
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 1

Optimizing Job Offloading Schedule for
Collaborative DNN Inference
Yubin Duan, Student Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—Deep Neural Networks (DNNs) have been widely deployed in mobile applications. DNN inference latency is a critical metric
to measure the service quality of those applications. Collaborative inference is a promising approach for latency optimization, where
partial inference workloads are offloaded from mobile devices to cloud servers. Model partition problems for collaborative inference
have been well studied. However, little attention has been paid to optimizing offloading pipeline for multiple DNN inference jobs. In
practice, mobile devices usually need to process multiple DNN inference jobs simultaneously. We propose to jointly optimize the DNN
partitioning and pipeline scheduling for multiple inference jobs. We theoretically analyze the optimal scheduling conditions for
homogeneous chain-structure DNNs. Based on the analysis, we proposed near-optimal partitioning and scheduling methods for
chain-structure DNNs. We also extend those methods for general-structure DNNs. In addition, we extend our problem scenario to
handle heterogeneous DNN inference jobs. A layer-level scheduling algorithm is proposed. Theoretical analyses show that our
proposed method is optimal when computation graphs are tree-structure. Our joint optimization methods are evaluated in a real-world
testbed. Experiment results show that our methods can significantly reduce the overall inference latency of multiple inference jobs
compared to partition-only or schedule-only approaches.

Index Terms—collaborative DNN inference, job offloading, makespan minimization, mobile cloud computing, pipeline scheduling

✦

1 INTRODUCTION

MACHINE learning technologies have been applied to
a wide range of mobile applications. Among abun-

dant leaning methods, deep neural networks (DNNs) are
attracting more attention with the rapid growth of available
training data. Considering the constrained computational
power on mobile devices, most mobile applications rely on
pre-trained DNN models instead of training DNN models
on device. Performing inference on pre-trained DNN mod-
els requires much less computational power compared to
training itself. There are lots of frameworks that are pro-
posed with the intent of accelerating DNN training for GPU
clusters [2] or IoT devices [3]. Nevertheless, it is also critical
to reduce the DNN inference latency for mobile devices.

Collaborative inference is a promising approach to re-
duce the DNN inference latency for mobile devices. In
particular, [4] observed that the first several layers in a
DNN model usually extract features from input data and
notably reduce the data volume with slight computational
costs. [4] further proposed that properly partitioning a
chain-structure DNN model and offloading partial infer-
ence workloads from mobile devices to cloud servers can
significantly reduce the DNN inference latency compared to
performing inference solely on mobile devices. The general
DNN structure can be modeled by directed acyclic graphs
(DAGs). [5], [6] proposed partitioning schemes for DNN
models that have complex DAG structures. With partitioned
DNN models, mobile devices would perform inference or

• Yubin Duan and Jie Wu are with Temple University, Philadelphia, USA.
E-mail: yubin.duan@temple.edu, jiewu@temple.edu

• This research was supported in part by NSF grants CNS 2128378, CNS
2107014, CNS 1824440, CNS 1828363, and CNS 1757533.

• This paper is an extended version of the conference paper [1] published in
ICPP 2021.

Manuscript received May 15, 2023.

DNN 1

DNN 2

Mobile Cloud
Offload

Partition

Fig. 1. An overview of the DNN partitioning and offloading.

forward propagation on the partial models assigned to them
and offload intermediate results to cloud servers. Once
cloud servers receive intermediate results, they would com-
plete the remaining inference workload and send inference
results back to mobile devices. However, existing collabora-
tive inference methods mainly focus on partitioning a single
DNN model and pay no attention to scheduling multiple
DNNs simultaneously.

In real-world applications, mobile devices usually need
to process multiple DNN inference tasks at the same time.
For example, there are usually multiple cameras or sensors
installed in IoT devices, such as virtual reality devices or
autonomous vehicles [7]. Those sensors collect many data
samples simultaneously. To analyze these data samples,
multiple DNN inference tasks must be initialized. Those
tasks can be homogeneous or heterogeneous, depending on
the application scenarios. When the data is collected from
the same type of IoT devices, homogeneous DNN inference
tasks (i.e., inference tasks on the same DNN model with
different input samples) are launched to process the data.
For more general cases, if the data samples are collected
from multiple types of IoT devices, the corresponding DNN
inference tasks are heterogeneous. A typical application
scenario is autopilot, in which the road condition data is

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 2

DNN 1
DNN 1

DNN 2
DNN 2

TimeComp.
Comm.

(a) Optimal partition for DNN 1

DNN 1
DNN 1
DNN 2

DNN 2
TimeComp.

Comm.

(b) Optimal partitions for DNNs 1 and 2
Fig. 2. Illustrations of offloading pipelines.

collected by ultrasonic sensors, LiDAR sensors, and others.
Multiple heterogeneous DNN inference jobs can be trig-
gered simultaneously to process the data. For both homo-
geneous and heterogeneous cases, reducing their processing
makespan is critical for these time-sensitive applications.

Existing work for accelerating the cooperative DNN
inference process on mobile devices mainly focuses on opti-
mizing the DNN partition strategy [4], [6], [8], [9]. In partic-
ular, those frameworks would decide whether a DNN layer
should be processed locally or remotely given the computa-
tion graph of a DNN model. To the best of our knowledge,
existing work pays little attention to the offloading pipeline.
We notice that carefully scheduling the offloading sequence
can significantly reduce the inference latency, which moti-
vates us to investigate the offload pipeline scheduling prob-
lem for cooperative inference. Moreover, although existing
DNN partition methods can be directly applied to each
job when there are multiple inference jobs, the generated
processing schedule may be sub-optimal. This is because
the DNN partitioning and pipeline scheduling strategies
interact with each other. This motivates us to jointly consider
the DNN partitioning and pipeline scheduling problem. A
motivation example is illustrated in Fig. 2.

Fig. 2 illustrates the offloading pipeline for collabora-
tive DNN inference. In the computation phase, mobile de-
vices perform DNN inference locally. In the communication
phase, intermediate inference results are sent from mobile
devices to cloud servers. We ignore the time consumption of
sending inference results from cloud servers back to mobile
devices, since sizes of inference results are usually much
smaller than sizes of intermediate results. Fig. 2(a) shows
that organizing computation and communication phases in
pipelines can hide communication time behind computation
time. In addition, Fig. 2(b) shows that optimally partitioning
every DNN in the pipeline may lead to a suboptimal latency
of processing all DNNs. Specifically, DNNs 1 and 2 are
optimally partitioned in Fig. 2(a). The individual latency of
each DNN is minimized. However, the latency of processing
those two DNNs in the example can be further reduced, as
shown in Fig. 2(b). The latency of DNN 1 is enlarged, but
the completion time of both tasks is minimized. Therefore,
jointly considering DNN partitioning and offload pipeline
scheduling can further reduce the overall latency for multi-
ple DNN inference tasks. This example illustrates the moti-
vation for organizing the computation and communication
operations in a pipeline to reduce the end-to-end latency.
Existing research [10] has shown that the pipeline approach
can hide the communication time behind the computation
time and improves the utilization of computational and
communication resources.

It is not trivial to jointly optimize DNN partitioning
and offloading pipeline scheduling. Merely optimizing the
schedule of offloading pipelines is challenging. In particu-
lar, DNN layers may have complex precedence constraints
among each other. Scheduling DAG-style DNN layers can
be categorized as a DAG shop scheduling problem, which
is NP-hard [11]. In addition, the optimal offloading sched-
ule depends on the network environment. The offloading
schedule needs to be updated when the network environ-
ment changes. Jointly considering partitioning and pipeline
scheduling brings additional challenges. Scheduling and
partitioning strategies are correlated. Considering those
challenges, we first integrate our observations to analyze
optimal conditions for chain-structure DNNs and then ex-
tend our solution to more general cases.

Some useful observations of chain-structure DNNs can
be used to simplify the optimal condition analysis. In
particular, the first several layers in chain-structure DNNs
are usually used to extract features from input data. The
output tensor sizes of those layers become smaller with the
layer depth. For convolutional neural networks, the tensor
size usually decreases exponentially. The observation shows
that the offloading traffic volume is usually decreasing as
the partition layer moves down the DNN layers. Even
if the tensor sizes increase or remain after passing some
intermediate layers, we can group those layers as a virtual
block without losing the optimal partition. This is because
partitioning after layers in the virtual block cannot reduce
the communication cost but increases the computation cost
for processing more layers on mobile devices. In contrast,
the local computation time increases if more layers are
assigned to mobile devices. According to the observation,
we restrict the trends of computation and communication
time in our analysis.

With our observation, we theoretically analyze the op-
timal conditions of joint DNN scheduling and partitioning
for homogeneous chain-structure DNNs. In addition, a joint
optimization scheme is proposed to minimize the makespan
of cooperative DNN inference for homogeneous chain-
structure DNN inference jobs. We also extend the scheme
to process general-structure DNNs. Moreover, we extend
our problem scenario to deal with heterogeneous DNN
inference jobs. Different from the homogeneous case, we can
no longer find a common partition point for heterogeneous
DNNs since they may have different structures and sizes.
Therefore, we cannot directly apply the algorithms pro-
posed for the homogeneous case to schedule heterogeneous
DNNs. A layer-level DNN scheduling method is proposed.
We show that our proposed method can optimally sched-
ule tree-structure DNN graphs. Our proposed methods are
evaluated in real-world testbeds. Evaluation results show
that our joint optimization methods can significantly reduce
the inference makespan, compared to merely considering
DNN partitioning or scheduling.

Our contributions are summarized as follows:

• We propose a joint optimization problem that aims
to minimize the makespan of multiple cooperative
DNN inference jobs. Our problem jointly considers
DNN partitioning and pipeline scheduling.

• We show the optimal conditions of our joint op-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 3

timization problem when DNN inference jobs are
homogeneous and DNN models are chain-structure.
We present a joint optimization method for homo-
geneous chain-structure DNNs and extend it for
homogeneous general-structure DNNs.

• We have extended the problem scenario discussed in
[1] to deal with heterogeneous DNNs. Different from
the homogeneous case discussed [1], heterogeneous
DNNs have no common partition points. A large
number of combinations of partition points brings
additional challenges for the heterogeneous case.

• The scheduling algorithms proposed for the homo-
geneous case cannot be applied to the heterogeneous
case. In this paper, a novel layer-level scheduling
method is proposed for the heterogeneous case.

• The optimal conditions of the heterogeneous
scheduling problems are different from the homoge-
neous case. We have analyzed in which condition our
heterogeneous DNN scheduling method is optimal.

• We evaluate our methods in real-world testbeds.
Experiment results on AlexNet, MobileNet, ResNet,
and GoogLeNet, show that our proposed method
significantly reduces the inference makespan, com-
pared to partition-only or schedule-only schemes.

