
1

Protecting Inference Privacy with Accuracy
Improvement in Mobile-Cloud Deep Learning
Shulan Wang, Graduate Student Member, IEEE, Qin Liu, Member, IEEE, Yang Xu, Member, IEEE,

Hongbo Jiang, Senior Member, IEEE, Jie Wu, Fellow, IEEE, Tian Wang, Member, IEEE, Tao Peng, Member, IEEE,
and Guojun Wang, Member, IEEE

Abstract—With the wide spread of data-driven deep learning applications, a growing number of users outsource compute-intensive inference
processes to the cloud. To protect inference privacy, Liu et al. (INFOCOM 2022) proposed two steganography-based solutions, named GHOST and
GHOST+, relying on the mobile-cloud collaborative framework, where the mobile device hides sensitive images into public cover images before
feature extraction, while launching adversarial attacks on the cloud-side deep neural network (DNN) to obtain desired results. Although both solutions
demonstrate significant advantages in private deep learning, they suffer from limited practicality; since the inference accuracy decreases sharply as
the hiding ratio increases. To address this, we propose two improved solutions, IGHO and IGHO+, which ensure high inference accuracy even when
abundant sensitive images need to be hidden. Specifically, IGHO as the improved version of GHOST proposes two feature fusion methods, feature
synthesis and pixel synthesis, to preprocess cover images, making the poisoned DNN learn hidden sensitive features better, while IGHO+ as the
improved version of GHOST+ designs a novel feature mining generative adversarial network (FMGAN) to craft adversarial perturbations highly robust
against variable sensitive types. Experimental results show that the proposed solutions highly improve the practicality of GHOST and GHOST+.

Index Terms—Mobile cloud, deep learning, inference privacy, steganography, adversarial attacks

✦

1 INTRODUCTION

With the advent of big data era, data-driven deep learning has
played a considerable role in many vision tasks, such as face
recognition and autonomous driving [1]. Due to the increased
functionalities and complexities, sophisticated deep neural net-
works (DNNs) entail enormous training data and compute-heavy
training and inference processes. In consequence, resource-limited
users usually shift entire DNNs and inference computation to a
cloud; by using machine learning as a service (MLaaS) [2] or pre-
trained online DNNs [3]. Despite promising, this common practice
leads to potential privacy risks. For instance, 41% of organiza-
tions surveyed had experienced an AI privacy breach or security
incident, according to Gartner’s latest survey of AI adoption [4].
Although a variety of attempts have been conducted in private

• Shulan Wang, Qin Liu, Yang Xu, and Hongbo Jiang are with the
College of Computer Science and Electronic Engineering, Hunan Uni-
versity, Changsha, Hunan Province, P. R. China, 410082. E-mail:
gracelq628@hnu.edu.cn; Wangsl@hnu.edu.cn; xuyangcs@hnu.edu.cn;
hongbojiang2004@gmail.com

• Jie Wu is with the Department of Computer and Information Sciences, Tem-
ple University, Philadelphia, PA 19122, USA. E-mail: jiewu@temple.edu

• Tian Wang is with the Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University & UIC, Zhuhai, Guangdong Province,
P. R. China, 519000. E-mail: cs tianwang@163.com

• Peng and Guojun Wang are with the School of Computer Science
and Cyber Engineering, Guangzhou University, Guangzhou, Guang-
dong Province, P. R. China, 510006. E-mail: pengtao@gzhu.edu.cn; cs-
gjwang@gzhu.edu.cn

This work was supported in part by the National Key Research and
Development Program of China under Grants 2022YFE0201400 and
2020YFB1005804, in part by the NSFC Grants 62272150, 62372121,
U20A20181, 62272162, 62172159, 62002113, and 62272154, in part by
the Natural Science Foundation of Guangdong Province of China under
Grant 2023A1515012358, in part by the Hunan Provincial Natural Science
Foundation of China under Grants 2021JJ30294, 2023JJ30267, 2020JJ3015,
and in part by the Science and Technology Innovation Program of Hunan
Province under Grant 2023RC3125. (Corresponding author: Qin Liu.)

Fig. 1: The high-level idea of GHOST and GHOST+. A DNN
is partitioned into a frozen mobile-side network (responsible for
feature extraction) and a cloud-side network that may be retrained
(responsible for performing inference tasks based on the features).

deep learning, the majority of them focus on the training stage [6]–
[14]. For example, one hotspot research direction [13], [14] is
how to employ adversarial training [15] to preserve membership
and attribute privacy of training data. In practice, users often send
sensitive images directly to the cloud for real-time predictions,
resulting in the disclosure of personal privacy. Hence, it is vital to
protect sensitive data against the cloud in the inference stage.

To preserve inference privacy, researchers have attempted to
adapt cryptographic techniques [16]–[23] and differential privacy
(DP) [24]–[29] to the context of DNNs. For all this, how to strike a
balance among privacy, efficiency, and accuracy is still a challeng-
ing problem for outsourced inference services. To tackle this issue,
Liu et al. [30] as the first attempt integrated steganography [31]–
[33] and adversarial attacks [34] and proposed two mobile-cloud
collaborative solutions, named GHOST and GHOST+.

As illustrated in Fig. 1, both solutions utilize steganography
technologies hiding sensitive images into public cover images for
enhanced privacy, while inducing a DNN to output the labels
of hidden sensitive images by launching adversarial attacks. To
obtain adversary-selected results, GHOST retrains the DNN into

2

a poisoned network to learn hidden sensitive features, while
GHOST+ produces adversarial perturbations by a generative ad-
versarial network (GAN) [35]. In regard to application scenarios,
GHOST entails retraining the DNN and is suitable for MLaaS,
while GHOST+ keeps the DNN intact and applies to online
inference services. For instance, if a company relies on Amazon
SageMaker [36] to train a face recognition clocking-in system,
GHOST can be employed to hide employees’ facial features;
if a patient expects to obtain an online diagnosis from Closed-
Loop [37], GHOST+ would help protect sensitive medical data.

Although both GHOST and GHOST+ outperform the state-of-
the-art (SOTA) private deep learning solutions, their practicability
is bounded by the number of sensitive types. For instance, as the
hiding ratio increases from 1:9 to 4:6, the classification accuracy
of the CIFAR-10 dataset decreases sharply from 100% to 60% and
from 98% to 43% in GHOST and GHOST+, respectively. In reality,
sensitive types vary in different applications, and it is unrealistic
to expect that only a small number of sensitive images need to be
protected. For practicality, it is essential to answer the following
open problem: How to design steganography-based private deep
learning solutions robust against variable sensitive types?

To address the problem above, we propose IGHO and IGHO+

as the improved versions of GHOST and GHOST+, respectively.
In fact, for both GHOST and GHOST+, the greater number of
sensitive types means the larger amounts of hidden features need
to be learned, meanwhile, the more obvious the gap between
cover and sensitive features, the greater the difficulty of learning
hidden features. As for GHOST, the leading reason resulting in
an accuracy drop is the prominent feature boundary. Therefore,
IGHO preprocesses a cover dataset instead of directly using
public images so as to weaken the negative influence of cover
features on inference accuracy. Specifically, the cover dataset can
be preprocessed either by feature synthesis that produces cover
images of fused sensitive and public features or by pixel synthesis
that haphazardly splices multiple public images together. As for
GHOST+, the practicality is also confined by the limited learning
ability of GAN. Therefore, IGHO+ proposes a novel Feature
Mining GAN (referred to as FMGAN) that generates adversarial
perturbations in place of the GAN. Specifically, FMGAN extends
SOTA BigBiGAN [38] by adding a frozen discriminator and a
hidden feature encoder guided by contrastive loss [39] to better
extract common semantic features of hidden sensitive images.
By combining preprocessing and FMGAN, IGHO+ improves the
robustness against variable sensitive types. Our main contributions
are summarized as follows:

• We continue to explore the feasibility of steganography in
preserving inference privacy in mobile-cloud deep learn-
ing. Our focus is on improving the practicality of GHOST
and GHOST+ without sacrificing privacy and efficiency.

