in G′

s from S to D, the ith and (i+ 1)th updates are sent by
sensor s at the beginning of time slots j and j′, respectively.
For each edge (nKs,j , D) ∈ E′

s with j ∈ T, its weight is

Algorithm 1 An optimal algorithm for the update scheduling
problem
Input: An MEC network G = (V,E), a set S of sensors, a

positive integer Ks for each s ∈ S, a set U of users, and
time horizon T.

Output: Minimize
∑

u∈U

∑
t∈Tu

W1(u, t) by scheduling the
updates of sensors in S over the time horizon |T|.

1: A1 ← ∅; /* the solution */
2: for each sensor s ∈ S do
3: Construct an auxiliary graph G′

s = (N ′
s, E

′
s) for sensor

s, and find the shortest path P ∗
s in G′

s from source S to
destination D, which delivers the optimal solution A1,s

for updating scheduling of sensor s;
4: A1 ← A1 ∪ {A1,s};
5: end for
6: return Solution A1.

w(nKs,j , D) =
∑

q∈Qs(j,|T|+1) W1(uq, tq). If edge (nKs,j , D)
is included in a shortest path in G′

s from S to D, the Ksth
update is sent by sensor s at the beginning of time slot j.

We claim that a shortest path P ∗
s in G′

s from S to D
corresponds to an optimal solution to the update schedul-
ing of sensor s, i.e.,

∑
e∈P∗

s
w(e) is the minimum value

of
∑

q∈Qs
W1(uq, tq), which will be shown later in Theo-

rem 2. To this end, we first construct an auxiliary graph
G′

s for each sensor s ∈ S, and find a shortest path P ∗
s in

each G′
s, and

∑
s∈S

∑
e∈P∗

s
w(e) is the minimum value of∑

u∈U

∑
t∈Tu

W1(u, t). The found P ∗
s is an optimal solution

to the update scheduling problem.
An illustrative example of the construction of auxiliary

graph G′
s is given in Fig. 2, where sensor s can have Ks

(=3) updates over time horizon T = {1, 2, 3, 4}. P ∗
s =

{(S, n1,1), (n1,1, n2,3), (n2,3, n3,4), (n3,4, D)} is the shortest
path in G′

s from S to D, which implies that Ks (=3) updates
of sensor s will be sent to its DT (s) in the beginning of time
slot 1, 3, and 4, respectively.

The algorithm for the update scheduling problem is
detailed in Algorithm 1.

B. Approximation algorithm for the IoT application placement
problem

We propose an approximation algorithm with a provable
approximation ratio for the IoT application placement prob-
lem, through a reduction to the minimum-cost Generalized
Assignment Problem (GAP) [30]. An approximate solution to
the minimum-cost GAP will in turn return an approximate
solution to the IoT application placement problem.

We reduce the IoT application placement problem to a
minimum-cost GAP as follows.

Each IoT application instance of user u ∈ U is an
item u with size cu, while each cloudlet v ∈ V is a
bin v with capacity Cv . Packing item u to bin v incurs
a cost

∑
t∈Tu

W ′
2(u, t, v). By applying the approximation

algorithm [30] for the minimum-cost GAP, an approximation
algorithm for the IoT application placement problem then can
be derived. Specifically, let ÕPT be an optimal fractional
solution of the linear relaxation (LP) of the ILP (11) and
x̃u,v ∈ [0, 1] the fractional value of xu,v by ÕPT .

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 8

Algorithm 2 An approximation algorithm for the IoT appli-
cation placement problem
Input: An MEC network G = (V,E), a set S of sensors, a

positive integer Ks for each s ∈ S, a set U of users, and
time horizon T.

Output: Minimize
∑

u∈U

∑
t∈Tu

W2(u, t) by deploying the
IoT application instances of users in U on cloudlets in V .

1: A2 ← ∅; /* the solution */
2: Find a shortest path between each pair of cloudlets;
3: Solve the relaxed LP of the ILP (11);
4: Obtain the optimal solution ÕPT of the LP, where x̃u,v ∈

[0, 1] is the value of each xu,v;
5: Construct a bipartite graph B = (R,V; E) by [30].
6: Identify a minimum-cost matching M in B, where all

nodes in R are matched, via Hungarian algorithm;
7: for each edge (Ru, γv,i) ∈M do
8: A solution A2,u for user u is obtained, by deploying

the IoT application instance of user u in cloudlet v;
9: A2 ← A2 ∪ {A2,u};

10: end for
11: return Solution A2.

A bipartite graph B = (R,V; E) is then constructed, by
adopting the method in [30], where R and V are two disjoint
node sets, R = {Ru | u ∈ U}, Ru is a node corresponding to
the IoT application instance of user u ∈ U , V = {γv,i | v ∈
V, 1 ≤ i ≤ ηv}, and ηv = ⌈

∑
Ru∈R x̃u,v⌉ for each cloudlet

v ∈ V . The edge set E of B consists of edges connecting
nodes in R and V , which is constructed as follows.

Considering each cloudlet v ∈ V , each node in
{γv,i | 1 ≤ i ≤ ηv} is regarded as a bin with capacity 1.
Each node Ru ∈ R with x̃u,v > 0 is regarded as an item
with size of x̃u,v . Sort nodes (items) in R in non-increasing
order of cu, and let R1≥R2≥ . . .≥R|U | be the sorted items
for notation simplicity. The sorted items then are packed into
bins. Specifically, the sorted items are packed to the first bin
γv,1 one by one until it causes the capacity violation of γv,1
by packing an item (e.g., Ru). Then, item Ru is partitioned
into two disjoint parts: R1

u and R2
u, such that part R1

u packing
into bin γv,1 makes γv,1 have no residual capacity. Part R2

u

is then packed into the next bin γv,2. This procedure repeats
until all items in R are packed. If partial Ru is packed into bin
γv,i, an edge (Ru, γv,i) with cost

∑
t∈Tu

W ′
2(u, t, v) is added

to set E .
Having constructed the bipartite graph B, find a

minimum-cost maximum matching M in B, where all nodes
in R are matched. For each edge (Ru, γv,i) ∈ M , the IoT
application instance of user u will be deployed in cloudlet v.

The algorithm is detailed in Algorithm 2.

C. Approximation algorithm for the minimization problem

We now devise an approximation algorithm for the min-
imization problem. We decompose the problem into two sub-
problems - the update scheduling problem, and the IoT appli-
cation placement problem. We first obtain an optimal solution
A1 to the update scheduling problem by Algorithm 1. We
then obtain an approximate solution A2 to the IoT application
placement problem by Algorithm 2. We finally propose

Algorithm 3 An approximation algorithm for the minimiza-
tion problem
Input: An MEC network G = (V,E), a set S of sensors, a

positive integer Ks for each s ∈ S, a set U of users, and
time horizon T.

Output: Minimize
∑

u∈U

∑
t∈Tu

W (u, t)/
∑

u∈U |Tu|, i.e.,
the average weighted sum of AoIs of query results and
query service delays of all queries over T.

1: Formulate the updating scheduling problem, and its solu-
tion A1 is obtained by Algorithm 1;

2: Formulate the IoT application placement problem, and its
solution A2 is obtained by Algorithm 2;

3: A solution A is obtained to the minimization problem, by
adopting the update scheduling of sensors in A1 and the
IoT application placement of users in A2;

4: return Solution A.

an approximation algorithm for the minimization problem, by
adopting the update scheduling of sensors in A1 and the IoT
application placement of users in A2. The algorithm is detailed
in Algorithm 3.