2 RELATED WORK

Cloud/edge offloading approaches investigate the collabora-
tion between local and remote computation resources. Neu-
rosurgeon [4] proposed the idea of computation offloading
for DNNs. However, Neurosurgeon only considers the par-
tition of a single DNN. Our paper jointly considers the par-
tition and scheduling of multiple DNNs. Teerapittayanon et.
al. [8] proposed DDNN to reduce the communication data
size in a distributed computing system containing mobile
devices and the cloud. Different from their objective, we aim
to reduce the makespan that contains both communication
and computation latencies. Wang et. al. [6] presented an
adaptive DNN partition scheme for inference acceleration.
[12] further proposed an optimal partition algorithm for
tree-structure DNNs. Although the authors considered mul-
tiple DNNs, the scheduling of multiple jobs is not discussed.
In our paper, we allow DNN offloading stages to work in
a pipeline. Carefully scheduling those jobs could further
reduce their completion time.

Other inference acceleration approaches include DNN
model compression [13], [14], [15], [16], [17], [18] and hard-
ware acceleration [19], [20], [21], [22]. Our methods are
compatible with those approaches. In addition, DNN model
compression reduces the inference latency by simplifying
DNN models and reducing the number of model parame-
ters. This approach investigates the trade-off between com-
putation workload and model performance. The DNN infer-
ence latency can be reduced with a slight sacrifice of model
performance. The model performance is usually measured
by inference accuracy in image classification jobs. Com-
pressing DNN models can efficiently accelerate the DNN
inference process for some application scenarios where the
slight decrease in model accuracy is acceptable. However,
for some other applications, such as autopilots, it is critical
to maintaining a high inference accuracy. Our proposed

Filter
Concat

1x1
Conv

Avg
Pooling

1x1
Conv

1x3
Conv

3x1
Conv

1x1
Conv

1x1
Conv

1x3
Conv

3x1
Conv

3x1
Conv

1x3
Conv

Filter
Concat

DNN DAG

Cut-Points

(a) General-structure DNN and its DAG representation

28x28
Conv

Avg
Pooling

10x10
Conv

Ave
Pooling

Fully
ConnectedInput Output

	"! 	"" 	"# 	"$ 	"% 	"& 	"'

Comp. Time: #("$) Comm. Time: &("$)

Cut-Point

28x28
Conv

Avg
Pooling

10x10
Conv

Ave
Pooling

Fully
ConnectedInput Output

	"! 	"" 	"# 	"$ 	"% 	"& 	"'

Comp. Time: #("$) Comm. Time: &("$)

Cut-Point

(b) Chain-structure DNN and its DAG representation
Fig. 3. DNNs and its DAG representations.
method can reduce the inference latency without affecting
the model performance or inference accuracy.

The DAG scheduling problem has been widely studied.
Scheduling a DAG-structure graph with multiple phases
is NP-hard [23]. Theoretical analyses [24], [25] provide ap-
proximation bounds for simple cases. Topocuuglu et. al. [26]
present an efficient heuristic solution for scheduling DAG-
structure jobs over heterogeneous devices. Our problem
scenario is different from the existing work. In particular,
[26] focuses on finding the optimal task processing sequence
among multiple processors without worrying about the
execution sequence of communication operations. This is
feasible for scheduling tasks among processors, where the
communication bandwidth is not a limited resource. How-
ever, for task offloading in the mobile computing environ-
ment, optimizing the communication operation sequence is
critical in our DAG job scheduling problem.

3 MODEL

3.1 Problem Formulation
We use a Directed Acyclic Graph (DAG) to model a DNN.
Formally, let G = (V,E) denote a DAG, where V is the
node set and E is the edge set. Each node v ∈ V represents
a layer in the DNN instead of a neuron, since our partition
granularity is layer-wise. A weighted edge e ∈ E repre-
sents the data communication between two vertices that are
incident to e. The edge weight shows the communication
volume. Fig. 3(a) illustrates the structure of inception-v4 [27]
and its DAG representation. Although a DNN could have
a complex DAG representation, many widely-used DNNs
are simple and have chain structures as shown in Fig. 3(b).
For example, VGG16 [28], Tiny YOLOv2 [29], and NiN [30]
are commonly used in computer vision applications, and all
have chain-structure representations with different sizes.

Let J denote the set of DNN jobs, where j is used
to index a job and n is the number of jobs. Each job
j is a DNN inference task whose computation graph is
G. Merely processing the job on mobile devices could be
time consuming because of the weak computational power.
A better approach is to offload a part of G to a cloud
server [4]. The collaboration between mobile devices and
the cloud contains three steps: 1) computing parts of G
on mobile devices, 2) offloading intermediate results to the
cloud server, and 3) computing the remaining parts of G on
the cloud. The cloud server needs to send inference results

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 4

1 2 3 4 5 6 7 8
Layer

0

10

20

30

40

50

Ti
m

e
(m

s)

Mobile Comp.
Comm.
Cloud Comp.

(a) Cloud comp. is negligible

1 2 3 4 5 6 7 8
Layer

0

10

20

30

40

50

60

Ti
m

e
(m

s)

Mobile Comp.
Comm.

(b) Trend of time consumption

Fig. 4. Time consumption of each layer of AlexNet.

back to mobile devices, but this communication volume
is small and negligible. In this approach, the computation
graph G of each job j is partitioned into two sections, which
introduces the model partition problem. After partition, the
mobile device needs to determine the processing sequence
of partitioned graphs, which is the scheduling problem.

Although jobs have the same DAG structure, they could
have different specific partitions. Let Pj ⊂ V denote the
partition of job j and be a set of cut-points. For chain-
structure DNNs, cutting one edge is sufficient to split it
into two parts, one for local processing and the other for
offloading. By definition, the partition set Pj of a chain-
structure DNN only contains one element and |Pj | = 1. We
can choose a partition layer and cut the DNN after the layer.
For general-structure DNNs, the set Pj can include multiple
cut-points. Specifically, all computation nodes v ∈ Pj and
their predecessors are processed on mobile devices. We use
f(Pj) to denote the time consumption of processing those
nodes on the mobile device. The output of cut-points v ∈ Pj

needs to be offloaded to the cloud. The time consumption of
sending the output is denoted as g(Pj). The value of f(Pj)
and g(Pj) could be predicted using regression models [4].
The successors of cut-points v ∈ Pj are computed on the
cloud. The computation power of cloud servers is usually
much larger than that of mobile devices. Therefore, the
processing time in the cloud is negligible. Fig. 4(a) shows the
time consumption of each step when partitioning AlexNet
on different layers. The figure shows the cloud processing
time is negligible. The notations are illustrated in Fig. 3(b),
where v4 is the cut-point. Nodes v1, v2, v3, v4 are processed
on the mobile device and their time consumption is denoted
as f(v4). The intermediate results generated by v4 are sent to
the cloud, and the communication time is denoted as g(v4).

After inference jobs are partitioned, the mobile device
needs to schedule their processing sequence. For job j,
the mobile device need to process the cut-points v ∈ Pj

and their predecessors, which is referred to as the com-
putation stage of j. After the computation stage is done,
intermediate results are sent to cloud servers, this step is
denoted as the communication stage of j. When the compu-
tation (communication) stage of job j starts, it acquires all
computation (network) resources. Otherwise, the makespan
may be enlarged [31]. That being said, the computation and
network resources could be used in a pipelined manner. The
computation stage of a job can overlap with the commu-
nication stage of another job. The lengths of computation
and communication stages of job j are f(Pj) and g(Pj),
respectively. The communication stage cannot start until the
corresponding computation stage is done. The completion
time of job j is denoted as τj . All jobs in J are available at
the time 0.

𝑓(1)

Comm. 𝑔(1)

𝑓(2)Comp. 𝑓(3)

𝑔(3)𝑔(2)
Time

(a) Communication-heavy job set

𝑓(4)

Comm. 𝑔(4)

Comp. 𝑓(6)

𝑔(6)
Time

𝑔(5)

𝑓(5)

(b) Computation-heavy job set

Fig. 5. Illustrations of sorted order sets in scheduling.
.

3.2 Problem Analysis

The complexity of the problem mainly comes from the cor-
relation between partitioning and scheduling. Specifically,
the lengths of the communication and computation stages
of job j are functions of partition methods Pj . This shows
that the partitioning and scheduling strategies interact with
each other, and we need to jointly consider them when opti-
mizing the inference latency. It is difficult to determine what
is a good partition of a job, especially when the computation
and network resources are used in a pipelined manner. The
communication stage of a job could be completely hidden
behind the computation stage of the next job, which helps
to reduce the overall makespan. Therefore, it is necessary
to jointly consider the partition of n jobs. However, exam-
ining all possible partitions of n DAGs cannot be done in
polynomial time. Formally, assume each DAG has c ways
of partitioning. The number of all possible partitions for n
DAGs is O(cn). This leads to the question: do we need to
investigate all possible partitions for n DAGs? What is the
best partition strategy of each DAG when considering the
potential pipelined speedup among multiple jobs?

After investigating some typical DNNs, we notice that
f and g functions have useful monotonicity and convexity
properties when the DAG has a chain structure, which could
help us answer those questions. Many widely used DNNs
in computer vision applications have chain structures, such
as VGGNet [28] and YOLO [29]. The chain structure makes
partitioning easier, since the partition Pj only contains one
vertex, and both f and g become unary functions.

More importantly, if we index vertices in the DAG by
their depths as shown in Fig. 3(b), then f is monotonically
increasing and g is non-increasing. The computation time
f increases as the partition layer moves forward because
more layers need to be processed on the local mobile device.
Admittedly, the communication time may increase as the
partition layer goes deep. However, we can cluster the
layers, after which the offloading volume increases, as a
virtual block without ruining the optimal partition point.
Partition after any layer in the virtual block would enlarge
the offloading communication volume and the local compu-
tation time. Therefore, it must not be the optimal partition
point. Our assumptions are feasible after the clustering. We
use the DAG in Fig. 3(b) to illustrate the monotone property.
If the cut-point changes to v5 instead of v4, then the mobile
device needs to process an additional average pooling layer
that corresponds to v5. At the same time, the additional
average pooling layer could reduce the volume of the in-
termediate results, and the communication time could be
reduced. Other types of layers such as convolutional layers
or normalization layers would maintain the intermediate
result’s size. Therefore, the communication workload is non-
increasing. Based on this property, we could simplify the
formulation of the makespan.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 5

Algorithm 1 DNN Scheduling Algorithm
Input: Set of partitions P = {P1, P2, . . . , Pn}.
Output: The optimal schedule for the mobile device.

1: Evaluate f(Pj), g(Pj) with regression models for each
j ∈ J .