• We first propose IGHO that improves the practicality of
GHOST by preprocessing a cover dataset via feature syn-
thesis or pixel synthesis. We then propose IGHO+ built
based on a novel FMGAN model that generates adversarial
perturbations robust against variable sensitive types. In
summary, our solutions not only retain all the advantages
of GHOST and GHOST+ but also have better practicality
in mobile-cloud deep learning applications.

• We formally analyze the privacy level provided by our
solutions using mutual information (MI). We empirically
validate that it is hard for attackers to detect the existence

TABLE 1: Private Deep Learning Solutions for Inference Privacy

Technique Solution Drawback

Cryptography

BAYHENN [16], ENSEI [17],
DELPHI [18], HEMET [19],
OPNN [20], CryptoEyes [21],
DeepReDuce [22]

Time-consuming
Heavy overheads

DP
FORSEEN [25], Shredder [26] MGM [27],
ODPSGD [28], PrivateMail [29]

Difficulty in balancing
accuracy and privacy

Steganography GHOST, GHOST+ [30] Unstable accuracy

of sensitive images by feature inversion attacks [40] or
measuring the invisibility and leaked information.

• We amend the BigBiGAN structure to extract the hid-
den features most relevant to the target types in a sta-
ble manner. Extensive evaluations are performed on four
datasets, MNIST [41], CIFAR-10 [42], GTSRB [43], and
SVHN [44]. We observe that even in the worst case, IGHO
and IGHO+ improve the query accuracy by up to 1.64×
and 1.60× against the GHOST and GHOST+, respectively.

Paper Organization. We introduce the related work in Section
2 and provide the preliminaries in Section 3; before overviewing
this work in Section 4. We then illustrate the IGHO and IGHO+

solutions in Sections 5 and 6, respectively. After providing the
privacy analyses in Section 7, we evaluate our solutions in Section
8. Finally, we conclude this paper in Section 9.

2 RELATED WORK

Existing private deep learning solutions span different aspects of
deep learning from training stage [5]–[13] to inference stage [16]–
[29]. This work focuses on preserving inference privacy. Current
mainstream approaches are based on cryptographic techniques and
differential privacy. Beyond these, steganography turns out to be
a feasible alternative to accuracy-aware privacy protection [30].
Table 1 summarizes recent work on preserving inference privacy.

Cryptography. Homomorphic encryption (HE) and secure
multi-party computation (MPC) [45] that allow the server to per-
form computation directly on encrypted data without decryption
are often used to protect inference privacy and DNN models. Xie
et al. [16] designed BAYHENN by combing HE and Bayesian
neural networks to protect users’ raw data and the weights of
the DNN deployed in the cloud. Bian et al. [17] combined HE
and secure sharing and proposed a secure inference framework
ENSEI, which reduced the convolution computation overhead
by using homomorphic frequency domain convolution. In order
to reduce online prediction latency while preserving inference
privacy, Mishra et al. [18] proposed DELPHI by using secure
sharing to selectively substitute layer-wise ReLU activations. Lou
et al. [19] proposed HEMET, a HE-friendly architecture to achieve
shorter inference latency and higher inference accuracy in mobile
neural network. Li et al. [20] proposed OPNN that employed two
non-colluding servers with secure sharing and HE to improve
the prediction efficiency. Instead of using HE and MPC, He et
al. [21] proposed a two-stream convolutional network architecture,
named CryptoEyes, which utilized symmetric block cipher and
permutation to boost the classification accuracy over encrypted
images. Although the cryptography-based solutions ensure a high
level of privacy and accuracy, they suffer from the limitation
of heavy computational and communication costs. For instance,
given a single encrypted CIFAR-10 image, DELPHI [18] has to

3

Fig. 2: The structure of the NNS framework.

transmit 2GB data, while ENSEI [17] consumes more than 30
seconds to perform inference on a ResNet-32 classification model.

Differential Privacy. DP provides provable privacy guarantee
for sensitive data and is increasingly regarded as a standard notion
tailored for privacy-preserving data analyses. To ensure privacy,
DP normally adds deliberate noise into sensitive data. Lyu et
al. [25] put forward FORESEEN, a hybrid privacy-preserving deep
learning framework that utilized a collaborative noisy training al-
gorithm and a representation perturber to protect inference privacy.
For improved inference accuracy, Mireshghallah et al. [26] pro-
posed Shredder, which learned the distribution of additive noises
without altering the DNN; Yang et al. [27] proposed MGM, a new
differential privacy mechanism imposing unimodal distributions
on noises; Xiang et al. [28] proposed an optimized mechanism
for differentially-private stochastic gradient descent (OPSGD) by
choosing directions of noise. As a new attempt, Vepakomma et
al. [29] proposed PrivateMail, a differentially private supervised
manifold learning method for the image retrieval problem. How-
ever, a common challenge faced by the DP-based solutions is how
to strike a good balance between accuracy and privacy, especially
in complex DNNs. In general, the more noise added for higher
privacy, the lower the accuracy. For instance, when the amount of
noises is minor, sensitive data can be successfully restored via the
convolutional denoising autoencoder [46]; when a large amount of
noise is injected, the inference accuracy drops to below 50%.

Besides the above research, Liu et al. [30] proposed GHOST
and GHOST+, which for the first time utilized steganography and
adversarial attacks to protect inference privacy in the dark. The
main drawback of their solutions is that the inference accuracy de-
grades dramatically; when the number of sensitive types exceeds a
given range. Inspired by their work, we also turn the vulnerability
of DNNs to adversarial attacks into the weapon for high accuracy;
and further explore the feasibility of steganography in preserving
inference privacy. Our design goal is to improve the practicality of
GHOST and GHOST+ without sacrificing privacy and efficiency.

3 PRELIMINARIES

In this section, we will briefly introduce the background knowl-
edge and overview the GHOST and GHOST+ solutions.

3.1 Steganography

Steganography is an information hiding technique that uses con-
tent redundancy in digital media to achieve covert communication.
In brief, a sensitive image is hidden into a cover image to
form a container image, from which it is hard to detect hidden
information. This work mainly investigates the following methods:

Least-Significant-Bit Substitution (LSB). LSB [31] hides the
secret information into the k-rightmost (the least significant) bits
of the cover image. When the value of k exceeds 4, the visual
quality of container images degrades drastically. Hence, we just
embed the most significant bits (MSBs) of a secret image instead
of a full-size image into a cover image.

Fig. 3: The structure of the BigBiGAN framework.

Neural Network-based Steganography (NNS). As shown in
Fig. 2, the NNS system [32] consists of a prep-network, a hiding-
network, and a reveal-network, where the prep-network transforms
hidden images into features that can be used by the hiding-network
to form container images, while the reveal-network is responsible
for extracting hidden images from the container images. The full
system is trained simultaneously by minimizing the following loss:

LNNS = E(∥C−C′∥2)+β ·E(∥H−H ′∥2), (1)

where ∥C−C′∥2 (resp. ∥H−H ′∥2) is the Euclid distance between
the pixels of cover image C and container image C′ (resp. hidden
image H and reconstructed image H ′), and β is the weight balanc-
ing between the invisibility and restorability of hidden images. In
this work, it is unnecessary for the reveal-network to reconstruct
hidden images, and the following loss function is adopted instead:

L∗NNS = E(∥C−C′∥2)+β ·E(∥t− t ′∥2), (2)

where ∥t− t ′∥2 denotes the Euclid distance between hidden fea-
tures t and reconstructed features t ′.