D. Algorithm analysis

Lemma 1: Let W ∗(u, t) be the value of W (u, t) by
Eq. (4) in an optimal solution of the minimization problem.
Given a query of user u for DT (s) at time slot t, and the
update sending time t0 of sensor s to generate the current
data at DT (s), we consider two cases: Case 1. There is
no further update of sensor s before time horizon T ends.
User u then can only retrieve the current data of DT (s),
and we have W ∗(u, t) = λs · ds,u + λs/fu + β · (t − t0).
Case 2. Assuming the next update of s is scheduled at time
slot t′, we have W ∗(u, t) = λs · ds,u + λs/fu + min{β ·
(t − t0), tupdates + (1 − β) · (t′ − t)}, and user u prefers to
retrieve the current data of DT (s) to minimize W (u, t), if
β · (t − t0) < tupdates + (1 − β) · (t′ − t); otherwise, user u
prefers to wait for the next update of DT (s).

Proof We show the claim by distinguishing the following two
cases.

Case 1. Due to no further update on DT (s) from now on
until the end of the time horizon, user u cannot wait for the
next update of DT (s) anymore. The user can only retrieve the
current data of DT (s). From Eq. (2), (3) and (4), we have

W ∗(u, t) =λs · ds,u + λs/fu + β · (t− t0). (15)

Case 2. From Eq. (2), (3) and (4), if user u retrieves the
data at DT (s) at time slot t, we have

W (u, t) = λs · ds,u + λs/fu + β · (t− t0). (16)

Otherwise (i.e., user u waits for the next update of
DT (s)),

W (u, t) = λs ·ds,u+λs/fu+tupdates +(1−β)·(t′−t). (17)

Therefore, if user u prefers retrieving the current data of
DT (s), we have

β · (t− t0) < tupdates + (1− β) · (t′ − t). (18)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 9

Also, W ∗(u, t) is the smaller one between Eq. (16)
and (17), i.e.,

W ∗(u, t) = λs · ds,u + λs/fu +min{β · (t− t0), tupdates

+ (1− β) · (t′ − t)}. (19)

■

Lemma 2: Given a query of user u at time slot t for data
at DT (s), the update sending time t0 of sensor s to generate
the current data at DT (s), and the next update sending time t′

of sensor s if available, (i) the value of W1(u, t) by Eq. (7) is
determined by the update scheduling of sensor s, and shows
whether to retrieve current data at DT (s) or wait for its next
update; and (ii) the value of W2(u, t) by Eq. (8) is determined
by the IoT application instance placement of user u.

Proof (i) Recall that tupdates is a constant, i.e., the update
delay of DT (s) by Eq. (1), and β is a constant in Eq. (4). Then
W1(u, t) is determined by the update scheduling of sensor s
(i.e., determining values of t0 and t′). By Lemma 1, the min{·}
operation in Eq. (7) for W1(u, t) shows whether to retrieve the
current data at DT (s) or wait for its next update.

(ii) Recall that ds,u is the transmission delay of transmit-
ting a unit of data through the shortest path between cloudlets
vs and vu, where vs holds DT (s), and vu holds the IoT
application instance of user u, while λs is the size of the
generated data at DT (s), and fu is the processing rate of the
IoT application instance of u. As fu and λs are constants, the
value of W2(u, t) is only determined by the IoT application
placement of user u (i.e., determining the value of ds,u). ■

Lemma 3: Given a sensor s with Ks updates to be sent
over the time horizon T, and the constructed auxiliary graph
G′

s = (N ′
s, E

′
s), (i) each potential update scheduling of s over

time horizon T corresponds to a potential path in G′
s from

source S to destination D; and (ii) a potential path in G′
s from

source S to destination D corresponds to a feasible update
scheduling of s over the time horizon T.

Proof (i) Assume that a potential update scheduling of
sensor s is at time slots t1, t2, . . . , tKs

, respectively, with
1 ≤ t1 < t2 < . . . < tKs

≤ |T|. Then we
can construct a path Ps in G′

s from S to D with
Ps = {(S, n1,t1), (n1,t1 , n2,t2), . . . ,(nKs−1,tKs−1

, nKs,tKs
),

(nKs,tKs
, D)}. Now, we show that path Ps is feasible, i.e.,

all edges in Ps exist in G′
s. We add edges (S, n1,j) for each

node n1,j with j ∈ T in G′
s, so edge (S, n1,t1) exists in

G′
s. Then, edges {(n1,t1 , n2,t2), . . . , (nKs−1,tKs−1

, nKs,tKs
)}

exist in G′
s, because we also add edges (ni,j , ni+1,j′) with

1≤ i≤ Ks−1 and 1≤ j <j′≤|T|. Edge (nKs,tKs
, D) exists

in G′
s, as we add edges (nKs,j , D) for each nKs,j with j ∈ T.

Thus, path Ps is feasible because all edges in Ps exist in G′
s.

(ii) Let Ps be a potential path in G′
s from source S

to destination D. Because Ps starts from S and only edges
(S, n1,j) with 1 ≤ j ≤ |T| start at S, we assume that the
first edge of path Ps is (S, n1,t1) with 1 ≤ t1 ≤ |T|.
Also, only edges (n1,t1 , n2,j′) start from node n1,t1 with
1 ≤ t1 < j′ ≤ |T|, because we add edges (ni,j , ni+1,j′)
with 1 ≤ i ≤ Ks − 1 and 1 ≤ j < j′ ≤ |T|. Then

we assume that the second edge of Ps is (n1,t1 , n2,t2) with
1 ≤ t1 < t2 ≤ |T|. Similarly, the first Ks edges of Ps are
(S, n1,t1), (n1,t1 , n2,t2), . . . , (nKs−1,tKs−1

, nKs,tKs
) with 1≤

t1<t2<. . .<tKs
≤|T|. The last edge of Ps is (nKs,tKs

, D) as
only this edge starts from nKs,tKs

and reaches D. In such a po-
tential path Ps = {(S, n1,t1), (n1,t1 , n2,t2), . . . , (nKs−1,tKs−1

,
nKs,tKs

), (nKs,tKs
, D)}, the derived update scheduling (i.e.,

send updates at time t1, t2, . . . , tKs
) is feasible, because there

are Ks updates and 1≤ t1<t2<. . .<tKs
≤|T|. ■

Theorem 2: Given an MEC network G = (V,E), a set S
of sensors, a positive integer Ks for each sensor s ∈ S, a set
U of users with IoT application queries, and time horizon T,
assuming digital twins of sensors have already been deployed
in cloudlets of V of G, a user u ∈ U may retrieve data from
digital twins of sensors at the beginning of time slot t ∈ Tu ⊆
T. Algorithm 1 delivers an optimal solution to the update
scheduling problem, and takes O(|U | · |T|+ |S| ·K2

max · |T|2)
time, where Kmax = max{Ks | s ∈ S}.