2: Communication-heavy set S1←{j ∈ J |f(Pj)<g(Pj)}.
Computation-heavy set S2←{j∈J |f(Pj)≥g(Pj)}.

3: S1←Sort S1 in ascending order of f(Pj).
4: S2←Sort S2 in descending order of g(Pj).
5: S←S1||S2.
6: return S as the optimal schedule.

4 DNN SCHEDULING

4.1 Scheduling for Arbitrary Partitions
Scheduling for partitioned DAGs can be viewed as flow
shop problems [23] and can be optimally solved by John-
son’s rule [32]. Given the partition Pj for each job j ∈ J , we
obtain the value of f(Pj) and g(Pj) by applying regression
techniques [4]. With those known values, the scheduling
problem can be categorized as a 2-stage flow shop problem.
With an objective of minimizing the makespan of all jobs,
Johnson’s rule [32] can be applied to optimally solve the
scheduling problem.

The procedures of the scheduling algorithm based on
Johnson’s rule are illustrated in Alg. 1. Specifically, at line 1,
we evaluate the values of f(Pj) and g(Pj) with regression
models. Lines 2-5 show the procedures of Johnson’s rule.
Jobs in J are first split into two groups. The communication-
heavy set S1 contains all jobs whose communication stage
is longer than the computation stage. The computation-
heavy set S2 contains the other jobs. Then, the jobs in the
communication-heavy set are sorted in ascending order of
their computation stage lengths. The jobs in S1 are stored
in increasing order of f(Pj). Jobs in S2 are sorted in de-
scending order of g(Pj). Illustrations of the sorted S1 and
S2 are shown in Fig. 5. Finally, the sorted jobs in S2 are
concatenated after jobs in S1, and S stores the optimal
solution.

4.2 Makespan of Chain-structure DAGs
For chain-structure DAGs, the partition P only contains
one element, after the chain-structure DAG is partitioned.
Therefore, the functions f and g become unary functions in
discrete domains. Let xj denote the index of the cut-point
for DAG j. Then, the makespan maxj τj has a closed-form
formulation. Concatenating the S2 shown in Fig. 5(b) after
the S1 shown in Fig. 5(a) would cause idle time slots for
either computation or communication resource but not both.
Therefore, we have the following proposition.
Proposition 1. For chain-structure DAGs, if mobile devices

schedule partitioned DAGs based on Johnson’s rule,
then the makespan of n jobs is maxj τj = f(x1) +
max{

∑n
i=2 f(xi),

∑n−1
i=1 g(xi)}+ g(xn).

An illustration of the proposition is shown in Fig. 6.
Notably, l1, ..., ln in Fig. 6 represents partitions in discrete
domain. They are sorted based on Johnson’s rule. To ease the
formulation of our problem in both discrete and continuous
domains, we use x1, ..., xn instead of l1, ..., ln in the problem

𝑓(𝑙!)

Comm. 𝑔(𝑙!)

𝑓(𝑙")

𝑔(𝑙")

Comp. 𝑓(𝑙#)

𝑔(𝑙#)

𝑓(𝑙$)

max 𝑓 𝑙! + 𝑓 𝑙" + ⋯+ 𝑓 𝑙# ,	
𝑔 𝑙$ + 𝑔 𝑙! + ⋯+𝑔 𝑙#%$

𝑔(𝑙$) Time

⋯

⋯

Fig. 6. An illustration of makespan calculation.
.

formulation. x1, ..., xn are also sorted according to Johnson’s
rule. When n is large or n → ∞, the makespan becomes
large or maxj τj → ∞. Therefore, it is meaningful to
investigate the average makespan (maxj τj)/n. To simplify
the following analyses, we first rewrite the formulation of
the average makespan:

lim
n→∞

maxjτj
n

=lim
n→∞

max{g(xn)+
∑n

i=1f(xi), f(x1)+
∑n

i=1g(xi)}
n

= lim
n→∞

max{
∑n

i=1
f(xi)/n,

∑n

i=1
g(xi)/n}

Then, the objective of our optimization problem is equiva-
lent to minmax{

∑n
i=1f(xi)/n,

∑n
i=1g(xi)/n}. Notice that n

is a finite number in real-world applications, so it is treated
as a finite number in the following analysis. Nevertheless,
the formulation of the average makespan is still a good ap-
proximation. Let k denote the length of the chain-structure
DAG, i.e., k = |V |. Use l ∈ {1, . . . , k} to index vertices
in V from left to right (source to termination node). Our
optimization problem becomes:

P1: min max{
∑n

i=1
f(xi)/n,

∑n

i=1
g(xi)/n}

s.t.
∏k

l=1
(xj − l) = 0,∀j ∈ J

To simplify the problem, we relax the domain of x =
(x1,x2,. . . ,xn) to real numbers, i.e. x ∈ Rn. The relaxed
problem becomes:

P2: min max{
∑n

i=1
f(xi)/n,

∑n

i=1
g(xi)/n}

s.t. xj > 0,∀j ∈ J

5 DNN PARTITION

5.1 Partition for Chain-structure DNNs

The objective of the partition is to minimize the makespan.
We first analyze the relaxed problem P2 in continuous
domains, then extend results to discrete domains.

In the continuous domain, we use convexity and mono-
tonicity properties of functions f and g to analyze the
optimal conditions of the problem. In particular, DNNs are
mainly constructed by repeatedly placing blocks of convo-
lution and pooling layers. The computation time of each
block is similar. It makes the function f(x) almost increase
linearly with x. After each block, the sizes of intermediate
results decrease exponentially because of the pooling layers.
Even if the pooling layer is not inserted between two blocks,
the size would not increase. Hence, g(x) can be fit by a
convex function. Based on this observation, we assume f
is an increasing linear (also convex) function and g is a
decreasing convex function in the following analysis. The
functions in the continuous domain are shown in Fig. 7.

When both f and g are convex, the problem P2 be-
comes a convex optimization problem. More interestingly,
the problem holds a strong duality as shown in Lemma 1.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 6

co
nv

po
ol
in
g

po
ol
in
g

de
ns
e

…
𝑓(𝑥)𝑔(𝑥)

Fig. 7. Continuous time consumption functions.

𝑥∗𝑥′ 𝑥′′

𝑔 𝑥! + 𝑔 𝑥!!

2
> 𝑔(𝑥∗)

(a) Continuous domain

𝑔(𝑙) 𝑓(𝑙)

𝑙∗

(b) Discrete domain
Fig. 8. Graph explanation of the optimal partition.
This is mainly because the summation and the maximum of
convex functions are still convex.
Lemma 1. Our optimization problem P2 holds a strong

duality if both f(x) and g(x) are convex.

Proof: The objective function of P2 is convex when f(x) and
g(x) are convex since the summation and the maximum of
convex functions are still convex. The constraints are also
convex. Therefore, P2 is a convex optimization problem.

The strong duality holds since our convex optimization
problem satisfies Slater’s condition. Formally, we need to
find a point x = (x1, x2, . . . , xn) in the feasible solution
domain such that xi > 0,∀i = 1, 2, . . . , n. By definition, xi

represents the partition for job i and xi is strictly greater
than zero. Such point exists since the partition of each job is
independent and can be placed at any layer in middle of the
DAG. ■

Because of the strong duality, we can find the optimal
solution to the problem according to KKT conditions. As
shown in Theorem 1, our analysis reveals an interesting
property that all of n identical DNN inference jobs should
be cut at the same point when we investigate the problem
in the continuous domain.
Theorem 1. After relaxing the partition point into a continu-

ous space, partitioning all homogeneous chain-structure
DAGs at the same point could reach the optimal
makespan.

Proof. Before proceeding to further analysis, we smooth the
max function using the LogSumExp (LSE) function.

max{
∑n

i=1
f(xi)/n,

∑n

i=1
g(xi)/n}

= lim
α→∞

1

α
ln

(
exp(α

∑n

i=1
f(xi)/n), exp(α

∑n

i=1
g(xi)/n)

)
.

According to Lemma 1, the strong duality holds. Hence,
the KKT conditions hold at the optimal point. Specifically,
x∗ is the optimal solution to the primal problem if and only
if ∇x limα→∞

1
α ln

(
exp(

α
∑n

i=1 f(xi)
n), exp(

α
∑n

i=1 g(xi)
n)

)
=

0 and xi > 0,∀i = 1, 2, . . . , n.
The gradient of the objective function is formed by a vec-

tor of partial orders of xi. Formally, the partial order of each
xi is f ′(xi) exp

(
α
n

∑n
i=1f(xi)

)
+ g′(xi) exp

(
α
n

∑n
i=1g(xi)

)
.

For each xi, at the optimal point, it satisfies

f ′(xi)exp
(α
n

∑n

i=1
f(xi)

)
= −g′(xi)exp

(α
n

∑n

i=1
g(xi)

)
(1)

In the continuous domain, the computational work-
load increases along with x, while the communica-
tion volume decreases. Therefore, f ′(x) > 0 and

𝑘-prefix 𝑘-postfix

	𝑔!

	𝑓"
	𝑔# 	𝑓# 	𝑔"

	𝑓!

Fig. 9. Comp. and comm. costs of different partitions.

𝑓!

𝑔!

𝑓!

𝑔!

𝑓"

𝑔#

𝑓#

𝑔"

gap

gap

gap

gap

(a)

(b)

Fig. 10. The uniform partition and our pairing approach.

g′(x) < 0. Then, f ′(xi) exp
(
α
n

∑n
i=1 f(xi)

)
> 0 and

−g′(xi) exp
(
α
n

∑n
i=1 g(xi)

)
> 0.

Take the logarithm of both sides of Eq. (1), we have:

ln(f ′(x)) +
α

n

∑n

i=1
f(xi) = ln(−g′(x)) + α

n

∑n

i=1
g(xi).

Rearrange terms in the previous equation, we have:∑n

i=1
(f(xi)− g(xi)) = (n/α) ln (−g′(xi)/f

′(xi)) (2)

When α → +∞, the previous equation becomes∑n
i=1(f(xi) − g(xi)) = 0, since −g(xi)/f(xi) is finite for

xi > 0. Let x∗ denote the point such that f(x∗) = g(x∗).
If we set xi = x∗,∀i = 1, 2, . . . , n, Eq. (2) holds for all
i = 1, 2, . . . , n. According to the KKT condition, xi =
x∗,∀i = 1, 2, . . . , n is an optimal solution to our optimiza-
tion problem. This shows that when both f(x) and g(x)
are convex functions, partitioning multiple homogeneous
DNNs at the same location achieves the optimal result. ■

A graph explanation of Theorem 1 is shown in Fig. 8(a).
For any partition layer other than x∗, it enlarges either the
communication or computation time. Besides, the increment
of the communication or computation time of a job cannot
be averaged out by pairing it with another job that has a
different cut-point. In the example, the average communi-
cation time of partitioning at x′ and x′′ is still larger than
optimal.