3.2 BigBiGAN

BigBiGAN combines the best of BiGAN [47] and BigGAN [48],
which learns the bidirectional mapping between the image and fea-
ture spaces in a stable manner. As shown in Fig. 3, BigBiGAN is
composed of an encoder ε, a generator G, and a joint discriminator
module D consisting of three discriminators A, B, and C. Taking
an image x as input, the encoder ε tries to learn the semantic
features z′, i.e., z′← ε(x). Given an input feature z, the generator
G aims to output the corresponding image x′, i.e., x′←G(z). The
goal of the discriminator module D is to distinguish between
joint data-latent distributions. Let ξx and ξz be the scores used
to measure the quality of images and features, respectively, and let
ξxz be the score quantifying the bilateral mapping between images
and features. The discriminator loss is expressed as:

Ld = E f ake[h(−ξx)+h(−ξz)+h(−ξxz)]

+Etrue[h(ξx)+h(ξz)+h(ξxz)],
(3)

where h(t) = max{0,1− t} is a hinge to regularize the discrim-
inators. To fool the discriminators with synthesized outputs, the
encoder ε and the generator G are trained by the following loss:

Leg = E f ake[−ξx−ξz−ξxz]+Etrue[ξx +ξz +ξxz]. (4)

In Eq. 3 and Eq. 4, Etrue[·] (resp. E f ake[·]) represents the av-
erage score regarding original inputs (resp. the outputs of the
encoder/generator). However, the encoder of BigBiGAN fits only
to extract superficial features of container images; and cannot
be applied directly to generate adversarial perturbations robust
against various hidden images. Therefore, IGHO+ proposes FM-
GAN that subtly modifies BigBiGAN to fulfill our design goal.

4

Fig. 4: The mobile-cloud collaborative framework.

3.3 Overview of GHOST and GHOST+

As shown in Fig. 1, both GHOST and GHOST+ are built based on
the mobile-cloud collaborative framework, and apply LSB/NNS
to hide sensitive images into cover images. The main difference
is that GHOST retrains the cloud-side network to learn the hidden
features of sensitive images, but GHOST+ locally trains a GAN to
craft adversarial perturbations without altering the DNN.

GHOST. At a high level, GHOST consists of the covert retrain-
ing and covert inference phases. In the retraining phase, the cloud-
side network is retrained on a container dataset D̃c and a public
dataset Dp, by utilizing the mini-batch stochastic gradient descent
(SGD) [49]. Specifically, given a cover dataset Dc and a sensitive
dataset Ds, the container dataset D̃c is formed as follows: For a
pair of samples Ci ∈Dc and S j ∈Ds, the mobile device generates a
container image C̃i by hiding the sensitive image S j into the cover
image Ci, and then puts the container image and the sensitive
image’s label (C̃i, lS j) into D̃c. By this means, each sample in D̃c

is visually similar to a cover image, but tagged with the label
of hidden sensitive image. In the inference phase, the mobile
device first hides the sensitive image into a randomly picked public
image; and then uploads the features of container images to the
cloud for inference results. The whole process is analogous to
launching backdoor attacks on the DNN by poisoning the training
dataset, where the hidden sensitive images can be regarded as a
kind of invisible trigger. The backdoored DNN outputs the labels
of hidden sensitive images when taking container images’ features
as input but behaves normally under clean inputs.

GHOST+. In a nutshell, GHOST+ includes the GAN training
and adversarial inference phases. In the training phase, the mobile
device locally trains the GAN to learn perturbations by using a
container dataset D̃c constructed in the same way as GHOST. The
GAN is composed of a generator and a frozen discriminator, i.e.
the pre-trained DNN, where the generator aims to craft the least
perturbations to minimize the distance between the prediction of
perturbed container image and the label of sensitive image. In
the inference phase, the mobile device hides sensitive images by
using steganography; and then employs the well-trained generator
to perturb container images before feature extraction. Intuitively,
GHOST+ takes advantage of the vulnerability of the DNN against
adversarial samples, which are crafted by adding imperceptible
perturbations on container images, thus misleading the DNN to
output the labels of hidden sensitive images.

4 OVERVIEW

This section will introduce our models and outline the differences
between our solutions and the GHOST and GHOST+ solutions.

4.1 System and Threat Models

As is shown in Fig. 4, our system model is based on a mobile-
cloud collaborative framework, where a DNN fθ = F1 ◦F2 ◦ . . .◦FL

consisting of L interconnected layers is partitioned into the mobile-
side network Mθ and the cloud-side network Cθ. Given an

TABLE 2: Notation Table

Symbols Meaning
fθ A pre-trained DNN
Mθ, Cθ The mobile-side and cloud-side network
S∗, Ds Sensitive image and sensitive dataset
P∗, Dp Public image and public dataset
C̃∗, D̃c Container image and container dataset
C∗, Dpc Cover image and cover dataset
l∗, z∗ Label and feature representation of a sample

Subscript ∗ indicates an arbitrary image.

inference sample, Mθ extracts features and sends the intermediate
value V to Cθ, which performs compute-heavy inference tasks
and returns the predictions. Due to efficiency considerations [50],
Mθ consists of a small number of conventional layers with frozen
structure and weights, while Cθ consists of most of the remaining
layers (including the fully-connected layers). In this way, the
mobile device not only spends less time to process a shallow-layer
network compared with the whole DNN, but also consumes less
bandwidth to transmit the intermediate value compared with the
original input. Moreover, as demonstrated in [40], the partitioning
manipulation is conducive to privacy protection: The more layers
deployed on the mobile side, the higher the privacy level achieved.
To strike a balance between efficiency and privacy protection, the
number of layers of Mθ is set to 3 in this paper.

Our threat model assumes that the mobile device is fully
trusted, while the cloud as a potential attacker is equipped with
the knowledge of the entire DNN. This means that the mobile-
side network Mθ will correctly process the input and never expose
any private information. In contrast, the cloud-side network Cθ is
interested in inferring useful information from the data received.
Our privacy goal is to prevent the cloud from gaining sensitive data
from intermediate values instead of protecting inference results.
For example, the cloud may perform feature inversion attacks in
a white-box setting [40] to recover the original input. For quick
reference, the most relevant notations are shown in Table 2.

4.2 GHOST vs. IGHO

Although GHOST retrains the cloud-side network Cθ for improved
robustness, the inference accuracy is negatively impacted by the
increase of hiding ratio. From the experimental results of GHOST,
we have two observations: (1) As the hiding ratio increases, the
DNN needs to learn more hidden features to produce target labels;
(2) The more obvious the features of cover images, the greater the
difficulty of learning hidden features from container images. When
the cloud-side network is sufficiently complex, the major reason
resulting in an accuracy drop is the significant gap between cover
and sensitive features. To mitigate the negative influence of cover
images, IGHO adds a preprocessing step compared with GHOST.
As shown in Fig. 5, IGHO mainly includes the preprocessing,
cover retraining and covert inference steps.

Preprocessing. GHOST directly uses public images to form
the cover dataset, resulting in a distinct gap between cover and
hidden features. Instead, IGHO preprocesses the cover dataset by
either feature synthesis or pixel synthesis, thereby blurring the
feature boundary. The details of this step can be found in Section 5.

Covert Retraining. Given the preprocessed cover dataset Dpc,
and a sensitive dataset Ds, IGHO generates a container dataset
D̃c in the same way as GHOST. The cloud-side network Cθ is
retrained with the following loss function:

L(C;zP,zC̃) = E[J(Cθ(zP), lP)]+λ ·E[J(Cθ(zC̃), lC̃)], (5)

5

Fig. 5: The overview of IGHO.

where zP =Mθ(P) and zC̃ =Mθ(C̃) are representations of samples
P ∈ Dp and C̃ ∈ D̃c, respectively, lP and lC̃ are their labels (lC̃ is
the label of hidden image H inside image C̃), and λ controls the
importance between the losses of raw training data and poisoned
training data. In the above equation, function J is used to measure
the distance between the prediction of Cθ(·) and the label l∗.

Covert Inference. Once the retraining process is finished, the
poisoned cloud-side network Cθ will perform inference tasks in
a privacy-preserving way. As for insensitive images, the mobile
device directly uploads the features to the cloud without applying
steganography. As for sensitive images, the mobile device first
picks random samples from the processed cover dataset, and then
generates container images before uploading the extracted features
to the cloud. Once receiving a query request, the cloud performs
inference computation and returns the final prediction results.