Proof By Lemma 3, let Ps be a potential path in G′
s from S

to D with Ps = {(S, n1,t1), (n1,t1 , n2,t2),. . . ,(nKs−1,tKs−1
,

nKs,tKs
), (nKs,tKs

, D)}, and the derived update scheduling of
sensor s is to send its updates at time t1, t2, . . . , tKs

, respec-
tively. We have w(S, n1,t1) =

∑
q∈Qs(0,t1)

W1(uq, tq) with
1≤ tq <t1 + tupdates , ∀q ∈ Qs(0, t1). Also, w(n1,t1 , n2,t2) =∑

q∈Qs(t1,t2)
W1(uq, tq), with t1 + tupdates ≤ tq < t2 +

tupdates ,∀q ∈ Qs(t1, t2). Then, w(S, n1,t1)+w(n1,t1 , n2,t2)=∑
q∈Qs(0,t2)

W1(uq, tq) with 1 ≤ tq < t2 + tupdates ,∀q ∈
Qs(0, t2). Similarly, w(S, n1,t1) + w(n1,t1 , n2,t2) + · · ·+
w(nKs−1,tKs−1

, nKs,tKs
) =

∑
q∈Qs(0,tKs)

W1(uq, tq) with
1 ≤ tq < tKs + tupdates , ∀q ∈ Qs(0, tKs). Finally
w(nKs,tKs

, D) =
∑

q∈Qs(tKs ,|T|+1) W1(uq, tq), with tKs
+

tupdates ≤ tq ≤ |T|, ∀q ∈ Qs(tKs
, |T| + 1). There-

fore,
∑

e∈Ps
w(e) = w(S, n1,t1)+ w(n1,t1 , n2,t2) + · · · +

w(nKs,tKs
, D) =

∑
q∈Qs

W1(uq, tq).
The shortest path P ∗

s in G′
s corresponds to a feasible

update scheduling of sensor s for the given time horizon T
with the minimum

∑
q∈Qs

W1(uq, tq) by Lemma 3. Therefore,
Algorithm 1 delivers an optimal update scheduling of each
s ∈ S. Because the update scheduling of sensor s does not
affect that of another sensor s′, Algorithm 1 delivers an
optimal solution to the update scheduling problem.

The time complexity of Algorithm 1 is analyzed as
follows. For each sensor s ∈ S, we construct an auxiliary
graph G′

s = (N ′
s, E

′
s), where the cardinality of set N ′

s is
O(Ks · |T|). Finding a shortest path in G′

s from S to D takes
O(K2

s ·|T|2) time, and there are at most |U |·|T| queries. Thus,
Algorithm 1 takes O(|U | · |T|+ |S| ·K2

max · |T|2) time. ■

Theorem 3: Given an MEC network G = (V,E), a set S
of sensors, a positive integer Ks for each sensor s ∈ S, a set U
of users, and time horizon T, assuming digital twins of sensors
have already been deployed in cloudlets of V in G, a user
u ∈ U may retrieve data from digital twins of sensors at the
beginning of time slot t ∈ Tu ⊆ T. There is an approximation
algorithm, Algorithm 2, for the IoT application placement
problem. The solution value by Algorithm 2 is no greater
than that of the optimal solution, and the computing resource

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 10

consumed in each cloudlet v ∈ V is no greater than twice its
computing capacity. Algorithm 2 takes O(|U |3 · |V |3) time.

Proof Because we reduce the IoT application placement prob-
lem to the minimum-cost GAP, and devise Algorithm 2 for
the problem by adopting the approximation technique in [30],
readers can refer to [30] for more details, which are omitted,
due to space limitation. ■

Lemma 4: Let OPT be the optimal solution to the prob-
lem of concern, and let OPT1 and OPT2 be the optimal solu-
tions to the update scheduling problem and the IoT application
placement problem, respectively. Then, OPT = OPT1+OPT2∑

u∈U |Tu| .

Proof Let W ∗(u, t) be the value of W (u, t) by Eq. (4)
in OPT . Let W ∗

1 (u, t) be the value of W1(u, t) by
Eq. (7) in OPT1 and W ∗

2 (u, t) the value of W2(u, t)
by Eq. (8) in OPT2, respectively. Then, OPT =∑

u∈U

∑
t∈Tu

W∗(u,t)∑
u∈U |Tu| , OPT1 =

∑
u∈U

∑
t∈Tu

W ∗
1 (u, t),

and OPT2 =
∑

u∈U

∑
t∈Tu

W ∗
2 (u, t). We show that∑

u∈U

∑
t∈Tu

W ∗(u, t) =
∑

u∈U

∑
t∈Tu

W ∗
1 (u, t) +∑

u∈U

∑
t∈Tu

W ∗
2 (u, t) as follows.

By Lemma 1, Lemma 2, Eq. (7) and Eq. (8), it can
be seen that a feasible solution W ′(u, t) can be obtained, by
combining the optimal solutions W ∗

1 (u, t) and W ∗
2 (u, t) for

the update scheduling problem and IoT application placement
problem, respectively, i.e.,

W ′(u, t) = W ∗
1 (u, t) +W ∗

2 (u, t). (20)

Because of
∑

u∈U

∑
t∈Tu

W ′(u, t) indicating a
feasible solution OPT ′ to the problem, we have∑

u∈U

∑
t∈Tu

W ′(u, t) ≥
∑

u∈U

∑
t∈Tu

W ∗(u, t).
We then show that

∑
u∈U

∑
t∈Tu

W ′(u, t) =∑
u∈U

∑
t∈Tu

W ∗(u, t) by contradiction. We assume

OPT ′ =
∑

u∈U

∑
t∈Tu

W ′(u,t)∑
u∈U |Tu| >

∑
u∈U

∑
t∈Tu

W∗(u,t)∑
u∈U |Tu| = OPT .

Because OPT outperforms OPT ′, OPT must adopt either
another update scheduling of sensors (different from OPT1)
or another IoT application placement (different from OPT2),
such that OPT < OPT ′. However, such an update scheduling
of sensors or IoT application placement will lead to a larger
objective value of either the update scheduling problem or the
IoT application placement problem than OPT1 and OPT2,
respectively. This contradicts that OPT1 and OPT2 are the
optimal solutions of the two problems. Therefore, we have∑

u∈U

∑
t∈Tu

W ′(u, t) =
∑

u∈U

∑
t∈Tu

W ∗(u, t).
By Eq. (20), we have

∑
u∈U

∑
t∈Tu

W ∗(u, t) =∑
u∈U

∑
t∈Tu

W ∗
1 (u, t) +

∑
u∈U

∑
t∈Tu

W ∗
2 (u, t). Thus, we

have OPT = OPT1+OPT2∑
u∈U |Tu| . ■

Theorem 4: Given an MEC network G = (V,E), a set
S of sensors, a positive integer Ks for each sensor s ∈ S, a
set U of users with IoT application queries, and time horizon
T, assuming that digital twins of sensors have already been
deployed in cloudlets of V in G, a user u ∈ U may retrieve
data from digital twins of sensors at the beginning of time
slot t ∈ Tu ⊆ T. There is an approximation algorithm,
Algorithm 3, for the minimization problem. The solution
value by Algorithm 3 is no greater than that of the opti-
mal solution, and the computing resource consumed in each

Algorithm 4 An algorithm for the IoT application placement
problem without resource violations
Input: An MEC network G = (V,E), a set S of sensors, a

positive integer Ks for each s ∈ S, a set U of users, and
time horizon T.