However, in real-world applications, the partition point
is not continuous. The optimal solution we formulated
previously may not be able to be reached. In this case,
partitioning all DAGs at the same point may no longer be
optimal. We investigate the sufficient conditions in which
partitioning all DAGs at the same point is still optimal. In
addition, we show the conditions in which performing two
types of partitions is sufficient to reach the optimal solution.

We further investigate the sufficient condition where
performing partition at x∗ always outperforms performing
two types of partitions at x′ and x′′ for the discretized
version as shown in Fig. 9. In the discretized setting, with
g (for communication) being a monotonic non-increasing
convex function and f (for computation) being a monotonic
non-decreasing convex function, we assume that the set
of partitions has a virtual intersection at M , such that
gM = fM as shown in Fig. 9. In the left most partition,
it has the longest comm. bar and the shortest comp. bar,
which is denoted as gL and fS , respectively. Likewise, the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 7

rightmost partition for comm. and comp. are denoted as
gS for the shortest comm. and fL for the longest comp. As
both g and f are convex, we can show that the intersection
point M has the minimum of max{g, f} for any partition.
Therefore, max{

∑
gM ,

∑
fM} ≤ max{

∑
gi,

∑
fi}. (Note

that M is a fixed value and i is an index.) However, unlike
the continuous space shown in Theorem 1, the parts for
communication (for g) and computation (for f) are not
perfectly aligned. There is a “gap” in front and another
“gap” at the back as shown in Fig. 10. They are the initial
and lagging phases of the offloading pipeline. The following
theorem shows a sufficient condition for the intersection
M to be optimal. The gaps shown in Fig. 10 have been
taken into consideration when comparing different partition
strategies during the proof.

Theorem 2. The uniform partition at virtual intersection
point M beats any other types of partitions when 3fM <
fS + fL + gS and 3gM < fS + gL + gS .

Proof. The proof can be shown by comparing the makespan
of two cases shown in Fig.10: the upper one (a) for uniform
partition at virtual intersection M and the lower one (b) for
any other partition. The oval shaped regions in (a) represent∑

gM and
∑

fM , excluding the leftmost and rightmost
partitions. Likewise, the two oval shape regions in (b) are
for

∑
gi (summation of communication) and

∑
fi (summa-

tion of computation), excluding the leftmost and rightmost
partitions. Since max{

∑
gM ,

∑
fM} ≤ max{

∑
gi,

∑
fi},

together with the two conditions of this theorem: 3fM <
fS + fL + gS and 3gM < fS + gL + gS , we can derive that
the makespan of (a) is no more than the makespan of (b). ■

We use the DNN time distribution shown in Fig. 4(a) as
an example. Let the uniform partition cut the DNN at layer
4. Then, fM = f(4) = 9.8ms and gM = g(4) = 9.5ms. For
simplicity, we assume the other types of partitions are only
allowed between layers 3 and 6. Then, fS = f(3) = 6.7ms,
fL = f(6) = 16.5ms, gS = g(6) = 6.4ms, and gL = g(3) =
27.2ms. We can verify that the sufficient condition shown in
Theorem 2 holds in this case. Any partition strategies that
contain cut-points other than layer 4 would have a larger
inference latency compared to the uniform partition. We use
a toy-example to verify this point. Assume we have 3 re-
peated DNN inference tasks. Partitioning them after layers 5
or 6 (layer 3) causes larger communication (communication)
time compared to the uniform partition. Partitioning one
of them after layer 3 and two of them after layer 6 causes
larger communication time and a larger latency of 46.1ms.
Partitioning all three DNNs after layer 4, i.e., the uniform
partition, is the optimal strategy and achieves a latency of
39.2ms.

We can extend the sufficient condition by considering
k left-most partitions (called k-prefix) and k right-most
partitions (called k-postfix). k-prefix.g and k-prefix.f cor-
respond to the summation of k left-most communication
costs and the summation of k left-most computation costs,
respectively, as shown in Fig. 9. k-postfix.g and k-postfix.f
are defined in a similar way, but they are applied to the k
right-most partitions as shown in the same figure.

Corollary 1. The uniform partition at vitual intersection
point M beats any other types of partitions when

Algorithm 2 Chain-structure DNN Partition
Input: Chain-structure DNNs with k layers.
Output: The partition layers of the DNNs and the ratio.

1: Estimate computation and communication time after
partitioning of each layer f(li), g(li).

2: Initialize the partition points l = 1, r = k.
3: while l < r do
4: mid← ⌊(l + r)/2⌋.
5: if f(mid) < g(mid) then
6: l← mid+ 1.
7: else
8: r ← mid.
9: Ratio← ⌊(f(l)− g(l))/(g(l − 1)− f(l − 1))⌋.

10: return l − 1, l, and Ratio.

(k + 2)gM < k-prefix.fS + k-postfix.fL + k-postfix.gS
and (k+2)gM < k-prefix.fS+k-prefix.gL+k-postfix.gS .

Proof. This result can be proved using the same idea which
was used to prove Theorem 2. ■

Inspired by the optimal partition condition of continuous
cases, we try to partition the discrete layers such that the
difference between f and g values is small. In the discrete
domain, f and g have discrete values as shown in Fig. 8(b).
Let l denote the partition layer. f(l) is increasing with l
and g(l) is non-increasing. Hence, the absolute difference
between f(l) and g(l) first decreases along with l, then
increases. To find the smallest absolute difference, we only
need to find the left-most layer l∗ such that f(l∗) ≥ g(l∗). If
f(l∗) = g(l∗), then cutting n identical DAGs after l∗ gives
the optimal makespan. To show that this can optimize the
makespan, the graph explanation for the continuous case
can be directly applied. If f(l∗) > g(l∗), cutting all DAGs
at l∗ is no longer optimal. We consider using either l∗ − 1
or l∗ as the cut-point for a DAG. Theorem 3 shows that
performing those two types of partitions is sufficient to
minimize the makespan in certain scenarios.
Theorem 3. When f(l∗ − 1) + f(l∗) = g(l∗ − 1) + g(l∗) and

g(l∗ − 1) = f(l∗), performing two types of partitions
on different DNNs is sufficient to reach the optimal
makespan.

Proof. In this scenario, we partition half of the DNNs after
layer l∗ − 1 and cut the other half after layer l∗. Note
that l∗ is the left-most layer such at f(l∗) ≥ g(l∗). DNNs
partitioned after l∗ − 1 belong to communication-heavy set
S1 in scheduling since f(l∗ − 1) < g(l∗ − 1). The others
belong to computation-heavy set S2. After concatenating
the sorted S2 after S1, the communication time is perfectly
hidden after computation. When the conditions shown in
Theorem 3 are satisfied, swapping a job in S1 with another
job which is partitioned after l′ < (l∗ − 1) would enlarge
the makespan. Although f(l′) < f(l∗ − 1) after swapping,
the communication time increases since g(l′) > g(l∗ − 1)
and it becomes the bottleneck. The increment on the com-
munication time g cannot be hidden behind the compu-
tation. Hence, the makespan increases. Similarly, swap-
ping a job in S2 with another job that is partitioned after
l′′ > l∗ would enlarge the makespan given the conditions
shown in Theorem 3. Besides, simultaneously performing
the two swapping would not reduce the makespan since

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 8

Algorithm 3 General-structure DNN Joint Optimization
Input: A general-structure DNN.
Output: The partition and scheduling of the DNN.

1: Convert the input into a DAG with independent paths.
2: Initialize the partition set P ← ∅.
3: for each path i in the DAG do
4: v ← Find the cut-point for path i with Alg. 2.
5: P = P ∪ v.
6: Schedule the independent paths with modified Alg. 1.

g(l′) + g(l′′) ≥ g(l∗) + g(l∗ − 1) when l′ < l∗ − 1 < l∗ < l′′.
If some of the n DNNs are partitioned after layers other than
l∗−1 and l∗, its impact on scheduling can be reduced to one
of the three cases mentioned above. None of them would
reduce the makespan. Therefore, performing two types of
partitions is sufficient. ■

The intuition behind Theorem 3 is that performing two
types of partitions can still fully fulfilled the offloading
pipeline without causing bubble slots if the conditions
given in Theorem 3 are satisfied. Given those conditions,
combining adjacent operations in the offloading pipeline
can still make the pipeline aligned. To satisfy the con-
dition mentioned in Theorem 3, the difference between
two adjacent partition layers cannot be drastic. Real-world
applications usually do not satisfy the conditions. How-
ever, inspired by the Theorem 3, we attempt to reduce the
makespan by reducing the accumulated difference between
computation and communication time. When performing
two types of partitions, we can adjust the ratio between
them to reduce the accumulated difference. Specifically,
when f(l∗ − 1) − g(l∗ − 1) ̸= g(l∗) − f(l∗), the ratio
between the number of DNNs partitioned after l∗ − 1
with the number of DNNs partitioned after l∗ should be
⌊(f(l∗)− g(l∗))/(g(l∗ − 1)− f(l∗ − 1))⌋.

5.2 Binary-Search-Based Partition Algorithm

When actually partitioning DNN models, we cannot directly
apply the solution to Problem P1, i.e., cutting at the virtual
intersection of functions f and g. The actual partition is in a
discrete domain instead of the continuous domain. Inspired
by the analyses for Problem P2, we propose to cut DNN
models at the layers that are close to the virtual intersection
of f and g. Specifically, we propose to perform two types
of partitions at x′ and x′′, where x′ is the closest layer left
to x∗ and x′′ is the closest layer right to x∗. Although the
lengths of computation and communication operations are
not identical after performing those two types of partitions,
their lengths are more likely to be similar compared to other
combinations of partition plans. Also, the maximum length
of the computation and communication operations are more
likely to be minimized since the partition points x∗ and
x′′ are close to the virtual intersection point. Moreover, to
reduce the bubble slots caused by the non-identical length
of computation and communication operations in the of-
floading pipeline, we propose to adjust the ratios between
the number of those two types of partitions. Considering all
those factors, a binary-search-based partition is presented
in this subsection as a solution to partition chain-structure
DNNs in the discrete domain.

v0

v1

v2

v3

v4

v7

v5 v6

(a) Before conversion

v0

v1 v2

v3

v4

v7

v5 v6

v1 v4

(b) After conversion
Fig. 11. An illustration of DAG conversion.