Comparison between IGHO and GHOST. Both solutions
utilize steganography to hide sensitive data and intrusively modify
the cloud-side network Cθ; so that Cθ outputs correct labels for
clean instances, but implements the misclassification whenever a
sensitive image is hidden in the input. The main difference is that
GHOST directly uses public images as cover images, but IGHO
employs a preprocessing step to produce cover images of fuzzy
feature boundaries. Our experimental results demonstrate that the
preprocessing step is conducive to improving the practicality of
GHOST at the cost of a slight efficiency degradation. For example,
when the hiding ratio is 4:6, IGHO incurs only 56min and 16min in
total to raise inference accuracy of GHOST from 62% to 85.51%
and from 62% to 78.20%; by using feature synthesis and pixel
synthesis to preprocess the CIFAR-10 dataset, respectively.

4.3 GHOST+ vs. IGHO+

GHOST+ keeps the entire DNN intact and locally trains a GAN
to add deliberate perturbations into container images. From the
experimental results of GHOST+, we observe that GHOST+ also
suffers from the accuracy degradation problem; and draw a con-
clusion that the negative influence of cover features as well as the
limited learning ability of GAN are two main reasons causing
the restricted practicality. To tackle this problem, IGHO+ not
only adds a preprocessing step, but also replaces the GAN with
a novel FMGAN structure compared with GHOST+. As shown
in Fig. 6, IGHO+ consists of three main steps: preprocessing,
FMGAN training, and adversarial inference.

Preprocessing. As in IGHO, IGHO+ also preprocesses the
cover dataset by either feature synthesis or pixel synthesis.

FMGAN Training. The design of FMGAN is inspired by
the BigBiGAN [38] structure, where an encoder, a generator, and
three discriminators cooperate to bidirectionally map data to the
latent space. However, the encoder of BigBiGAN has difficulty

Fig. 6: The overview of IGHO+. The process of producing a
container dataset is similar to that in IGHO and is omitted.

in extracting hidden features from container images. FMGAN
amends the structure by adding a hidden feature encoder and a
frozen discriminator (i.e., the pre-trained DNN fθ) to generate
adversarial perturbations highly robust against variable sensitive
types. That is, FMGAN consists of a generator, two encoders,
and a joint discriminator module composed of four discriminators.
Moreover, the contrastive loss is used to guide the newly added
encoder to extract the common features relevant to sensitive types.

Adversarial Inference. As soon as the FMGAN training is
completed, the mobile device locally keeps the hidden feature
encoder and the generator to perturb container images in the
inference phase. As in IGHO, only sensitive images need to be
protected in IGHO+. Specifically, the mobile device samples a
cover image from the processed cover dataset; hides the sensitive
image by using LSB or NNS, and perturbs the container image
with the well-trained FMGAN before feature extraction; The
cloud performs inference on the features received from the mobile
device; and sends back the prediction results.

Comparison between IGHO+ and GHOST+. Both solutions
protect inference privacy by steganography and add deliberate
perturbations into inference instances for high accuracy without
altering the pre-trained DNN fθ. The main differences lie in two
aspects: (1) Compared with GHOST+, IGHO+ adopts an extra pre-
processing step to produce cover images of fuzzy feature bound-
aries. (2) Unlike GHOST+ training a GAN to generate adversarial
perturbations on container images, IGHO+ trains a FMGAN to
generate perturbations robust against variable sensitive types. The
effectiveness of FMGAN is validated via ablation experiments.
For example, for CIFAR-10 dataset under the hiding ratio is 4:6,
IGHO+ spends about 42min to get a well-trained FMGAN, which
can be used to raise the inference accuracy of GHOST+ from
43.13% to 68.88% without the help of preprocessing methods.

5 IGHO: THE IMPROVED VERSION OF GHOST
In this section, we will introduce the improvement details of
IGHO, which preprocesses cover images of GHOST to mitigate
their disturbance to inference accuracy. Specifically, two kinds of
preprocessing approaches are designed with a trade-off between
accuracy and efficiency: Feature synthesis produces cover images
of fused sensitive and public features, aiming to narrow the
gap between cover and hidden features, while pixel synthesis
creates cover images by optionally splicing multiple public images
together, trying to weaken salient cover features.

5.1 Feature Synthesis

A naive solution to minimize the difference between cover and
hidden features is to use sensitive images directly as cover images.

6

Algorithm 1 Feature Synthesis

Input: Network Mθ, public dataset Dp, sensitive dataset Ds

OutPut: Processed cover dataset Dpc

{Batch size bs, loss bound σ, the number of epoches nepoch,
the number of iterations in each epoch niter}

1: for i = 0 to nepoch do
2: Initialize perturbation δi with standard normal distribution
3: Construct the i-th batch of images Dpi from Dp

4: Construct the i-th batch of images Dsi from Ds

5: for j = 0 to niter do
6: Calculate the similarity between each pair of images

(Px,Sy) from Dpi and Dsi with Eq. 6
7: Perturb each sample Sy ∈ Dsi with δi: S

′

y← Sy +δi

8: Update Dsi : Replace each sample Sy with S
′

y
9: Optimize δi with the loss function Lpert of Eq. 7

10: if loss Lpert >σ then continue;
11: else break;
12: Copy the updated sensitive dataset Ds to Dpc

But this would enable the cloud to recover original sensitive
images by feature inversion, exposing user privacy. Instead, we
exploit feature synthesis to produce cover images of fused public
and sensitive features. Inspired by the work of [51], we first find
the image Px∗ most similar to a sensitive image Sy from a public
dataset; and then craft deliberate perturbations enabling Sy close
to Px∗ in the feature space. Specifically, the similarity between a
public image Px and a sensitive image Sy is determined as follows:

sim(Px,Sy) = ∥M(Px)−M(Sy)∥2
2, (6)

where M(·) represents employing mobile-side network Mθ to
extract features, and ∥M(Px)−M(Sy)∥2 is the Euclidean distance
between the features of images Px and Sy.

The working process of feature synthesis is summarized in
Algorithm 1, where a processed cover dataset Dpc is a copy of
an updated sensitive dataset. Initially, a public dataset Dp and a
sensitive dataset Ds are divided into nepoch batches of size bs,
denoted by {Dpi}

nepoch
i=1 and {Dsi}

nepoch
i=1 , respectively. In i-th epoch,

a sensitive image Sy ∈ Dsi is updated by adding the optimal
perturbation δi, i.e., S′y = Sy+δi, and δi is generated by minimizing
the following loss function over multiple iterations:

Lpert = arg min
δi

bs

∑
k=1
∥Mθ(Px∗)−Mθ(Sy +δi)∥2

2, (7)

where Px∗ ∈ Dpi is the closest public image of the sensitive
image Sy ∈ Dsi according to the feature similarity computed with
Eq. 6 (i.e., sim(Px∗,Sy) = min{sim(Px,Sy)}Px∈Dpi

). The iteration
terminates until the loss Lpert reaches a predetermined bound σ

that is a hyperparameter adjusted for different datasets. Contrary
to the training process in DNN, the number of epoches nepoch

is calculated by |Ds|/bs, and the number of iterations nepoch is
determined according to actual needs. After feature synthesis,
cover images are mixtures of public and sensitive features, from
which it is hard for an attacker to recover valuable data.