Output: Minimize
∑

u∈U

∑
t∈Tu

W2(u, t) by deploying IoT
application instances of queries in U on cloudlets.

1: A′
2 ← ∅; /* the solution */

2: l← 1;
3: U(l) ← U , V(l) ← V , and identify E(l);
4: while E(l) ̸= ∅ do
5: Construct bipartite graph B(l) = (U(l),V(l);E(l));
6: Find a minimum-cost maximum matching Ml in B(l),

via the Hungarian algorithm;
7: for each matching edge e(u, v) in Ml do
8: A solution A′

2,u for user u is obtained, by deploying
the IoT application instance of user u in cloudlet v;

9: end for
10: A′

2 ← A′
2 ∪ {A′

2,u};
11: l← l + 1;
12: Update U(l), V(l) and E(l);
13: end while
14: return Solution A′

2.

cloudlet v ∈ V is no greater than twice its computing capacity.
Algorithm 3 takes O(|U |·|T|+|S|·K2

max ·|T|2+|U |3 ·|V |3)
time with Kmax = max{Ks | s ∈ S}.

Proof Let OPT , OPT1, and OPT2 be the optimal solu-
tions of the minimization problem, the update scheduling
problem, and the IoT application placement problem, respec-
tively. Let A, A1, and A2 be the values of the solutions by
Algorithm 3, Algorithm 1, and Algorithm 2, respec-
tively. We have A1 = OPT1 by Theorem 2, A2 ≤ OPT2 by
Theorem 3, and OPT = OPT1+OPT2∑

u∈U |Tu| by Lemma 4. From

Lemma 1, Eq. (7) and (8), we have A = A1+A2∑
u∈U |Tu| ≤

OPT1+OPT2∑
u∈U |Tu| = OPT with the computing resource consumed

of each cloudlet no greater than twice its computing capacity,
by Theorem 3.

Algorithm 3 takes the time O(|U | · |T|+ |S| ·K2
max ·

|T|2+ |U |3 · |V |3), by time complexity of Algorithm 1 and
Algorithm 2 in Theorem 2 and 3, respectively. ■

V. HEURISTIC ALGORITHM WITHOUT COMPUTING
CAPACITY VIOLATIONS

In the previous section, we developed an approximate
solution for the minimization problem at the expense of
bounded computing capacity violations. In this section we
devise an efficient heuristic algorithm for the problem without
computing capacity violation as follows.

A. Algorithm for the IoT application placement problem

The proposed algorithm is based on a series of minimum-
cost maximum matchings on their corresponding auxiliary
graphs. Specifically, the algorithm proceeds iteratively. Within
iteration l, we build a bipartite graph B(l) = (U(l),V(l);E(l)),
where U(l) is the set of users, and their IoT applications

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 11

Algorithm 5 An algorithm for the minimization problem
Input: An MEC network G = (V,E), a set S of sensors, a

positive integer Ks for each s ∈ S, a set U of users, and
time horizon T.

Output: Minimize
∑

u∈U

∑
t∈Tu

W (u, t)/
∑

u∈U |Tu|, i.e.,
the average weighted sum of AoIs of query results and
query service delays of all queries over T.

1: Formulate an updating scheduling problem and obtain its
solution A1 by Algorithm 1;

2: Formulate an IoT application placement problem and
obtain its solution A′

2 by Algorithm 4;
3: A solution A′ to the problem is obtained by adopting the

update scheduling of sensors inA1 and the IoT application
placement of users in A′

2;
4: return Solution A′.

have not been placed before iteration l. V(l) is the set of
cloudlets possessing residual computing resource in iteration
l. We have U(1) = U , and V(1) = V initially. E(l) is a set of
edges in iteration l, and there exists an edge e(u, v) in E(l)

between a user u ∈ U(l) and a cloudlet v ∈ V(l) with weight∑
t∈Tu

W ′
2(u, t, v) if cloudlet v has sufficient residual resource

to establish an IoT application instance for user u.
Denote by Ml a minimum-cost maximum matching in

B(l). For each matching edge e(u, v) ∈ Ml, we deploy the
IoT application of user u in cloudlet v, and the computing
resource cu is subtracted from cloudlet v. Then, the subsequent
auxiliary bipartite graph is built. This process continues until
the instances of IoT applications of all users are deployed. Let
L be the number of iterations of the proposed algorithm. Then,
the solution delivered by the algorithm is ∪Ll=1Ml. Let c(Ml)

be the weighted sum of edges in Ml. Then,
∑L

l=1 c(Ml).
The heuristic algorithm is detailed in Algorithm 4.

B. Heuristic algorithm for the minimization problem

In the following we devise an algorithm for the min-
imization problem. Following the spirit of Algorithm 3,
we decompose the problem into two sub-problems: the up-
date scheduling problem, and the IoT application placement
problem. We obtain an optimal solution A1 for the update
scheduling problem, by invoking Algorithm 1, and a feasi-
ble solution A′

2 to the IoT application placement problem by
Algorithm 4, via adopting the update scheduling of sensors
in A1 and the IoT application placement of users in A′

2. The
detailed algorithm is presented in Algorithm 5.

C. Algorithm analysis

Theorem 5: Given an MEC network G = (V,E), a set S
of sensors, a positive integer Ks for each sensor s ∈ S, a set
U of users, and a finite time horizon T, assuming that digital
twins of sensors have already been deployed in cloudlets of
V , each user u ∈ U may retrieve data from digital twins of
sensors in the beginning of time slot t ∈ Tu ⊆ T. There is an
algorithm, Algorithm 4, for the IoT application placement
problem, which takes O(|U | · (|U |+ |V |)3) time and delivers
a feasible solution.

Proof Algorithm 4 delivers a feasible solution for the IoT
application placement problem, because there are no violations
on any constraints. The time complexity of Algorithm 4 is
analyzed as follows. It takes O((|U |+ |V |)3) time to find the
minimum-cost maximum matching in the bipartite graph B(l),
and there are at most |U | iterations in the proposed algorithm,
because at least an IoT application of one user is deployed in
each iteration. Thus, the time complexity of Algorithm 4
is O(|U | · (|U |+ |V |)3). ■

Theorem 6: Given an MEC network G = (V,E), a set
S of sensors, a positive integer Ks for each sensor s ∈ S, a
set U of users with IoT application queries, and a finite time
horizon T, assuming that digital twins of sensors have already
been deployed in cloudlets of V , each user u ∈ U may retrieve
data from digital twins of sensors at the beginning of time slot
t ∈ Tu ⊆ T. There is an algorithm, Algorithm 5, for the
minimization problem, which takes O(|U | · |T|+ |S| ·K2

max ·
|T|2+ |U | · (|U |+ |V |)3) time, where Kmax = max{Ks | s ∈
S}.

Proof Algorithm 5 delivers a feasible solution for the
minimization problem, as invoking Algorithm 1 or
Algorithm 4 does not cause any resource capacity vio-
lations. Also, Algorithm 5 takes time O(|U | · |T| + |S| ·
K2

max · |T|2+ |U | · (|U |+ |V |)3), due to the time complexities
of Algorithm 1 and Algorithm 4 by Theorem 2 and
Theorem 5, respectively. ■

VI. PERFORMANCE EVALUATION

In this section, we evaluated the algorithm performance
via simulations.