The steps of the partition algorithm are shown in Alg. 2.
At line 1, we estimate the communication and computation
time of each layer with linear regression models. The time
consumption can be accurately estimated according to the
layer type and shape, as well as the network bandwidth [4].
After acquiring the values of functions f and g, we initialize
two cut-points at line 2. k is the length of the chain-structure
DAG. Then, we iteratively update the cut-points by investi-
gating the middle point mid of l and r. If f(mid) < g(mid),
the partition layer is located in the right side of mid. We
update l into mid + 1 accordingly. Otherwise, the partition
layer is left of mid and we update r into mid. The while
loop terminates when l = r. The partition layer could either
be l or l − 1. The ratio between the number of partitions at
l − 1 and l is ⌊(f(l)− g(l))/(g(l − 1)− f(l − 1))⌋.

The correctness of the partition algorithm can be guar-
anteed by the loop invariant. In Alg.2, we can always
guarantee that f(l−1) < g(l−1) and f(r) ≥ g(r). Within the
while loop, if the branch f(mid) < g(mid) shown at line 5 is
taken, then we have f(l− 1) < g(l− 1) after l is updated by
line 6. On the other hand, if the other branch shown at line
7 is taken, then f(r) ≥ g(r) is guaranteed after r is updated.
When the while loop terminates, we have l = r. Taking
those loop invariant properties into consideration, we have
f(l − 1) < g(l − 1) and f(l) ≥ g(l). The partition layer
would be either l or l − 1 since any further increments or
decrements to l or l−1 would enlarge the difference between
communication and computation time after partition. The
complexity of the search algorithm is O(log k).

5.3 Partition for General-Structure DNNs

In real-world applications, a DNN model may have more
complex structures other than chain-structures. The corre-
sponding DAG contains multiple paths. A path is a sub-
graph of the DAG which has a chain-structure that starts
from the input layer and ends at the output layer. This pro-
vides more opportunities to fine-tune the length of the local
computation and communication. However, the correlation
among paths raises challenges for partition creation.

To decouple the correlation among paths, we convert
the general DAG into a multi-path DAG structure without
changing the partial order relations, as shown in Fig. 11.
We convert each node in their topological orders. For a
node, if its out-degree is larger than 1, then we duplicate the
node based on its out-degree. Symmetric rules are applied
to nodes whose in-degree is greater than 1.

After the conversion, we focus on DAGs with multiple
independent paths as shown in Fig. 11(b). Extensively ex-
ploring all possible combinations of cut-points in each path
is computationally complex. We use a heuristic approach
that partitions each path individually. For example, let there
be 2 identical DAGs with structure as Fig. 11(a). They are
converted into 2×3 individual paths, where 3 is the number

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 9

Input 1x1
Conv

3x3
Dwise

1x1
Conv Concat

Bypass Link

[24, 56, 56] [144, 56, 56] [144, 56, 56] [24, 56, 56]

Fig. 12. A bottleneck residual module in MobileNet. (The 3-tuple under
each link shows the shape of the tensor transmitted between layers.)

of independent paths in each converted DAG. Procedures
of the general-structure DNN partition and scheduling are
shown in Alg. 3. Specifically, after converting the input DAG
into a DAG with multiple individual paths at line 1, we
initialize a cut-point set at line 2. Then, from line 3 to line
5, we find cut-points of different paths individually using
the searching algorithm illustrated in Alg. 2. After partition,
we use Alg. 1 to schedule the execution of independent
paths. Note that a slight modification of Alg. 1 is applied,
i.e., duplicated nodes are only counted once when they are
executed, although Johnson’s rule is applied to all nodes,
including duplicated nodes, when scheduling. Specifically,
the scheduler would go through the path processing se-
quence generated by Alg. 2. Following the path processing
sequence, the scheduler records the vertices of each path
with a lookup table. If a vertex has already been record
in the lookup table from previous paths, then the vertex
is duplicated for execution. The duplicated nodes would be
removed from the path when actually processing the DNN
inference job.

6 SCHEDULING FOR HETEROGENEOUS DNNS

After introducing the DNN partitioning and scheduling
for homogeneous DNNs, we can extend our problem sce-
nario to a more general case where mobile devices need to
simultaneously process multiple heterogeneous DNNs. In
particular, real-world applications on mobile devices may
use multiple DNN models at the same time. For example,
some applications need to simultaneously process video and
audio inputs [33]. Inference tasks of different DNN models
may be called at once, and those DNNs can be chain-
structure or general-structure. This is necessary to reduce
the overall inference latency of those heterogeneous DNNs.
In this section, we present our partitioning and scheduling
methods for heterogeneous DNNs. Our major contributions
include: 1) introducing an optimal path-level scheduling
method, 2) proposing a heuristic layer-level scheduling
method for general-structure DAGs, and 3) presenting an
optimal scheduling method for tree-structure DAGs.

6.1 Conversion

We propose to convert multiple heterogeneous DNNs into
one by introducing some dummy nodes and edges. In
particular, we add a dummy source node which is the
predecessor of all DNNs’ first layers. Notably, inserting the
dummy source node would not delay the process of any
DNN inference tasks since we assume they arrive at the
same time. Similarly, a dummy sink node is added, and
it is the successor of all DNNs’ last layer. We can view
the dummy sink node as a layer that gathers inference
results of all DNN inference tasks in J . After inserting the
dummy source and sink, we convert the computation graph

𝑣!

𝑣"

𝑣# 𝑣$ 𝑣%

𝑣& 𝑣'

𝑣(𝑣)

𝑣!*
𝑣+ 𝑣,

Partition

(a) DNN partitioning

𝑣!

𝑣"
TimeComp.

Comm.

𝜎 = (𝑣#, 𝑣!, 𝑣$, 𝑣", 𝑣%, 𝑣&, 𝑣', 𝑣(, 𝑣))

𝑣$ 𝑣" 𝑣% 𝑣& 𝑣' 𝑣(𝑣)

𝑣' 𝑣)

(b) Layer-level scheduling
Fig. 13. Partitioning and scheduling heterogeneous DNNs.

of processing multiple heterogeneous DNNs into a DAG.
Formally, the converted DAG is denoted as GJ .

Fig. 13(a) illustrates the conversion. In particular, there
are two DNNs in the example. One is a chain-structure DNN
which consists of layers from v1 to v4. The other is a DAG-
structure DNN consisting of layers from v5 to v10. A dummy
source vs and a dummy sink vd are added to the graph, as
well as edges (vs, v1), (vs, v5), (v4, vd), and (v10, vd). After
conversion, two heterogeneous DNNs are merged into a
DAG-structure computation graph.

6.2 Partition

With the converted computation graph GJ , we can partition
heterogeneous DNNs following the method introduced in
Section 5.3. Specifically, we first further convert GJ into
a multi-path DAG as illustrated in Fig. 11. Then, we par-
tition each path by following the steps shown in Alg. 2.
The insight of the heuristic partition method is that we
hope to balance the time consumption of computation and
communication phases for each heterogeneous DNN. The
balanced partition can reduce the occurrence of bubble or
idle time slots in the offloading pipeline. If durations of
computation and communication phases vary significantly,
the computation phase of a DNN inference task may block
the communication phase of the same task, which causes
idle slots of communication resources and reduces resource
utilization. After partition, let PG denote the cut-points for
GJ . All predecessors of PG (including nodes in PG) are
processed in local mobile devices. After uploading outputs
of PG to cloud servers, successors of PG would be processed
on the servers. We use G′

J to denote the computation graph
that is assigned to local devices after partition. Formally,
G′

J = (V ′, E′), where V ′ = {v ∈ V |v ⪯ p, ∀p ∈ PG} and
E′ = (V ′ × V ′) ∩ E.

However, there is no guarantee that the computation and
communication phases have the same length after partition
for real-world DNN applications. It is necessary to optimize
the processing and offloading schedule for DNN layers in
G′

J . We propose to refine the offloading scheduling granu-
larity to shrink the resource idle slots and reduce the overall
cooperative inference latency.

6.3 Scheduling for General-Structure Graphs

A simple offloading pipeline scheduling method is treating
each path in the converted DAG as an individual task. We

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 10

Algorithm 4 Layer-level Heterogeneous DNNs Scheduling
Input: The computation graph G′

J = (V ′,E′) which con-
tains all DNN layers assigned to the local mobile device

Output: A layer-level processing schedule σ for all DNN
layers in G′

J

1: Initialize the layer-level schedule σ to an empty list []
2: while V ′ ̸= ∅ do
3: Find set of nodes that have no outgoing edges S←

{vi∈V ′|(vi,vj) /∈(V ′ × V ′) ∩ E′,∀vj ∈V ′}
4: Communication-heavy set S1←{v∈S|f(v) < g(v)};

Computation-heavy set S2←{v∈S|f(v) ≥ g(v)}
5: σ1←Sort v ∈ S1 in ascending order of f(v); σ2←Sort

v ∈ S2 in descending order of g(v).
6: σ ← σ1||σ2||σ
7: Update V ′←V ′\S. Remove corresponding edges in G′

J .
8: return σ as the schedule list

can follow Johnson’s rule explained in Section 4.1 to sched-
ule the processing sequences of those paths in the converted
DAG. We denote this approach as path-level scheduling
since the scheduling granularity is each path. Path-level
scheduling is easy to implement. However, this approach
ignores the potential collaboration opportunities among
paths. Specifically, it is not necessary to fully complete the
forward propagation of a path before processing another
path. In the middle of processing a path, mobile devices
can switch to process another path if it can reduce the
overall latency. Path-level scheduling does not consider this
possibility and therefore may be sub-optimal. We propose to
fine-tune the offloading schedule by considering layer-level
scheduling. Different from path-level scheduling, layer-level
scheduling would generate a processing sequence that con-
sists of DNN layers in G′

J instead of paths.
Formally, we use σ to denote the layer-level processing

schedule, where σ is a feasible topological sort of nodes
in V ′. Specifically, σ is a list of size |V ′|. For vi, vj ∈ σ,
vi ≺ vj in the list σ if vi ≺ vj in G′

J . Mobile devices would
perform forward propagation of DNN layers following the
schedule σ. The computation phases of different layers are
not overlapped. Only one forward propagation operation
is processed at a time. If a layer does not belong to the
cut-point set PG, its output would not be transmitted to
cloud servers. Otherwise, a communication phase would
be performed adjacent to the computation phase. Compu-
tation and communication phases of different layers can be
processed in parallel since they require different types of
resources. An illustration of the layer-level processing and
offloading pipeline is shown in Fig. 13(b).

Generating the layer-level schedule σ under DAG-style
precedence constraints can be categorized as a DAG shop
scheduling problem, which is NP-hard [11]. Inspired by
topological sort, we propose to iteratively sort DNN layers
which have no outgoing edges with Johnson’s rule. In this
way, we can obtain a feasible topological sort of DNN layers
left on mobile devices. In addition, our approach applies
Johnson’s rule during sorting rather than randomly picking
a feasible topological order.