5.2 Pixel Synthesis

Feature synthesis is effective in improving accuracy in privacy-
preserving inference; but consumes a substantial amount of time
in preprocessing the cover dataset. For efficiency reasons, pixel
synthesis generates a cover image by randomly slicing two public

Algorithm 2 Pixel Synthesis

Input: Public dataset Dp, flip probability p f , dataset size s
OutPut: Processed cover dataset Dpc

1: Rotate each image Pk ∈ Dp 90 degrees with probability p f

2: while |Dpc|< s do
3: Randomly choose two images Px and Py from Dp

4: Randomly select a cutting ratio rc from [0,1]
5: Cut Px into two parts Px1 and Px2 according to rc

6: Cut Py into two parts Py1 and Py2 according to rc

7: Generate a cover image Cx by splicing Px1 and Py2 together
8: Generate a cover image Cy by splicing Py1 and Px2 together
9: Add cover images Cx and Cy into cover dataset Dpc

images together. Since each cover image is made of a mix of
random public images, the prominent features of cover images are
weakened. Algorithm 2 summarizes the working process of pixel
synthesis: Given a public dataset Dp, the mobile device randomly
chooses two public images, Px and Py, from Dp, cuts each of them
into two parts according to a randomly chosen cutting ratio rc, and
generates a processed cover image Cx (resp. Cy) by concatenating
the first part of Px (resp. Py) and the second part of Py (resp.
Px) together. In addition, in order to diversify surface features, a
portion of public images is rotated before the slice-splice process.

6 IGHO+: THE IMPROVED VERSION OF GHOST+

In this section, we will describe the working process of IGHO+ in
detail, which improves the practicality of GHOST+ by combining
preprocessing and FMGAN. As the preprocessing step has been
explained in Section 5, this section focuses on the construction
details of FMGAN. To better understand the benefits of FMGAN,
we first provide a strawman construction that simply trains an
improved GAN structure for each sensitive type.

6.1 A Strawman Construction

Due to the limited learning ability of GAN, a natural way to avoid
accuracy degradation is to train multiple GANs; so that a generator
is only responsible for generating adversarial perturbations for
one sensitive type. The original GAN structure in GHOST+ is
constituted by a generator G and a frozen discriminator fθ, where
fθ is the pre-trained network that will not be updated in the training
process. The generator G takes a container image C̃ as input and
generates a perturbed image C̃+G(C̃). The goal ofG is to generate
adversarial perturbations for container images such that the pre-
trained network fθ outputs adversary-selected results. To this end,
GHOST+ first defines the following loss to minimize the average
distance between the predictions and the expected labels:

Ladv = E[J(fθ(C̃+G(C̃)), lH)], (8)

where lH is the ground-truth label of the hidden image H and
fθ(C̃ +G(C̃)) is the predicted label. To bound the magnitude of
perturbations with threshold c, GHOST+ defines the loss function
Lhinge by adding a soft hinge loss on the L2 norm:

Lhinge = E[max{0,∥G(C̃)∥2− c}]. (9)

Therefore, the total loss function can be expressed as:

Ltotal = λ ·Ladv +Lhinge, (10)

where λ controls the relative importance of each loss. During our
experiments, we found that the inference accuracy can be further

7

Fig. 7: The structure of FMGAN. Score details: (1)ξz : The score of features z′H or z′S; (2)ξr,ξs,ξs : The scores of images S, S′ and H ′; (3)ξcz:
The score of the map between image H ′ and features z′H or z′S; (4)ξsz: The score of the map between image S and features z′H or z′S;

promoted by applying an extra discriminator D to distinguish the
perturbed data C̃ +G(C̃) from the original input C̃. Instead, the
strawman construction uses the following loss function:

L∗total = λ1 ·Ladv +λ2 ·Lhinge +λ3 ·Lgan, (11)

where Lgan is the adversarial loss [34]. The generator G and the
discriminator D can be obtained by solving the minmax game.

However, this solution assumes that the user has prior knowl-
edge of the types of inference samples, and thus is only suitable for
specific applications, where the user knows the first-level labels of
inference samples and the pre-trained DNN performs downstream
classification tasks. For example, a patient utilizes two GANs
to perturb container images embedded with the lung CT image
and the abdominal X-ray image, respectively, so that the on-line
diagnostic DNN outputs the final diagnosis results.

6.2 The Details of FMGAN

To overcome the limitation of the strawman construction, IGHO+

replaces the GAN with a novel FMGAN that generates adversarial
perturbations highly robust against variable sensitive types. As
shown in Fig. 7, FMGAN as an extension of BigBiGAN consists
of a generator G, two encoders ε1 and ε2, and a joint discriminator
module D composed of four discriminators A, B, C, and D. The
main differences from the BigBiGAN structure lie in the following
aspects: (1) A hidden feature encoder ε2 is added to extract hidden
features from container images; (2) The pre-trained DNN fθ is
used as the frozen discriminator D aiming to distinguish between
the original input and the image reconstructed by the generator
G; (3) To prevent privacy leakage from the reconstructed images,
the contrastive loss is used to guide the encoder ε2 to extract the
common semantic features of hidden images.

In general, the encoder ε1 just like in BigBiGAN takes a
sensitive image S as the input and outputs the semantic features
z′S, i.e., z′S ← ε1(S), but the hidden feature encoder ε2 takes a
container image C̃ as the input and tries to learn z′H , the common
semantic features of hidden image H, i.e., z′H ← ε2(C̃). Given the
extracted features z′S and z′H , the generator G aims to generate
the corresponding images, i.e., S′ ← G(z′S) and H ′ ← G(z′H).
The discriminator module D aims to differentiate the cooperative
output of ε1 andG (i.e., the surface feature z′S and the reconstructed
sensitive image S′), from that of ε2 and G (i.e., the hidden features
inside container images z′H and the reconstructed hidden images
H ′). Specifically, the discriminator A takes features z′S and z′H
as inputs and outputs the score ξz, the discriminator B takes
images S, S′, and H ′ as inputs and outputs the scores ξs, ξr,
and ξc, respectively, the discriminator C takes score pairs (ξs,ξz)
and (ξc,ξz) as inputs and outputs the joint scores ξsz and ξcz,
respectively, and the discriminator D takes the reconstructed image
H ′ as input and outputs the relevant label. The discriminator

D (i.e., the pre-trained DNN fθ) is fixed while the remaining
discriminators are trained by the following loss function:

L∗d = E f ake[h(−ξc)+h(−ξz)+h(−ξcz)]

+Etrue[h(ξs)+h(ξz)+h(ξsz)+h(ξr)],
(12)

where h(t) = max{0,1− t}. The main difference from the dis-
criminator loss of BigBiGAN (Eq. 3) is that Etrue[·] and E f ake[·]
represent the average score of features and images generated by
encoder/generator pair (ε1,G) and pair (ε2,G), respectively.

Given a sensitive image S and a container image C̃ that
conceals a hidden image H, the goal of the encoders and generator
is to produce the adversarial perturbation on C̃ such that (1)
fθ(G(ε2(C̃))) = lH , where lH is the label of the hidden image
H; (2) The discriminator module D cannot distinguish between
the outputs of (ε1,G) and (ε2,G); (3) ε2(C̃) extracts the most
common features of hidden images. To this end, the encoders and
the generator are trained by the following loss function:

LFMGAN = λ1 ·Lf +λ2 ·L∗eg +λ3 ·Lc, (13)

where λi controls the relative importance of each loss and can
be dynamically adjusted to strike a good balance among three
loss items. In the above equation, Lf defined in Eq. 14 is used
to minimize the average difference between the predicted results
and the expected labels, L∗eg defined in Eq. 15 aims to fool the
discriminator module with the outputs of the generator/encoder
pair (G,ε2), and Lc defined in Eq. 16 is the global contrastive loss
guiding the encoder ε2 to extract the hidden features most relevant
to sensitive types.

Lf = E[J(fθ(G(ε2(C̃))), lH)]. (14)

L∗eg = E f ake[−ξc−ξz−ξcz]+Etrue[ξs +ξz +ξsz +ξr]. (15)

Lc =
Num

∑
i=0

CL(Y,z′S,z
′
H). (16)

In Eq. 16, Num is the number of relationships between sensitive
and hidden types, z′S and z′H are the features extracted by encoders
ε1 and ε2, respectively, Y is assigned the value of 0 or 1 depending
on if the relevant images S and H belong to the same type or not,
and CL as the contrastive loss is calculated with Eq. 17:

CL(Y,z′S,z
′
H) =

1
2
(1−Y) · ∥z′S− z′H∥2

2

+
1
2

Y ·max{0,m−∥z′S− z′H∥2
2},

(17)

where ∥z′S − z′H∥2 is the Euclidean distance between features z′S
and z′H , and m is used to limit the similarity between images of
different types. In summary, the contrastive loss aims to make
images of the same type similar in the feature space, while
widening the gap between the features of images of different types.