A. Experimental environment settings

Consider an MEC network, in which the number of APs
ranges from 50 to 250, and there is a co-located cloudlet
with each AP. We leverage GT-ITM [5] to construct different
topologies of MEC networks. The capacity on a cloudlet
ranges from 10, 000 MHz to 20, 000 MHz [39], and bandwidth
capacity on each AP is set within [5, 20] MHz [31]. The
transmission delay of one unit data (one MB) along a link
ranges from 0.2 ms to 1 ms [39]. There are 500 sensors,
and each of them is in the proximity of an AP randomly
with a distance from 10 meters to 50 meters. The number
of updates Ks of each sensor s ranges from 10 to 30 for
a given finite time horizon. The transmission power Ps of
each sensor s ranges from 0.1 Watt to 0.5 Watt [4], while the
path loss factor α and the noise power η2 are set as 4 [4]
and 1× 10−10 Watt [19], respectively. There are 1, 000 users,
while the computing resource demanded by an IoT application
instance or a digital twin is set within [300, 600] MHz [25].
The number of CPU cycles required for 1-bit task calculation
is set within [200, 400] cycles/bit [23]. There are 100 time slots
with each lasting 50 ms. Each user issues a query for a sensor
randomly at each time slot. The volume of the update data of
a sensor ranges from 1 MB to 5 MB [35], and the volume
of data generated at a digital twin per update is set within
[2, 10] MB. Parameter β in Eq. (4) is set as 0.5. The value in

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 12

50 100 150 200 250

Network size

80

100

120

140

160

180

200

O
p

ti
m

iz
a

ti
o

n
 o

b
je

c
ti

v
e

 (
m

s
)

Appro

Heu

Round_EUS

Wait

NoWait

Random

(a) The performance

50 100 150 200 250

Network size

1e+01

1e+02

1e+03

1e+04

1e+05

R
u

n
n

in
g

 t
im

e
 (

m
s

)

Appro

Heu

Round_EUS

Wait

NoWait

Random

(b) The running time

50 100 150 200 250

Network size

0

0.2

0.4

0.6

0.8

1

U
ti

li
z
a

ti
o

n
 r

a
ti

o

(c) Utilization ratio of cloudlets of algorithm
Appro

Fig. 3. Performance of different algorithms for the minimization problem by varying network size.

each figure represents the mean based on 30 MEC instances
of the same size. The actual running time of each algorithm is
obtained by a desktop with 3.60GHz Intel 8-Core i7 CPU and
16GB RAM. Unless otherwise specified, these parameters are
adopted by default.

We refer to Algorithm 3 and Algorithm 5 for the
minimization problem as Appro and Heu, respectively, and
we evaluated their performance against the following three
benchmarks.

• Algorithm Round EUS: It invokes a randomized round-
ing algorithm from [41] for IoT application placements,
through the LP relaxation of the ILP (11). Each sensor
adopts an Exact Uniform Scheduler (EUS) [10], i.e., each
sensor delivers its updates evenly over the given time
horizon. Each query is admitted through minimizing its
weighted sum of the AoI of its query result and its
query service delay, by determining whether to utilize
the current data at DT (s) or to wait for the next update
of sensor s.

• Algorithm Wait: each user deploys his IoT application
instance in a cloudlet such that the average transmission
delay from the requested digital twin to the IoT applica-
tion instance per query is minimized. Each sensor delivers
its updates evenly over the given time horizon by adopting
EUSs [10], and each query waits for the next update of
its requested digital twin.

• Algorithm NoWait: similar to algorithm Wait, but
queries retrieve the current data at their digital twins
immediately.

• Algorithm Random: IoT application instances are de-
ployed in cloudlets randomly. Sensors randomly send
their updates to their digital twins, while queries can
either retrieve the current data of digital twins or wait
for their updates, and such actions are randomly chosen.

B. Performance evaluation of different algorithms

We first studied the performance of Appro and Heu

against benchmarks Round EUS, Wait, NoWait and Random,
by varying the network size from 50 to 250, where the
utilization ratio of cloudlet v is the ratio of the amount of
computing resource consumed to its capacity. Fig. 3 plots the
performance (the optimization objective (5)) and running times

50 100 150 200 250

Network size

0

50

100

150

200

O
p

ti
m

iz
a

ti
o

n
 o

b
je

c
ti

v
e

 (
m

s
)

10 updates

15 updates

20 updates

25 updates

30 updates

(a) The performance

50 100 150 200 250

Network size

1e+03

1e+04

1e+05

R
u

n
n

in
g

 t
im

e
 (

m
s

)

10 updates

15 updates

20 updates

25 updates

30 updates

(b) The running time

Fig. 4. Impact of the number of updates of each sensor for the given time
horizon on the performance of algorithm Appro.

of different algorithms, and the utilization ratios of cloudlets
by algorithm Appro. Shown in Fig. 3(a), with the network
size of 250, Appro outperforms Heu by 6.8%, while Heu

outperforms Round EUS, Wait, NoWait and Random by 8.4%,
12.9%, 18.2% and 32.4%, respectively. It can be seen from
Fig. 3(b) that algorithm Random takes the least running time,
because it makes decisions randomly. Meanwhile, algorithm
Heu takes the longest running time, because it takes time to
find a shortest path in the auxiliary graph for each sensor to
schedule the updates of the sensor, and then to find a series of
minimum-cost maximum matchings in corresponding bipartite
graphs for IoT application instance placements. Fig. 3(c)
shows that the computing capacity violation on any cloudlet by
algorithm Appro is no greater than 4.1%. Fig. 3 demonstrates
algorithms Appro and Heu outperform algorithms Round EUS,
Wait, NoWait and Random. The rationale behind is that both
Appro and Heu can jointly optimize the freshness of query
results and query service delays of all queries efficiently.

C. Impact of important parameters on the performance of
approximation algorithm Appro

We then investigated the impact of the number of updates
of each sensor on the performance of Appro, by varying the
number of updates per sensor from 10 to 30. It can be seen
from Fig. 4(a) that the performance of Appro with 30 updates
within the given time horizon is 40.5% higher than that of
itself with 10 updates in the same period when network size
is set at 250. This indicates that the use of digital twins can
deliver much fresher data through frequent updates of sensors.
In Fig. 4(b), algorithm Appro with 30 updates takes the longest
time because a large number of updates from a sensor leads to

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 13

50 100 150 200 250

Network size

0

50

100

150

O
p

ti
m

iz
a

ti
o

n
 o

b
je

c
ti

v
e

 (
m

s
)

 = 0.1

 = 0.3

 = 0.5

 = 0.7

 = 0.9

(a) The performance

50 100 150 200 250

Network size

1e+04

1e+05

R
u

n
n

in
g

 t
im

e
 (

m
s

)

 = 0.1

 = 0.3

 = 0.5

 = 0.7

 = 0.9

(b) The running time

Fig. 5. Impact of parameter β on the performance of algorithm Appro.