Alg. 4 shows the steps of layer-level scheduling for
heterogeneous DNNs. In particular, line 1 initializes the
layer-level schedule σ to an empty list. The loop in lines

2-7 iteratively adds DNN layers to σ. In each iteration, we
first need to identify DNN layers that have no outgoing
edges as illustrated in line 3. Notably, we identify nodes
that have no outgoing edges in each iteration, rather than
finding vertices with no incoming edges as the standard
topological sorting method. Formally, let S denote the set
of DNN layers that are contained in the node set V ′ and
have no outgoing edges. Then, line 4 applies Johnson’s rule
on DNN layers in S. Specifically, DNN layers v ∈ S are
split into communication-heavy set S1 and computation-
heavy set S2 based on relative lengths of their computation
time f(v) and communication time g(v). DNN layers in the
communication-heavy set S1 are further sorted in ascending
order of their computation time f(v). DNN layers in S2

are sorted in descending order of their communication time
g(v). The sorting results are stored in lists σ1 and σ2,
respectively. Line 6 inserts lists σ1 and σ2 before the current
schedule σ. We use || to denote the concatenation operation.
For example, σ1||σ2 means appending the list σ2 after the
list σ1. In this way, we guarantee that precedence constraints
among DNN layers are not violated, and Johnson’s rule is
applied. DNN layers in S are removed from V ′ in line 7.
This prevents the same layer from being processed repeat-
edly. After the loop is completed, in line 8, the list σ is
returned as the layer-level processing schedule.

Considering the complex precedence constraints in DAG
structures, our layer-level heterogeneous DNN scheduling
method is sub-optimal. Typically, the DAG scheduling prob-
lem is NP-hard [11]. It is difficult to find the optimal solu-
tion in polynomial time. Nevertheless, we notice that the
computation graph G′

j assigned to mobile devices usually
has tree structures. Precedence constraints in tree-structure
graphs are less complex and we find an optimal layer-
level scheduling method for heterogeneous DNN with tree-
structure computation graphs.

6.4 Scheduling for Tree-Structure Graphs

We find that computation graphs assigned to mobile devices
usually have tree structures. Typically, fork nodes are close
to the input layer in DNN computation graphs and join
nodes are close to the output layer. After partition, the
computation graph assigned to mobile devices may have
no join nodes, and therefore is a tree. For example, we have
reviewed the partition results of the DNN models that are
pre-defined in the Torchvision library. After converting
and partitioning, most of the computation graphs G′

J as-
signed to mobile devices are trees. Compared to the general
DAG scheduling problem, scheduling tree-structure graphs
is less complex.

We propose to recursively schedule leaf nodes in tree-
structure graphs and merge the results. In particular, there
are no precedence constraints among leaf nodes. If leaf
nodes are siblings (i.e., they have the same parent node),
an arbitrary permutation of those nodes would be a feasible
processing order. For those sibling nodes, we propose to ap-
ply Johnson’s rule to determine their processing sequence.
We use σvp to denote this processing sequence, where vp
is the parent node of those sibling nodes. Then, we let
the parent node vp record the processing sequence σvp and
remove those sibling nodes from the graph. After removal,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 11

Algorithm 5 Scheduling for Tree-structure Graphs
Input: Computation graph G′

J = (V ′, E′)
Output: A layer-level processing schedule σ for G′

J

1: δ ← an empty dictionary.
2: for every leaf node v ∈ V ′ do
3: Add the key-value pair ⟨v, [(f(v), g(v))]⟩ to δ
4: while |V ′| > 1 do
5: v←the deepest leaf node in G′

J ; vp←the parent node
of v; S← the set of all sibling nodes of v, including v.

6: Retrieve schedule lists stored in sibling nodes, or
formally L←{δ(v)|∀v∈S}; initialize a schedule list
θvp←[].

7: while L ̸= ∅ do
8: Peek the first element of every list in L, or formally

F ← {ηi|∀σi ∈ L}, where ηi = σi.peek first().
9: Sort F using Johnson’s rule for comparison; ηr ←

first element in F after sorting
10: Append ηr to θvp ; remove ηr from σr ; remove σr

from L if σr becomes an empty list.
11: Get the first element ηθ of θvp .
12: Update the first element ηθ←ηθ+(f(vp), g(vp)) in θvp
13: Add the key-value pair ⟨vp, θvp⟩ to dictionary δ
14: Remove nodes in S from G′

J and update V ′ ← V ′ \S
15: return δ(vr) as the layer-level processing schedule for

G′
J , where vr is the root of the tree.

the parent node vp becomes leaf nodes and it represents
the processing schedule of the sub-tree rooted at vp. We can
obtain the final schedule for all nodes in the graph by re-
peatedly executing this procedure on siblings in leaf nodes.
However, sibling nodes may contain processing schedules
of their children nodes during the repeated execution. We
need to determine how to merge the processing schedules
recorded in sibling nodes.

We follow the idea of merge sort to merge processing
schedules. Specifically, a schedule list σvp is an ordered list.
Each element in the list is a tuple (f(v), g(v)) represent-
ing the computation and communication time of node v,
where node v is in the sub-tree rooted at vp. We use the
tuple in the list since we plan to apply Johnson’s rule to
sort the list. When merging multiple schedules, we build
the merged list iteratively. In each iteration, we peek at
the first element of every schedule list and pick the best
one to append to the result list. We use Johnson’s rule to
determine element ranks when choosing the best one. When
comparing two tuples (f(va), g(va)) and (f(vb), g(vb)), we
first determined whether they are computation-heavy or
communication-heavy. If they are both computation-heavy
(i.e., f(va) ≥ g(va) and f(vb) ≥ g(vb)), then the tuple
with a larger communication cost has a higher priority. If
they are both communication-heavy (i.e., f(va) < g(va) and
f(vb) < g(vb)), then the element with a smaller computation
cost has a higher priority. If one tuple is computation-
heavy and the other one is communication-heavy, then the
communication-heavy element has a higher priority.

The complete steps of our layer-level scheduling method
for tree-structure computation graphs are shown in Alg.
5. Specifically, we use a dictionary to maintain the sched-
ule list stored in each node of the computation graph

G′
J = (V ′, E′). Let δ denote the dictionary and it is

initialized following steps in lines 1-3. Starting from an
empty dictionary, the loop of lines 2-3 inserts the key-value
pair ⟨v, [(f(v), g(v))]⟩ for every node v ∈ V ′. Notably, the
value [(f(v), g(v))] is a list of tuples. Each tuple (f(v), g(v))
contains the computation and communication time of the
corresponding node v. We iteratively merge and extend
those schedule lists in the loop of lines 4-14. In particular,
line 5 finds the deepest leaf node v, its parent node vp,
and a set of its sibling nodes S in the current graph G′

J .
Each sibling node in S should contain a schedule list which
is stored in the dictionary δ. Line 6 retrieves the set of
schedule lists of all sibling nodes in S and denotes the set
L. Formally, L = {δ(v)|∀v ∈ S}. Also, a schedule list θvp
is initialized in line 6. The inner loop in lines 7-10 would
merge schedule lists in L into a single list θvp . Inspired by
the merge sort algorithm, we iteratively find the best tuple
from lists in L and insert it to θvp . Line 8 gets candidate
tuples from schedule lists in L. In line 8, we peek at the
first element of each list in L and store the element in set
F . Line 9 sorts the elements in F using Johnson’s rule.
Recall that each element in F is a tuple that consists of
computation and communication time. Johnson’s rule can
be applied to sort those tuples. The best element (or the first
element in the sorted F) is denoted as ηr . Line 10 appends
the selected ηr to the end of θvp and removed ηr from the
schedule list σr , where σr represents the list that contains
ηr. If σr becomes empty after removing ηr , then the list
σr is removed from L. The inner loop continues until L
becomes empty. After the inner loop, schedule lists in L is
merged into θvp . Then, we associate list θvp with the node
vp. Line 11 retrieves the first element of θvp and denotes
it as ηθ . Note that ηθ is also a tuple of computation and
communication time. We use (fηθ

, gηθ
) to denote the tuple.

Line 12 updates ηθ by adding it with the computation and
communication time of vp. Formally, fηθ

= fηθ
+ f(vp) and

gηθ
= gηθ

+g(vp). After updating, line 13 adds the key-value
pair ⟨vp, θvp⟩ to the dictionary δ. Line 14 updates the graph
G′

J by removing nodes in S and the associated edges. The
outer loop terminates when the graph only contains the root
node vr . The schedule list δ(vr) is returned in line 15 as the
final layer-level processing schedule.

Fig. 14 shows an example of Alg. 5. There are five
vertices in the example. The tuple (f(vi), g(vi)) next to each
vertex vi shows its computation and communication time.
Following steps of Alg. 5, we first sort v2 and v4. Based on
Johnson’s rule, their schedule is [v2, v4]. Then, the first node
in the list, i.e., v2, is grouped with its predecessor v1 to keep
the precedence constraints. Also, nodes in the schedule list
[v2, v4] is removed from the graph. After this iteration, the
updated graph is shown Fig. 14. The vertex v1 becomes v′1,
and v′1 represents the schedule list for the sub-tree rooted at
v1. The schedule list [v1 ⊕ v2, v4] next to v′1 shows the pro-
cessing sequence, where v1⊕v2 indicates the vertices v1 and
v2 are grouped together during merging. The time tuples of
elements in the schedule list are [(2, 3), (3, 2)], where (2, 3)
shows the time consumption of the group v1⊕ v2 and (3, 2)
shows the time consumption of v4. In the next iteration, leaf
nodes v′1 and v3 that have no outgoing edges are sorted, i.e.,
we need to merge two lists [(2, 3), (3, 2)] and [(2, 1)]. Similar
to the procedures of merge sort, the first element (2, 3) in

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 12

𝑣!
𝑣"

𝑣#

𝑣$

𝑣%

(1, 3)

(3, 2)
(1, 0)

(2, 1)
(1, 0)

(a) A tree-strcutre
graph

𝑣!
𝑣"

𝑣#$

(2, 1)
(1, 0)

[(2, 3), (3, 2)]
[𝑣!⊕𝑣", 𝑣#]

(b) After scheduling
subtree rooted at v1

Fig. 14. An example of scheduling for tree-structure graphs.

the list [(2, 3), (3, 2)] is compared with (2, 1) and (2, 3) is
selected to be inserted to the merged list based on Johnson’s
rule. Two lists become [(3, 2)] and [(2, 1)]. The merged list
is [(2, 3)]. Then, (3, 2) is compared with (2, 1) and (3, 2)
is selected. Two lists become [] (empty) and [(2, 1)]. The
merged list becomes [(2, 3), (3, 2)]. Finally, (2, 1) is selected.
The merged list is [(2, 3), (3, 2), (2, 1)]. After merging, the
first element (2, 3) in the list is grouped with its predecessor
(1, 0). Eventually, the schedule list is [v0⊕v1⊕v2, v4, v3] and
the corresponding list of time tuples is [(3, 3), (3, 2), (2, 1)].
Vertices in the group v0 ⊕ v1 ⊕ v2 would be processed in
sequence during execution. Therefore, the schedule list can
be written as [v0, v1, v2, v4, v3].