8

Algorithm 3 Training a FMGAN

Input: Sensitive dataset Ds, container dataset D̃c, a generator G,
two encoders ε1,ε2, four discriminators A,B,C,D

Output: Updated generator G′, updated encoders ε′1,ε
′
2, updated

discriminators A′,B′,C′

{Parameters: Batch size bs, the number of epoches nepoch, the
number of iterations in each epoch niter}

1: for i = 0 to nepoch do
2: Construct the i-th batch of images Dsi from Ds

3: Construct the i-th batch of images Dc̃i from D̃c

4: for j = 0 to niter do
5: for each image S ∈ Dsi do
6: Extract surface features and reconstruct the image:
7: z′S← ε1(S); S′←G(z′S)

8: for each image C̃ ∈ Dc̃i do
9: Extract hidden features and reconstruct the image:

10: z′H ← ε2(C̃); H ′←G(z′H)
11: Discriminators A,B,C: Calculate the relevant scores
12: Update discriminators with loss L∗d in Eq. 12
13: Discriminator D: Calculate the loss Lf with Eq. 14
14: Calculate joint loss L∗eg with Eq. 15
15: Calculate contrastive loss Lc with Eq. 16
16: Update G, ε1, and ε2 with loss function in Eq. 13

As shown in Algorithm 3, a FMGAN is trained by using
a sensitive dataset Ds and a container dataset D̃c based on the
mini-batch SGD algorithm. In each batch, the encoder ε1 and
generator G cooperate to output the surface features z′S and the
reconstructed image S′ for a sensitive image S; while the encoder
ε2 and generator G cooperate to output the hidden features z′H
and the reconstructed image H ′ for a container image C̃. The dis-
criminators A,B, and C takes these outputs and original images as
input to calculate relevant scores, which will be used to calculate
the discriminator loss L∗d and joint loss L∗eg. The hidden image
H ′ reconstructed by the generator G is regarded as the perturbed
container image, which will be fed into the pre-trained network fθ

to obtain the loss Lf . The extracted features z′S and z′H are used to
calculate the global contrastive loss Lc. This training process aims
to minimize losses Lf , L∗eg and Lc for the generator and encoders,
while minimizing loss L∗d for the discriminators A,B, and C. Once
the FMGAN training process is finished, the updated generator G′

and encoder ε′2 will be deployed on the mobile device.

7 PRIVACY MEASUREMENT

MI is a measure of the mutual dependence between two vari-
ables, which is widely used to quantify information leakage in
steganography systems [33]. As the work in [30], we employ
mutual information (MI) as a tool to analyze the privacy level
achieved in our IGHO and IGHO+ solutions. The MI between
random variables X and X̃ can be defined as:

I(X ; X̃) =H(X , X̃)−H(X |X̃)−H(X̃ |X)

=H[X]−H[X |X̃],
(18)

where H(X) and H(X̃) are the marginal entropies, H(X |X̃) and
H(X̃ |X) are the conditional entropies, and H(X , X̃) is the joint
entropy of X and X̃ . In the work, we employ MI to measure the
amount of leakage between the original input and the features
extracted by the mobile-side network. Given a DNN fθ = F1 ◦

F2 ◦ ...◦FL, we assume that the mobile-side network Mθ consists
of the first K layers, and the cloud-side network Cθ consists of
the remaining L−K layers. Let S denote an original sensitive
image, and let C denote an original cover image. We use S(X ,Y)
to represent hiding image X into image Y with steganography, and
P(·) to denote the preprocessing operation to facilitate analysis.

7.1 The Privacy of IGHO

In IGHO, the mobile device first hides a sensitive image S into
a processed cover image P(C) to form a container image C̃; and
then employs the mobile-side network Mθ to extract features from
C̃. Therefore, the privacy of IGHO is defined as:

ΨK =−I[S;Mθ(C̃)]

=−I[S;Mθ(S(S,P(C)))].
(19)

From Eq. 19, it is easy to find out that the lower MI implies
the higher level of privacy. Since the mobile-side network Mθ is
deterministic and frozen, Eq. 19 can be transformed into:

ΨK =H[Mθ(C̃)|S]−H[Mθ(C̃)]

=−H[Mθ(C̃)]

=−H[FK(FK−1(...(F1(C̃))))]

=−H[FK(FK−1(...(F1(S(S,P(C))))))].

(20)

The term H[Mθ(C̃)] controls the amount of information leaked
to the cloud, which can be minimized by the joint efforts of
preprocessing, steganography, and feature extraction. In the pre-
processing step, cover images with fuzzy feature boundaries are
generated. Then, the steganography method is utilized to hide sen-
sitive images stealthily into processed cover images. Finally, the
mobile-side network Mθ performs pooling, ReLU and convolution
operations to extract the abstract features of container images.

Let ΨST = −I[S;C̃] denote the privacy level achieved by the
steganography method. According to Data Processing Inequalities
(DPI) [52], a lower bound on privacy can be derived as follows:

ΨK ≥ΨK−1 ≥ΨK−2 ≥ ...Ψ1 ≥ΨST , (21)

where Ψi denotes the privacy provided by the i-th layer (1 ≤ i ≤
K). Therefore, we draw the following conclusions: (1) IGHO offers
better privacy protection than using steganography alone. (2) The
deeper the partitioning point, the higher the privacy level can be
reached. Compared with GHOST, IGHO preprocesses the cover
dataset in addition. From the above analyses, we know that IGHO
can achieve at least the same privacy protection as GHOST.

7.2 The Privacy of IGHO+

IGHO+ first generates a container image C̃ as IGHO, then gener-
ates perturbed container image C̃′ by the encoder/generator pair
(ε2,G), and finally extracts features from C̃′ with the mobile-side
network Mθ. Let X ′ =G(ε2(X)) represent the cooperate output of
(ε2,G). That is, the encoder ε2 first extracts hidden features from
an input image X so that the generator G can reconstruct an image
X ′ from the extracted features. The privacy of IGHO+ is defined
as:

Ψ
+
K =−I[S;(Mθ(C̃′)]

=−I[S;Mθ(G(ε2(C̃)))]

=−I[S;Mθ(G(ε2(S(S,P(C)))))].

(22)

9
TABLE 3: Model Structure and Parameter Settings

Dataset # of Images # of Classes Input Size Model Architecture Accuracy [α,bs,nepoch]
MNIST 70,000 10 28×28×1 2Conv+2Pooling+2Dense 98.25 [0.001,256,20]

CIFAR-10 60,000 10 32×32×3 4Conv+2Pooling+4BN+4Dropout+3Dense 87.13 [0.001,128,100]
GTSRB 51,839 43 32×32×3 6Conv + 3Pooling +4Dropout+2Dense 96.21 [0.001,128,50]
SVHN 99,289 10 32×32×3 AlexNet [53] 91.79 [5e−4,128,50]

TABLE 4: The Impact of Different Partitioning Points on Privacy (left) and Efficiency (right) under LSB and γ = 4 : 6

Dataset Method Partitioning Point K (MI)
K=1 K=2 K=3 K=4 K=5

MNIST IGHO 1.7427 1.2139 0.9982 0.7246 0.6645
IGHO+ 1.1400 0.9685 0.7821 0.6342 0.5127

CIFAR-10 IGHO 2.0611 1.7328 1.3346 1.2464 1.1834
IGHO+ 2.2537 1.7158 1.2462 1.1928 1.0819

GTSRB IGHO 1.7996 1.5521 1.2063 1.1837 1.1301
IGHO+ 2.1127 1.6130 1.1428 1.0942 0.9761

SVHN IGHO 1.9994 1.4886 1.2196 1.1893 1.0720
IGHO+ 2.1053 1.5614 1.1964 1.1052 0.9346

Dataset Metric Partitioning Point K (Time overheads)
K=1 K=2 K=3 K=4 K=5

MNIST Training the DNN (min) 50.61 54.42 59.8 66.08 73.35
Feature Extraction(ms) 0.005 0.007 0.009 0.011 0.014

CIFAR-10 Training the DNN(min) 13.42 14.83 16.3 18.26 20.99
Feature Extraction(ms) 0.09 0.18 0.22 0.26 0.31

GTSRB Training the DNN(min) 15.15 16.65 18.44 22.13 24.36
Feature Extraction(ms) 0.02 0.07 0.09 0.11 0.12

SVHN Training the DNN(min) 18.79 21.35 23.46 25.57 29.41
Feature Extraction(ms) 0.04 0.06 0.09 0.11 0.13

As IGHO+ locally trains a GAN without altering the DNN, the training time is only related to IGHO. The feature extraction time is related to both solutions.