50 100 150 200 250

Network size

0

50

100

150

200

O
p

ti
m

iz
a

ti
o

n
 o

b
je

c
ti

v
e

 (
m

s
)

10 updates

15 updates

20 updates

25 updates

30 updates

(a) The performance

50 100 150 200 250

Network size

1e+03

1e+04

1e+05

R
u

n
n

in
g

 t
im

e
 (

m
s

)

10 updates

15 updates

20 updates

25 updates

30 updates

(b) The running time

Fig. 6. Impact of the number of updates of each sensor for the given time
horizon on the performance of algorithm Heu.

a large auxiliary graph for the updating scheduling, as shown
in Section IV-A. We also evaluated the impact of parameter β
on the performance of Appro, where β is a coefficient of the
AoI of query results in Eq. (4). Fig. 5 plots the performance
curves of Appro. When the network size is fixed at 250, the
performance of Appro with β = 0.9 is 28.2% higher than
its performance with β = 0.1, as demonstrated in Fig. 5(a).
A larger β represents a larger weight assigned to the average
AoI of query results, and meanwhile, a smaller weight (1−β)
is assigned to the average query service delay, too. It can be
seen from Fig. 5(b) that the impact of different values of β
on the running time of Appro is negligible.

D. Impact of important parameters on the performance of
heuristic algorithm Heu

We finally studied the impact of the number of update
scheduling per sensor on the performance of algorithm Heu,
by varying the number of updates from 10 to 30, respectively.
Similar to Fig. 4(a), it can be seen from Fig. 6(a) that algorithm
Heu with 30 updates outperforms itself with 10 updates by
37.1% when the network size is 250, because more updates
for each sensor are scheduled for the given time horizon in
order to deliver fresher digital twin data. Meanwhile, Fig. 6(b)

50 100 150 200 250

Network size

0

50

100

150

200

250

300

O
p

ti
m

iz
a

ti
o

n
 o

b
je

c
ti

v
e

 (
m

s
)

100 time slots

150 time slots

200 time slots

250 time slots

300 time slots

(a) The performance

50 100 150 200 250

Network size

1e+03

1e+04

1e+05

1e+06

R
u

n
n

in
g

 t
im

e
 (

m
s

)

100 time slots

150 time slots

200 time slots

250 time slots

300 time slots

(b) The running time

Fig. 7. Impact of time horizon length on the performance of algorithm Heu.

shows that algorithm Heu with 10 updates takes the least
running time among the comparison algorithms. The rest is to
study the impact of length |T| of the finite time horizon on the
performance of algorithm Heu. Fig. 7 plots the performance
curve of Heu by varying the value of |T| from 100 to
300. When the network size reaches 250, Fig. 7(a) indicates
that algorithm Heu with |T| = 100 outperforms itself with
|T| = 300 by 53.2%, since sensors can provide fresher digital
twin data for queries, through more frequent updates. Fig. 7(b)
indicates that Heu with |T| = 300 takes the longest running
time, due to that it takes much more time to find a shortest
path in a larger auxiliary graph for each sensor.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated AoI-aware IoT query ser-
vice provisioning in an MEC network empowered by the digi-
tal twin technology. We first formulated a novel minimization
problem of jointly considering the accumulative freshness of
query results and the total query service delay of admitted
queries of IoT services, with the aim to minimize the weighted
sum of AoIs of query results and query service delays of
admitted queries, and we showed the NP-hardness of the
defined problem. We then devised a performance-guaranteed
approximation algorithm for the problem, at the expense of
bounded computing capacity violations. Also, We proposed
an efficient heuristic for the problem without computing ca-
pacity violations. We finally evaluated the performance of the
proposed algorithms via simulations. The simulation results
indicated that the proposed algorithms are promising, and
outperform the comparison baseline algorithms.

In our future work, we intend to establish an optimization
framework for AoI-aware IoT query service provisioning in an
MEC empowered by digital twin technology, which enables
to accurately predict network dynamics and provide real-time
system information such as user query pattern changes and
dynamic resource utilization, and so on. An efficient prediction
mechanism based on deep reinforcement learning will be
developed that will help to pre-allocate network resources for
service provisions and improve the quality of services.

ACKNOWLEDGEMENT

The authors appreciate the three anonymous referees and
the Associate Editor for their constructive comments and
invaluable suggestions, which help us to improve the quality
and presentation of the paper greatly. The work by Jing Li,
Weifa Liang, Song Guo, and Jianping Wang were supported
by Hong Kong Research Grants Council (RGC) under the
Collaborative Research Fund (CRF) grant C1042-23GF. The
work by Song Guo was supported by funds from the Key-Area
Research and Development Program of Guangdong Province
(No. 2021B0101400003), Hong Kong RGC Research Impact
Fund (No. R5060-19, No. R5034-18), Areas of Excellence
Scheme (AoE/E-601/22-R), and General Research Fund (No.
152203/20E, 152244/21E, 152169/22E, 152228/23E). The
work by Weifa Liang was partially supported by Hong Kong
Research Grants Council under CityU Grant No. 7005845,
8730094, 9043510, and 9380137, respectively. The work by

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 14

Quan Chen was supported by the NSFC under Grant No.
62372118, and the Guangdong Basic and Applied Basic Re-
search Foundation under Grant No. 2024A1515030136. The
work of Zichuan Xu was partially supported by the National
Natural Science Foundation of China (Grant No. 61802048)
and the “Xinghai Scholar Program” in Dalian University of
Technology, China. The work by Wenzheng Xu was supported
by NSFC (Grant No. 62272328), and the work by Jianping
Wang was supported in part by grants from Hong Kong
Research Grants Council under NSFC/RGC N CityU 140/20.

REFERENCES

[1] M. Bastopcu and S. Ulukus. Age of information for updates with
distortion: constant and age-dependent distortion constraints. IEEE/ACM
Transactions on Networking, vol. 29, no. 6, pp. 2425 – 2438, 2021.

[2] L. Corneo, C. Rohner, and P. Gunningberg. Age of information-aware
scheduling for timely and scalable internet of things applications. Proc.
of INFOCOM’19, IEEE, pp. 2476 – 2484, 2019.

[3] Q. Chen, Z. Cai, L. Cheng, F. Wang, and H. Gao. Joint near-optimal age-
based data transmission and energy replenishment scheduling at wireless-
powered network edge. Proc. of INFOCOM’22, IEEE, pp. 770 – 779,
2022.

[4] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795 – 2808, 2016.

[5] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/, 2019.
[6] H. Gedawy, K. Habak, K. A. Harras, and M. Hamdi. RAMOS: a resource-

aware multi-objective system for edge computing. IEEE Transactions on
Mobile Computing, vol. 20, no. 8, pp. 2654 – 2670, 2021.

[7] A. Goldsmith. Wireless communications. Cambridge University Press,
2005.

[8] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya. An application
placement technique for concurrent IoT applications in edge and fog
computing environments. IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298 – 1311, 2021.

[9] A. Hameed, J. Violos, A. Leivadeas, N. Santi, R. Grünblatt, and N.
Mitton. Toward QoS prediction based on temporal transformers for IoT
Applications. IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 4010 – 4027, 2022.

[10] C. Li, S. Li, Q. Liu, Y. T. Hou, W. Lou, and S. Kompella. Eywa:
a general approach for scheduler design in AoI optimization. Proc of
INFOCOM’23, IEEE, 2023.

[11] H. Li, J. Zhang, H. Zhao, Y. Ni, J. Xiong, and J. Wei. Joint optimization
on trajectory, computation and communication resources in information
freshness sensitive MEC system. IEEE Transactions on Vehicular
Technology, vol. 73, no. 3, pp. 4162 – 4177, 2024.