Merging schedule lists recorded in sibling nodes would
not break precedence constraints in the computation graph.
In addition, applying Johnson’s rule guarantee the gener-
ated schedule lists are optimal. Theorem 4 shows our layer-
level scheduling for tree-structure DAGs is optimal.
Theorem 4. When the computation graph G′

J is a tree, the
layer-level schedule list generated by Alg. 5 is optimal.

Proof: This theorem can be proved using mathematical in-
duction. For the base case, where the tree-structure graph
G′

J contains one node, Alg. 5 obviously generates the op-
timal schedule list. For other cases, let vp denote the root
node and S denote the set of children of vp. Assume the
subtree rooted at vs is optimally scheduled for every vs ∈ S,
then we will show that Alg. 5 optimally merges schedule
lists of those subtrees and generates the optimal schedule
for the tree rooted at vp. When merging schedule lists, Alg.
5 iteratively compares the head element of every schedule
list for all vs ∈ S. Therefore, the relative order of elements
in every schedule list is not changed after merging. In
addition, Alg. 5 compares and selects list elements in the
order that follows Johnson’s rule. Because Johnson’s rule is
optimal [32], the schedule list generated by Alg. 5 is optimal.
Moreover, line 12 of Alg. 5 groups vp with the first element
in the merged schedule list to reduce the time complexity
of the algorithm. This is because vp has no communication
time cost, or formally g(vp) = 0. Recall that only leaf nodes
in G′

J need to offload their output to cloud servers and
vp is not a leaf node. Considering g(vp) = 0, inserting a
node after vp in the schedule list has no benefit since it
cannot further reduce the overall communication cost but
may increase the overall computation time. Therefore, the
grouping operation will not lose the optimal schedule. We
may concluded that the layer-level schedule list generated
by Alg. 5 is optimal. ■

7 EXPERIMENT

7.1 System Setup
Our offloading system testbed consists of a mobile device
and a cloud server. We use a Raspberry Pi model 4B as

21 23 27 29
Number of DNN Inference Jobs

0

4

8

12

16

T
im

e
(s

)

AlexNet (JPS) AlexNet (BF) AlexNet' (JPS) AlexNet' (BF)

Fig. 15. Compare with brute force search.

the mobile device and a PC in our lab as the cloud server.
Specifically, the Raspberry Pi model 4B uses a quad-core
Cortex-A72 (ARM v8) SoC as its CPU, and it has 4GB RAM.
Our PC has a six-core Intel i7-8700 CPU with 32GB RAM
and a GTX1080 GPU. The operating system installed on the
PC is Ubuntu 20.04. The communication channel between
the mobile and cloud devices is over a wireless network.
The Wi-Fi is set up on a NETGEAR Model R6230 router. Our
lab PC equips a USB Wi-Fi adapter to access the wireless
network. To simulate the communication delay at different
bandwidths, we use the wondershaper package to limit
the upload and download bandwidth of the Raspberry
Pi. Notably, the roundtrip delay in the Wi-Fi network we
used in our experiment is smaller than the delay in the
real-world cellular network. However, the communication
latency is still the bottleneck of cooperative inference in our
experiment environment, and our proof-of-concept experi-
ment can fairly evaluate the performance of our proposed
method. Our experiment results also verify that our pro-
posed method can adaptively adjust the partitioning and
scheduling strategies and consistently outperforms compar-
ison methods in various simulated network environments.

The prototype of our joint optimization system is im-
plemented with Python. The client-side is running on the
Raspberry Pi and the server-side is running on the PC. Both
client and server use PyTorch to perform DNN inferences.
The server runs all inference tasks on its GPU with CUDA.
The network communication between the client and server
is established with gRPC. In a round of a DNN inference
task, the client first loads the input image, transforms it
to a tensor, and performs the forward propagation on the
partitioned DNN. Then, the client collects the output tensor
and encodes it as serialization for network transmission.
A gRPC client is called to collect bytes array through the
BytesIO and sent it to server as a gRPC request message.
The server sends the classification result back to the client
via a gRPC reply message.

Our scheduler is implemented on mobile devices. Be-
fore partitioning and scheduling, the scheduler needs to
estimate the computation time of local DNN inference and
the communication time of offloading. To reduce the es-
timation overhead, we build a lookup table for compu-
tation time considering the local computation time stable.
The communication time changes with network bandwidth.
Therefore, our scheduling algorithm uses a simple linear
model to estimate the communication delay. Specifically,
the communication time tn = w0 + s/b, where w0 is the
round-trip latency and s/b is the ratio of the message size
s to the bandwidth b. The value of the model parameter
w0 is estimated based on latency data samples collected
in the Raspberry Pi. Although the generated schedules are
based on the estimated time cost, we executed the generated

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 13

AlexNet GoogLeNet MobileNet-v2 ResNet18
0

500

1000

1500

2000

T
im

e
(m

s)
LO
PO
JPS

(a) 3G (1.1 Mbps)

AlexNet GoogLeNet MobileNet-v2 ResNet18
0

500

1000

1500

2000

T
im

e
(m

s)

CO
LO
PO
JPS

(b) 4G (5.85 Mbps)

AlexNet GoogLeNet MobileNet-v2 ResNet18
0

500

1000

1500

2000

T
im

e
(m

s)

CO
LO
PO
JPS

(c) Wi-Fi (18.88 Mbps)

AlexNet GoogLeNet MobileNet-v2 ResNet18

0.8

1

1.2

1.4

T
im

e
(m

s)

(d) JPS overhead
Fig. 16. Comparison of total inference latency.

schedule in our testbed to record the real-world latency for
evaluation.

We use PyTorch Profiler to measure the perfor-
mance of DNN inference on the client and server when
building the lookup table. To measure the communication
delay, the gRPC reply message contains a field to record
the total computation time tc of the cloud server. The client
will start a timer when it sends the gRPC request message,
and stop the timer when it received the reply message.
The duration of timer td includes the communication delay
and the cloud computation delay. The difference td − tc
is the communication delay. Our preliminary experiment
result shows that the cloud computation delay is usually
much smaller than the communication delay. Therefore, our
scheduler only considers a two-stage scheduling problem
and uses the time duration of td to train the regression
model for communication delay.

In the experiments, we validate the proposed algorithms
on different types of DNNs which are widely used in CV
applications. For the chain architecture, we use AlexNet
[34] and MobileNet-v2 [35]. It is important to mentioned
that MobileNet contains multiple bottleneck residual mod-
ules as shown in Fig. 12. There is a bypass link in the
module. Considering the bypass link, MobileNet does not
have a chain-structure. However, from Fig. 12, we notice
that the output sizes of layers within a bottleneck residual
module are not decreasing. Partitioning at a layer within
the module does not bring benefits for scheduling, and
it should be clustered as a virtual block according to our
analysis in section 3.2. After clustering and converting, we
treat MobileNet as a chain-structure DAG. For the general
architecture, we use GoogLeNet [36]. GoogLeNet contains
several Inception modules illustrated in Fig. 3(a). The In-
ception module should not be clustered as a virtual block,
because the output tensor sizes of its intermediate layers are
smaller than input tensor sizes. We treat the GoogLeNet as
a general-structure DAG.

7.2 Comparison Algorithms
We compare our scheme that jointly considers the partition
and schedule (which is denoted as JPS), with partition only
(PO), cloud only (CO), and local only (LO) schemes. For PO,
we implement the state-of-the-art DNN partition algorithm
[5], which generates homogeneous cut-points for all jobs.
However, this scheme does not consider the collaboration
between partitioning and scheduling. For CO, the entire
inference workload is done on the cloud server. The lo-
cal mobile device uploads all input tensors to the server.
For LO, the inference jobs are processed solely on mobile
devices without offloading. In addition, we implement the
brute-force (BF) approach to find the optimal partition and
schedule for small size inputs.

TABLE 1
Latency reduction ratio compared with LO (%)

Model 3G 4G Wi-Fi
PO JPS PO JPS PO JPS

AlexNet 0 22.06 33.33 42.11 63.91 73.43
MobileNet-v2 27.60 56.73 60.00 78.83 82.81 84.69

GoogLeNet 0 52.83 56.13 71.93 66.63 72.17
ResNet18 0 0.73 1.46 28.22 58.52 58.52

7.3 Experiment Results

We first compare our JPS with the BF approach to show
the gap between our schedule with the optimal one. Fig. 15
shows the overall time consumption of multiple DNN infer-
ence jobs. In AlexNet, our scheme could generate optimal
scheduling when the number of identical jobs is less than
23. On a synthetic DNN AlexNet′, whose communication
time is sampled from the fitted curved, our scheme could
find the optimal schedule. These experiment results verify
that if the conditions stated in Theorem 2 hold, our scheme
can find the optimal schedule for multiple identical DNNs.

We then evaluate our algorithms on chain-structure and
general-structure DAGs. In this experiment, we generate
100 repeated jobs for each type of DNN, and we record
the average completion time over different bandwidths.
Specifically, we choose three typical bandwidths to simu-
late 3G, 4G, Wi-Fi network conditions. According to [5],
the typical bandwidths of 3G, 4G, and Wi-Fi are 1.1Mbps,
5.85Mbps, and 18.88Mbps, respectively. The experiment re-
sults are shown in Fig. 16. In general, we can see that our
joint optimization scheme JPS has the best performance
for all types of DNNs in all network environments. Over
each bandwidth configuration, our scheme outperforms the
other comparison algorithms. The PO scheme ignores the
collaboration among multiple jobs in scheduling, while the
LO scheme does not make use of the powerful cloud.

Fig. 16(a) illustrates the performance comparison on the
3G network. The CO time is not shown in the figure because
it costs more than 4,000ms to upload the input tensor into
the cloud server for all DNNs. It is much larger than other
offloading schemes. From the figure, we notice that the JPS
would significantly reduce the inference time for AlexNet,
GoogLeNet, and MobileNet. Especially for GoogLeNet, the
JPS reduces the inference time by 52.5% compared with LO
and PO. The improvement of JPS for ResNet is not obvious.
This is because the network speed is too slow and offloading
the intermediate result of any layer of ResNet would cost
more time than computing the model locally.

When the network bandwidth increases to 5.85 Mbps,
our JPS scheme achieves significant improvement for all
DNNs used in our experiment. Compare Fig. 16(a) and Fig.
16(b), we can notice that the state-of-the-art PO algorithm

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 14

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

102

103

104

T
im

e
(m

s)
LO
CO
PO
JPS

(a) AlexNet

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

102

103

104

T
im

e
(m

s)

LO
CO
PO
JPS

(b) MobileNet-v2

Fig. 17. Inference latency under different bandwidths.