Based on the frozen network Mθ, Eq. 22 can be transformed into:

Ψ
+
K =−H[Mθ(C̃′)]+H[Mθ(C̃′)|S]
=−H[Mθ(C̃′)]

=−H[FK(...(F1(G(ε2(S(S,P(C)))))))].

(23)

The term H[Mθ(C̃′)] controls the amount of exposed information.
The information leakage can be minimized by the joint efforts
of preprocessing, steganography, FMGAN, and feature extraction
Let ΨST = −I[S;C̃] and ΨF = −I[S;C̃′] denote the privacy level
provided by steganography and FMGAN, respectively. Based on
the DPI theorem, we obtain the following lower bound for Ψ

+
K :

Ψ
+
K ≥Ψ

+
K−1 ≥Ψ

+
K−2 ≥ ...Ψ+

1 ≥ΨF ≥ΨST , (24)

This equation implies that IGHO+ can improve the privacy level
of steganography by adding adversarial perturbations on container
images. Compared with GHOST+, IGHO+ mainly adds the pre-
processing step and replaces GAN with FMGAN to generate
perturbations, achieving the same privacy protection. Besides, the
encoder ε2 is guided by contrastive loss to extract common hidden
features, and thus sensitive information can be further protected.

8 EVALUATION

In this section, we conduct experiments to evaluate the perfor-
mance of our solutions. To validate the effectiveness, we conduct
experiments on four real datasets; and make comparisons with the
SOTA DP-based solution Shredder besides GHOST and GHOST+.
The reason for comparing it with Shredder is that Shredder is
also built on top of the mobile-cloud collaborative framework, and
measures the privacy-level by using the MI between the images
reconstructed from extracted features and the original inputs.

8.1 Experimental Settings

Datasets. Our experiments are conducted on four datasets:MNIST,
CIFAR-10, SVHN, and GTSRB. The experimental configurations
are shown in Table 3. To train the DNN, we use Adam opti-
mizer [54] under different hyperparameters, including the learning
rate α, the batch size bs, and the number of epoches nepoch. For
all the datasets, 90% of the samples are used as the training set,
and the rest are used as the testing set. For training convenience,
all the images are normalized to a [0,1] range and processed to
proper size (e.g., the images in MNIST are of size 28×28, and
the images in remaining datasets are of size 32×32). For each
dataset, the images are classified into sensitive and public types.

TABLE 5: Comparison of Preprocessing Methods on CIFAR-10

Methods LSB NNS

1:9 2:8 3:7 4:6 1:9 2:8 3:7 4:6

FS +IGHO 0.95100.95100.9510 0.94300.94300.9430 0.87510.87510.8751 0.83340.83340.8334 0.98400.98400.9840 0.96200.96200.9620 0.85630.85630.8563 0.85510.85510.8551
PS +IGHO 0.9451 0.9095 0.8688 0.8128 0.9540 0.9055 0.8333 0.7820

FS +IGHO+ 0.9622 0.89960.89960.8996 0.80260.80260.8026 0.72110.72110.7211 0.9818 0.92860.92860.9286 0.82920.82920.8292 0.74170.74170.7417
PS +IGHO+ 0.99220.99220.9922 0.8635 0.7579 0.6888 0.99870.99870.9987 0.8934 0.7901 0.6964

Two steganography methods, LSB (the number of MSBs is 3) and
NNS, are utilized to hide a sensitive image into a cover image. We
use γ to denote the hiding ratio (i.e., the ratio between the number
of sensitive types and the number of public types). As MNIST is
the smallest dataset containing only 10 types of images, we set γ

to {1 : 9,2 : 8,3 : 7,4 : 6} to cover all its image types.
Implementation Details. A server with NVIDIA GeForce RTX
3090TI GPU running CUDA V11.6 on Windows operating system
(OS) and a laptop with NVIDIA GeForce MX230 off-the-shelf
GPU running CUDA V10.0 on Windows OS are regarded as
the cloud and the mobile device, respectively. To determine the
partitioning point, we evaluate the privacy-level and efficiency of
our solutions while varying the parameter K. The privacy level
is measured by the MI between the image reconstructed from
extracted features and the original image, while the efficiency is
measured by the time overheads incurred in training the cloud-
side network and extracting features for inference samples. From
Table 4, we observe that the deeper the partitioning point is, the
higher the privacy yield (i.e., the lower the MI), but the lower the
efficiency (i.e., higher the time overheads). Besides, we find that
the increasing trend of MI slows down, but that of time overheads
is still obvious when K exceeds 3. Based on this, we fix the number
of layers deployed on the mobile device with K = 3, which strikes
a good balance between efficiency and privacy protection.

8.2 Accuracy and Efficiency

Both IGHO and IGHO+ preprocess the cover dataset by feature
synthesis (FS for short) or pixel synthesis (PS for short). In our
experiments, we find that FS is more conducive to promoting
inference accuracy but consumes longer processing time compared
with PS. Table 5 shows the contrastive accuracy of the CIFAR-
10 dataset. As for time overheads, FS takes about 40min, but PS
costs only about 17.6s to preprocess CIFAR-10 dataset. Compared
with IGHO, IGHO+ has to spend a relatively long time training
a FMGAN. To strike a good balance between accuracy and

10

efficiency, in the following experiments, we will use FS and PS to
preprocess the cover images in IGHO and IGHO+, respectively.

GHOST vs. IGHO. Both solutions mislead the cloud-side
network to produce adversary-selected results by poisoning the
training dataset. Therefore, the inference accuracy is tested for
both public and sensitive samples. Let GHOST-C and IGHO-
C denote the results of clean samples in related solutions. The
comparison results are shown in Fig. 8 and Fig. 9. From these
figures, we have the following observations: (1) In MNIST, all
solutions perform the best and have only a minor accuracy loss as γ

increases. This is because the images in MNIST have the simplest
formats and structures. (2) NNS that supports hiding full-size
images performs better than LSB with limited embedding capacity
when experiments are conducted on CIFAR-10, GTSRB, and
SVHN datasets. The reason for this exception is that the images
in MNIST are too simple to hide much information. Besides,
although NNS requires about 1.25h in the training process, it is
very efficient for concealing images (about 2.25ms for one image).
(3) All solutions have a downward trend in inference accuracy
with the increasing value of γ, but IGHO is more robust against the
variable sensitive types. The performance gain of IGHO is owing
to the adoption of preprocessing step. (4) For SVHN and GTSRB
datasets, the inference accuracy of IGHO is little influenced by
γ. For instance, when γ increases from 1:9 to 4:6, the inference
accuracy of both datasets only dropped by less than 0.8% and
0.55% for LSB and NNS, respectively. This is caused by the
uneven data distribution of GTSRB and SVHN datasets: The
amount of hidden sensitive features will not increase in proportion
to the number of sensitive types. (5) As for clean samples, the
inference accuracy remains stable in IGHO; but declined generally
in GHOST. This is because the preprocessing step in IGHO makes
cover images different from public images, and thus the retraining
process has only a minor effect on learning public features.