[12] J. Li, S. Guo, W. Liang, J. Wang, Q. Chen, Z. Xu, and W. Xu. AoI-
aware user service satisfaction enhancement in digital twin-empowered
edge computing. IEEE/ACM Transactions on Networking, vol. 32, no. 2,
pp. 1677 –-1690, 2024.

[13] J. Li, S. Guo, W. Liang, J. Wu, Q. Chen, Z. Xu, W. Xu, and J.
Wang. Wait for fresh data? digital twin empowered IoT services in edge
computing. Proc of MASS’23, IEEE, 2023.

[14] J. Li, S. Guo, W. Liang, Q. Chen, Z. Xu, and W. Xu. SFC-enabled
reliable service provisioning in mobile edge computing via digital twins.
Proc of MASS’22, IEEE, pp. 311 – 317, 2022.

[15] J. Li, S. Guo, W. Liang, Q. Chen, Z. Xu, W. Xu, and A. Y. Zomaya.
Digital twin-assisted, SFC-enabled service provisioning in mobile edge
computing. IEEE Transactions on Mobile Computing, vol. 23, no. 1,
pp.393 – 408, 2024.

[16] J. Li, W. Liang, W. Xu, Z. Xu, X. Jia, A. Zomaya, and S. Guo. Budget-
aware user satisfaction maximization on service provisioning in mobile
edge computing. IEEE Transactions on Mobile Computing, vol. 22,
no. 12, pp. 7057 – 7069, 2023.

[17] J. Li, W. Liang, W. Xu, Z. Xu, Y. Li, and X. Jia. Service home
identification of multiple-source IoT applications in edge computing.
IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 1417 –
1430, 2023.

[18] J. Li, W. Liang, W. Xu, Z. Xu, X. Jia, W. Zhou, and J. Zhao. Maximizing
user service satisfaction for delay-sensitive IoT applications in edge
computing. IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 5, pp. 1199– 1212, 2022.

[19] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo. Throughput
maximization of delay-aware DNN inference in edge computing by
exploring DNN model partitioning and inference parallelism. IEEE
Transactions on Mobile Computing, vol. 22, no. 5, pp. 3017 – 3030,
2023.

[20] J. Li, J. Wang, Q. Chen, Y. Li, and A. Zomaya. Digital twin-
enabled service satisfaction enhancement in edge computing. Proc of
INFOCOM’23, IEEE, 2023.

[21] X. Liang, W. Liang, Z. Xu, Y. Zhang, and X. Jia. Multiple ser-
vice model refreshments in digital twin-empowered edge computing.
IEEE Transactions on Services Computing, to be published, 2023, doi:
10.1109/TSC.2023.3341988.

[22] Q. Liu, H. Zeng, and M. Chen. Minimizing AoI with throughput require-
ments in multi-path network communication. IEEE/ACM Transactions on
Networking, vol. 30, no. 3, pp. 1203 – 1216, 2022.

[23] X. Lin, J. Wu, J. Li, W. Yang, and M. Guizani. Stochastic digital-
twin service demand with edge response: an incentive-based congestion
control approach. IEEE Transactions on Mobile Computing, vol. 22,
no. 4, pp. 2402 – 2416, 2023.

[24] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang. Communication-
efficient federated learning and permissioned blockchain for digital twin
edge networks. IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2276
– 2288, 2021.

[25] Y. Ma, W. Liang, M. Huang, W. Xu, and S. Guo. Virtual network
function service provisioning in MEC via trading off the usages between
computing and communication resources. IEEE Transactions on Cloud
Computing, vol. 10, no. 4, pp. 2949 – 2963, 2022.

[26] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo. Mobility-aware and delay-
sensitive service provisioning in mobile edge-cloud networks. IEEE
Transactions on Mobile Computing, vol. 21, no, 1, pp. 196 – 210, 2022.

[27] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi, and M. Huang. TCDA:
truthful combinatorial double auctions for mobile edge computing in
industrial internet of things. IEEE Transactions on Mobile Computing,
vol. 21, no. 11, pp. 4125 – 4138, 2022.

[28] R. Minerva, G. M. Lee, and N. Crespi. Digital twin in the IoT context:
a survey on technical features, scenarios, and architectural models.
Proceedings of the IEEE, vol. 108, no. 10, pp. 1785 – 1824, 2020.

[29] R. M. Nauss. Solving the generalized assignment problem: an optimizing
and heuristic approach. INFORMS Journal of Computing, vol. 15, no. 3,
pp. 249 – 266, 2003.

[30] D. Shomys and E. Tardos. An approximation algorithm for the
generalized assignment problem. Mathematical Programming, vol. 62,
pp. 461 – 474, 1993.

[31] W. Sun, H. Zhang, R. Wang, and Y. Zhang. Reducing offloading latency
for digital twin edge networks in 6G. IEEE Transactions on Vehicular
Technology, vol. 69, no. 10, pp. 12240 – 12251, 2020.

[32] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya. Dynamic
scheduling for stochastic edge-cloud computing environments using A3C
learning and residual recurrent neural networks. IEEE Transactions on
Mobile Computing, vol. 21, no. 3, pp. 940 – 954, 2022.

[33] M. Vaezi, K. Noroozi, T. D. Todd, D. Zhao, and G. Karakostas. Digital
twin placement for minimum application request delay with data age
targets. IEEE Internet of Things Journal, vol. 10, no. 13, pp. 11547 –
11557, 2023.

[34] C. Wang, Z. Cai, and Y. Li. Sustainable blockchain-based digital
twin management architecture for IoT devices. IEEE Internet of Things
Journal, vol. 10, no. 8, pp. 6535 – 6548, 2023.

[35] X. Wang, Z. Ning, S. Guo, M. Wen, and V. Poor. Minimizing the age-
of-critical-information: an imitation learning-based scheduling approach
under partial observations. IEEE Transactions on Mobile Computing,
vol. 21, no. 9, pp. 3225 – 3238, 2022.

[36] D. Wu, X. Huang, X. Xie, X. Nie, L. Bao, and Z. Qin. LEDGE:
leveraging edge computing for resilient access management of mobile
IoT. IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 1110
– 1125, 2021.

[37] Z. Xu, W. Ren, W. Liang, W. Xu, Q. Xia, P. Zhou, and M. Li. Schedule
or wait: age-minimization for IoT big data processing in MEC via online
learning. Proc. of INFOCOM’22, IEEE, pp. 1809 – 1818, 2022.

[38] Z. Xu, Z. Yuan, W. Liang, D. Liu, W. Xu, H. Dai, Q. Xia, and
P. Zhou. Learning-driven algorithms for responsive AR offloading
with non-deterministic rewards in Metaverse-enabled MEC. IEEE/ACM
Transactions on Networking, vol. 32, no. 2, pp. 1556 –-1572, 2024.

[39] Z. Xu, L. Zhou, H. Dai, W. Liang, W. Zhou, P. Zhou, W. Xu, and G.
Wu. Energy-aware collaborative service caching in a 5G-enabled MEC
with uncertain payoffs. IEEE Transactions on Communications, vol. 70,
no. 2, pp. 1058 – 1071, 2022.

http://www.cc.gatech.edu/projects/gtitm/

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, 2024 15

[40] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S.
Ulukus. Age of information: an introduction and survey. IEEE Journal
on Selected Areas in Communications, vol. 39, no. 5, pp. 1183 – 1210,
2021.