2 3 4 5 6 7 8 9
Ratio

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

T
im

e
(s

)

9Mbps
10Mbps
11Mbps

(a) ResNet

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio

2.2

2.4

2.6

2.8

3

3.2

T
im

e
(s

)

9Mbps
10Mbps
11Mbps

(b) GoogLeNet

Fig. 18. The impact of the ratio between two types of jobs.

can barely reduce the total inference time for ResNet, even
when the network condition is improved from 3G to 4G.
Without scheduling, the bandwidth improvement is wasted.
In contrast, our JPS would make full use of the bandwidth
increase and reduce the overall inference time by 27.2%
compared to PO. The reduction ratio of the inference time
compared with LO is summarized in Table 1. Fig. 16(c)
shows the performance comparison on the Wi-Fi network.
The bandwidth of Wi-Fi is large, and simply offloading all
computation workload to the cloud server is a good strategy.
In this situation, our JPS still could reduce the inference time
for AlexNet, GoogLeNet, and MobileNet. Fig. 16(d) shows
the overhead of our JPS scheme. From the figure, we notice
that the overhead is negligible compared with the inference
time. It is because both binary search and scheduling algo-
rithms are fast. More importantly, we use a lookup table to
store the local inference time, which saves the time cost of
profile estimation. In addition, the communication time is
estimated using a simple linear regression model which is
also time-efficient.

Fig. 16 shows that there is a range in which our JPS
scheme can reduce the overall inference time. When the net-
work conditions are too poor, offloading brings no benefits.
Similarly, when the bandwidth is large enough, the mobile
device should simply upload all computation workload to
the cloud server, which is much faster. Fig. 17 shows the
DNN inference time under different bandwidths. From the
figure, we find that our JPS scheme can speed up both
AlexNet and MobileNet in bandwidth range of [1, 20] Mbps,
which covers the bandwidth from 3G network to Wi-Fi
network. Comparing Fig. 17(a) and Fig. 17(b), we notice that
AlexNet has a wider benefit range in which JPS can reduce
the inference time. This shows that even when wireless up-
load bandwidth exceeds 50Mbps, our JPS scheme is useful.

We also investigate the impact of the ratio between
computation- and communication-heavy jobs. The results
are shown in Fig. 18. Fig. 18(a) shows that the optimal ratio
between two types of jobs is not 1, and it varies with the
bandwidth configurations. Comparing Fig. 18(a) and Fig.

3G 4G Wi-Fi
0

500

1000

1500

2000

2500

3000

T
im

e
(m

s)

PO
JPS
HPS

Fig. 19. Inference latency of processing heterogeneous jobs.

18(b), we notice that if the communication-heavy jobs have
larger differences between computation and communication
stages, then the optimal ratio between computation-heavy
and communication-heavy jobs is low. Otherwise, there
should be more communication-heavy jobs. The optimal
ratio shifts with bandwidth changes.

Fig. 19 shows the evaluation results for scheduling het-
erogeneous DNNs. In this experiment, we equally mix in-
ference jobs of AlexNet, MobileNet-v2, and GoogLeNet. We
directly apply PO and JPS on each individual job and record
the overall inference latency. HPS refers to our proposed
heterogeneous partitioning and scheduling method. From
the experiment result, we can find that our proposed HPS
method can significantly reduce the inference latency for
heterogeneous jobs.

8 CONCLUSION

In this paper, we investigate the model partitioning and
offloading pipeline scheduling problems for collaborative
DNN inference. Our objective is to minimize the overall
inference makespan of multiple DNN inference jobs. We
explore the homogeneous case where DNN models have
the same structure. Particularly for homogeneous chain-
structure DNNs, if we relax the problem to the continuous
domain, then partitioning all DNNs at the same point is
sufficient for makespan optimization. On the discretized
domain, two types of partitions are sufficient when the time
difference between the two adjacent partition points is not
drastic. A binary-search-based partitioning and scheduling
algorithm is proposed. Moreover, we extend the problem
scenario to process heterogeneous DNNs. A layer-level
scheduling algorithm that integrates Johnson’s rule and
ideas of topological sort is proposed. The proposed method
is optimal when the computation graph is tree-structure.
In a tree-structure computation graph, there are only fork
nodes. The prototype of our joint optimization methods is
implemented and tested in a real-world testbed. Evaluation
results on AlexNet, MobileNet, ResNet, and GoogLeNet
reveal that our methods outperform partition-only and
schedule-only schemes in all network circumstances.

In future work, we plan to investigate the collabora-
tive inference framework that covers mobile devices, edge
servers, and cloud servers. Adding edge servers to the
framework can further reduce the inference latency since
edge servers provide much lower communication latencies.
Moreover, we plan to investigate the scheduling problem
for online arrival jobs, which is more practical in real-world
applications.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 15

REFERENCES

[1] Y. Duan and J. Wu, “Joint optimization of dnn partition and
scheduling for mobile cloud computing,” in 50th International
Conference on Parallel Processing, 2021, pp. 1–10.

[2] W. Xu, Y. Zhang, and X. Tang, “Parallelizing dnn training on gpus:
Challenges and opportunities,” in Companion Proceedings of the Web
Conference 2021, 2021, pp. 174–178.

[3] H. Wang, Z. Qu, Q. Zhou, H. Zhang, B. Luo, W. Xu, S. Guo, and
R. Li, “A comprehensive survey on training acceleration for large
machine learning models in iots,” IEEE Internet of Things Journal,
2021.

[4] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[5] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn
surgery for inference acceleration on the edge,” in IEEE INFO-
COM, 2019, pp. 1423–1431.

[6] N. Wang, Y. Duan, and J. Wu, “Accelerate cooperative deep in-
ference via layer-wise processing schedule optimization,” in IEEE
ICCCN, 2021, pp. 1–9.

[7] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz, “Planercnn:
3d plane detection and reconstruction from a single image,” in
Proceedings of the IEEE CVPR, June 2019.

[8] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed
deep neural networks over the cloud, the edge and end devices,”
in Proceedings of the IEEE ICDCS, 2017, pp. 328–339.

[9] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco,
“Distributed inference acceleration with adaptive dnn partitioning
and offloading,” in Proceedings of the IEEE INFOCOM, 2020, pp.
854–863.

[10] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-
end task offloading in mobile-edge computing networks with
limited communication capability,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 2, pp. 624–634, 2020.

[11] Y. Duan, N. Wang, and W. Jie, “Reducing makespans of dag
scheduling through interleaving overlapping resource utiliza-
tion,” in IEEE MASS, 2020, pp. 392–400.

[12] Y. Duan and J. Wu, “Computation offloading scheduling for deep
neural network inference in mobile computing,” in IEEE/ACM
29th International Symposium on Quality of Service (IWQoS’21), Vir-
tual Conference, Jun. 2021.

[13] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” in Proceedings of the 45th IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2014, pp. 4052–4056.

[14] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Kr-
ishnamurthy, “Mcdnn: An approximation-based execution frame-
work for deep stream processing under resource constraints,” in
Proceedings of the ACM MobiSys, 2016, pp. 123–136.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[16] R. Huang, J. Pedoeem, and C. Chen, “Yolo-lite: a real-time object
detection algorithm optimized for non-gpu computers,” in Pro-
ceedings of the IEEE Big Data. IEEE, 2018, pp. 2503–2510.

[17] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adap-
tive selection of deep learning models on embedded systems,”
arXiv preprint arXiv:1805.04252, 2018.

[18] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based
real-time video analytics,” in Proceedings of the IEEE INFOCOM,
2020, pp. 1–10.

[19] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: automatic
generation of fpga-based learning accelerators for the neural net-
work family,” in Proceedings of the ACM/EDAC/IEEE DAC, 2016,
pp. 1–6.

[20] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on cpus,” 2011.

[21] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, “Deepx: A software accelerator for low-
power deep learning inference on mobile devices,” in Proceedings
of ACM/IEEE IPSN, 2016, pp. 1–12.

[22] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li,
Z. Guan, D. Chen, and Y. Lin, “Autodnnchip: An automated dnn
chip predictor and builder for both fpgas and asics,” in Proceedings
of ACM/SIGDA FPGA, 2020, pp. 40–50.

[23] P. Brucker and P. Brucker, Scheduling algorithms. Springer, 2007,
vol. 3.

[24] K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallel dag
jobs online to minimize average flow time,” in Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2016, pp. 176–189.

[25] C. Chekuri, A. Goel, S. Khanna, and A. Kumar, “Multi-processor
scheduling to minimize flow time with ε resource augmentation,”
in Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing. ACM, 2004, pp. 363–372.

[26] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE transactions on parallel and distributed systems, vol. 13, no. 3,
pp. 260–274, 2002.

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning,” in Proceedings of AAAI, 2017.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[29] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,”
arXiv preprint arXiv:1612.08242, 2016.

[30] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[31] W. Shao, F. Xu, L. Chen, H. Zheng, and F. Liu, “Stage delay
scheduling: Speeding up dag-style data analytics jobs with re-
source interleaving,” in Proceedings of ICPP, 2019, pp. 1–11.

[32] S. M. Johnson, “Optimal two-and three-stage production sched-
ules with setup times included,” Naval research logistics quarterly,
vol. 1, no. 1, pp. 61–68, 1954.

[33] R. Arandjelovic and A. Zisserman, “Objects that sound,” in Pro-
ceedings of the European conference on computer vision (ECCV), 2018,
pp. 435–451.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE CVPR, 2016, pp. 770–
778.

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE CVPR, 2018, pp. 4510–4520.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE CVPR, 2015, pp. 1–9.

Yubin Duan received his B.S. degree in Mathe-
matics and Physics from University of Electronic
Science and Technology of China, Chengdu,
China, in 2017. He is currently a Ph.D. stu-
dent in the Department of Computer and In-
formation Sciences, Temple University, Philadel-
phia, Pennsylvania, USA. His current research
focuses on scheduling algorithms for distributed
systems and parallel computing.

Powered by TCPDF (www.tcpdf.org)

Jie Wu is the Director of the Center for Net-
worked Computing and Laura H. Carnell profes-
sor at Temple University. His current research
interests include mobile computing and wireless
networks, routing protocols, network trust and
security, distributed algorithms, applied machine
learning, and cloud computing. Dr. Wu regu-
larly published in scholarly journals, conference
proceedings, and books. He serves on several
editorial boards, including IEEE Transactions on
Mobile Computing and IEEE Transactions on

Service Computing. Dr. Wu is a Fellow of the AAAS and a Fellow of
the IEEE.