[41] D. Zeng, H. Geng, L. Gu, and Z. Li. Layered structure aware dependent
microservice placement toward cost efficient edge clouds. Proc of
INFOCOM’23, IEEE, 2023.

[42] R. Zhang, Z. Xie, D. Yu, W. Liang, and X. Chang. Digital twin-assisted
federated learning service provisioning over mobile edge networks. IEEE
Transactions on Computers, vol. 73, no. 2, pp. 586–598, 2024.

[43] S. Zhang, L. Wang, H. Luo, X. Ma, and S. Zhou. AoI-delay tradeoff
in mobile edge caching with freshness-aware content refreshing. IEEE
Transactions on Wireless Communications, vol. 20, no. 8, pp. 5329 –
5342, 2021.

[44] X. Zhou, I. Koprulu, A. Eryilmaz, and M. J. Neely. Efficient dis-
tributed MAC for dynamic demands: congestion and age based designs.
IEEE/ACM Transactions on Networking, vol. 31, no. 1, pp. 74 – 87, 2023.

Jing Li received the PhD degree and the BSc degree
with the first class Honours from The Australian
National University in 2022 and 2018, respectively.
He is currently a postdoctoral fellow at City Univer-
sity of Hong Kong. His research interests include
edge computing, internet of things, digital twin,
network function virtualization, and combinatorial
optimization.

Song Guo (Fellow, IEEE) is a Full Professor in
the Department of Computer Science and Engi-
neering at the Hong Kong University of Science
and Technology. He also holds a Changjiang Chair
Professorship awarded by the Ministry of Education
of China. His research interests are mainly in the
areas of big data, edge AI, mobile computing, and
distributed systems. With many impactful papers
published in top venues in these areas, he has been
recognized as a Highly Cited Researcher (Web of
Science) and received over 12 Best Paper Awards

from IEEE/ACM conferences, journals and technical committees. Prof. Guo
is the Editor-in-Chief of IEEE Open Journal of the Computer Society. He
has served on IEEE Communications Society Board of Governors, IEEE
Computer Society Fellow Evaluation Committee, and editorial board of a
number of prestigious international journals like IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Cloud Computing, IEEE
Internet of Things Journal, etc. He has also served as chair of organizing
and technical committees of many international conferences. Prof. Guo is an
IEEE Fellow and an ACM Distinguished Member.

Weifa Liang (Senior Member, IEEE) received the
PhD degree from the Australian National University
in 1998, the ME degree from the University of
Science and Technology of China in 1989, and the
BSc degree from Wuhan University, China in 1984,
all in Computer Science. He is a Full Professor
in the Department of Computer Science at City
University of Hong Kong. Prior to joining City
University of Hong Kong, he was a Full Professor
in the Australian National University. His research
interests include design and analysis of energy ef-

ficient routing protocols for wireless ad hoc and sensor networks, Mobile
Edge Computing (MEC), Network Function Virtualization (NFV), Internet
of Things and digital twins, design and analysis of parallel and distributed
algorithms, approximation algorithms, and graph theory. He currently serves
as an Editor of IEEE Transactions on Communications.

Jie Wu (Fellow, IEEE) received the Ph.D. degree
in computer engineering from Florida Atlantic Uni-
versity, Boca Raton, FL, USA, in 1989. He is the
Director of the Center for Networked Computing and
Laura H. Carnell professor at Temple University. He
also serves as the Director of International Affairs
at College of Science and Technology. He served as
Chair of Department of Computer and Information
Sciences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for International
Affairs from the fall of 2015 to the summer of

2017. Prior to joining Temple University, he was a program director at the
National Science Foundation and was a distinguished professor at Florida
Atlantic University. His current research interests include mobile computing
and wireless networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. He serves on several
editorial boards, including IEEE Transactions on Mobile Computing, IEEE
Transactions on Service Computing, Journal of Parallel and Distributed Com-
puting, and Journal of Computer Science and Technology. Dr. Wu was general
co-chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM
MobiHoc 2014, ICPP 2016, and IEEE CNS 2016, as well as program co-chair
for IEEE INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair for the
IEEE Technical Committee on Distributed Processing (TCDP). Dr. Wu is a
Fellow of the AAAS and a Fellow of the IEEE. He is the recipient of the
2011 China Computer Federation (CCF) Overseas Outstanding Achievement
Award.

Quan Chen (Member, IEEE) received his BS, Mas-
ter and PhD degrees in the School of Computer
Science and Technology at Harbin Institute of Tech-
nology, China. He is currently an associate professor
in the School of Computers at Guangdong University
of Technology. He once worked as a postdoctoral
research fellow in the Department of Computer
Science at Georgia State University. His research
interests include routing and scheduling algorithms
in wireless networks and sensor networks.

Zichuan Xu (Member, IEEE) received his PhD
degree from the Australian National University in
2016, ME degree and BSc degree from Dalian Uni-
versity of Technology in China in 2011 and 2008, all
in Computer Science. From 2016 to 2017, he was a
Research Associate at Department of Electronic and
Electrical Engineering, University College London,
UK. He is currently a full professor and PhD advisor
in School of Software at Dalian University of Tech-
nology. His research interests include mobile edge
computing, serverless computing, network function

virtualization, algorithmic game theory, and optimization problems.

Wenzheng Xu (Member, IEEE) received the BSc,
ME, and PhD degrees in computer science from
Sun Yat-Sen University, Guangzhou, China, in 2008,
2010, and 2015, respectively. He currently is an
associate professor at Sichuan University, China.
Also, he was a visitor at both the Australian National
University, Australia and the Chinese University
of Hong Kong, Hong Kong. His research interests
include wireless ad hoc and sensor networks, mobile
computing, approximation algorithms, combinatorial
optimization, online social networks, and graph the-

ory.
Jianping Wang (Fellow, IEEE) received the B.S.
and M.S. degrees in computer science from Nankai
University, Tianjin, China, in 1996 and 1999, re-
spectively, and the Ph.D. degree in computer science
from the University of Texas at Dallas in 2003. She
is currently a Professor with the Department of Com-
puter Science, City University of Hong Kong. Her
research interests include cloud computing, service
oriented networking, edge computing, and network
performance analysis.

	Introduction
	Related work
	Preliminaries
	System model
	User queries on digital twin data of sensors
	Updating digital twins of sensors
	QoS Model
	Problem definition
	NP-hardness of the defined problem

	Approximation Algorithm with Bounded Capacity Violations
	Optimal algorithm for the update scheduling problem
	Approximation algorithm for the IoT application placement problem
	Approximation algorithm for the minimization problem
	Algorithm analysis

	Heuristic Algorithm without Computing Capacity Violations
	Algorithm for the IoT application placement problem
	Heuristic algorithm for the minimization problem
	Algorithm analysis

	Performance Evaluation
	Experimental environment settings
	Performance evaluation of different algorithms
	Impact of important parameters on the performance of approximation algorithm
	Impact of important parameters on the performance of heuristic algorithm

	Conclusion and future work
	References
	Biographies
	Jing Li
	Song Guo
	Weifa Liang
	Jie Wu
	Quan Chen
	Zichuan Xu
	Wenzheng Xu
	Jianping Wang