GHOST+ vs. IGHO+. Let GHOST+-S denote the strawman
construction as described in Section 6.1. The comparison results
are shown in Fig. 10 and Fig. 11. From these figures, we have
similar observations as those in Fig. 8 and Fig. 9. For example,
all solutions perform the best in MNIST, and NNS performs
better than LSB in most cases. Furthermore, we also observe
that GHOST+-S trains a GAN for each sensitive type, performing
the best in specific multi-level classification scenarios; IGHO+

performs better than GHOST+ with the increasing value of γ.
For instance, when the hiding ratio of NNS increases from 1:9 to
4:6, the inference accuracy of the GTSRB dataset decreases from
97.74% to 61.65% in GHOST+, but only decreases by 17.84% and
4.75% in IGHO+ and GHOST+-S, respectively. The performance
gain of IGHO+ is due to the adoption of FMGAN: The ablation
experiments show the inference accuracy of IGHO+ decreases
by 10% when using FMGAN alone and by 27.91% when using
preprocessing alone. In terms of time efficiency, IGHO+ consumes
a little more time in training FMGAN compared with GHOST+,
and the training time in both solutions increases as γ increases.
For example, for MNIST dataset, it costs about 3.5min and 5min
to train GAN and FMGAN when γ = 1 : 9, respectively, while it
costs about 12min and 21min to train GAN and FMGAN when
γ = 4 : 6, respectively. Once the training process is finished, the
time for producing perturbations for both solutions is negligible.

By comparing the results in Fig. 8-Fig. 11, we know that
unlike IGHO, the inference accuracy of IGHO+ is negatively
influenced by the increasing hiding ratio when using SVHN
and GTSRB datasets. This is because FMGAN needs to learn

the common features relevant to sensitive types, and thus the
amount of information that needs to be learned increases as γ

increases. In addition, we find that: (1) The inference accuracy
in all solutions is even higher than the baseline accuracy given a
small hiding ratio; (2) IGHO that resembles the process of training
a poisoned network performs better than IGHO+ that simulates
GAN-based adversarial samples. The reason is that the accuracy
in our solutions, in a sense, can be regarded as the attack success
rate (ASR) of adversarial attacks. That is, backdoor attacks that
deliberately modify the target DNN generally have higher ASR
than adversarial samples that keep the DNN intact.

IGHO and IGHO+ vs. Shredder. To better show the effective-
ness of our solutions, we also make comparisons with the DP-
based solution, Shredder, which trains a local network to learn the
maximum perturbations with a trade-off in accuracy. Specifically,
the comparison is conducted under the following metrics: (1)
The accuracy (ACC) of protected samples. (2) The privacy-level
achieved, which is measured by MI. (3) Preprocessing time, which
is classified into FS time (for IGHO) and PS time (for IGHO+). (4)
Training time, which is classified into cloud-side training time
(for IGHO) and local training time (for IGHO+ and Shredder).
(5) Inference time, which is the full time between accepting an
original sample as input and outputting the final prediction.

As the accuracy and training time of IGHO and IGHO+ are
affected by the value of γ, we provide corresponding results under
varied γ values in Table 6. From this table, we can observe that: (1)
As for accuracy, IGHO always outperforms Shredder, and IGHO+

performs better than Shredder when the hiding ratio is small.
When γ exceeds 3 : 7, the accuracy of IGHO+ is slightly lower
than that of Shredder. (2) Our solutions always provide a higher
level of privacy than Shredder. (3) In terms of training time, our
solutions are more efficient than Shredder, and IGHO+ performs
best. Note that even plus the preprocessing time, our solutions
still perform better than Shredder. (4) As for inference time,
our solutions always obtain the predictions of protected samples
within 1ms, but the time overhead in Shredder is over five times
as much as those of our solutions for complicated datasets. The
above observations confirm that our solutions can strike a good
balance among privacy, efficiency, and accuracy.

8.2.1 Effectiveness of Privacy Protection

The privacy assured by our solutions is measured by the invisibil-
ity of hidden sensitive images, the information leaked to attackers,
and the defense efficacy against feature inversion attacks.

Invisibility. Two perceptual metrics, peak signal to noise
ratio (PSNR) and structural similarity (SSIM) [55] are adopted
to quantify the invisibility of hidden images. PNSR is a term
to quantify the pixel difference between two images. Given two
images, X and Y , the relevant PNSR is computed as:

PSNR = [10 · log10(
MAX2

I

MSE
)], (25)

where MAX2
I is the maximum pixel value, and MSE as the mean

square error is calculated by 1
mn

m−1
∑

i=0

n−1
∑
j=0

[X(i, j)−Y (i, j)]2 with m

and n representing the number of pixel rows and columns in an
image, respectively. SSIM can be used for measuring the similarity
between images X and Y , which is computed as follows:

SSIM(x,y) = [l(x,y)α · c(x,y)β · s(x,y)γ], (26)

11

��� ��
 ��	 ���
�

���

����

���

��
 �
��
!

�����

����
�����
�������
������
�������

��� ��
 ��	 ���
�

���

���

��

���

��
 �
��
!

�������

��� ��
 ��	 ���
�

���

���

��

���

��
 �
��
!

�����

��� ��
 ��	 ���
�

���

���

��

���

��
 �
��
!

����

Fig. 8: The comparison results of IGHO and GHOST (LSB). BASELINE denotes the accuracy of original DNN.

��� ��
 ��	 ���
�

���

����

���

��
 �
��
!

�����

����
�����
�������
������
�������

��� ��
 ��	 ���
�

���

���

��

���

��
 �
��
!

�������

��� ��
 ��	 ���
�

���

���

��

���

��
 �
��
!

�����

��� ��
 ��	 ���
�

���

���

��

���

��
 �
��
!

����

Fig. 9: The comparison results of IGHO and GHOST (NNS). BASELINE denotes the accuracy of original DNN.

�� �� �
 �	
�

���

����

���

�
��

!
��

"

�����

��������
�����
������
��������

�� �� �
 �	
�

���

��	

���

���

�
��

!
��

"

��������

�� �� �
 �	
�

���

��	

���

���
�

��
!

��
"

�����

�� �� �
 �	
�

���

��	

���

���

�
��

!
��

"

����

Fig. 10: The comparison results of IGHO+ and GHOST+ (LSB). BASELINE denotes the accuracy of original DNN.

�� �� �
 �	
�

���

����

���

�
��

!
��

"

�����

��������
�����
������
��������

�� �� �
 �	
�

���

��	

���

���

�
��

!
��

"

��������

�� �� �
 �	
�

���

��	

���

���

�
��

!
��

"

�����

�� �� �
 �	
�

���

��	

���

���
�

��
!

��
"

����

Fig. 11: The comparison results of IGHO+ and GHOST+ (NNS). BASELINE denotes the accuracy of original DNN.

where l(x,y), c(x,y), and s(x,y) describe the similarity between
two images from the perspectives of luminance, contrast and struc-
ture, and α, β, and γ control the importance of three components.

Here, we consider a strong attacker that can obtain the original
container images from both IGHO and IGHO+. Table 7 shows
the average (Ave) PSNR/SSIM values between cover images and
container images based on four benchmarks, where BASELINE
denotes the best results in GHOST and GHOST+. From this table,
we know that it is hard for the observer to differentiate between
cover images and container images. Therefore, our IGHO and
IGHO+ solutions can protect data privacy in the dark.

Information Leakage. We use MI to measure the amount of
leaked information. Specifically, we consider two types of attack-
ers: (1) A normal attacker that reconstructs images by launching
write-box feature inversion attacks. Therefore, MI is calculated
between reconstructed images and hidden images. (2) A strong
attacker that can obtain the images before feature extraction.
Hence, MI is calculated between the (perturbed) container images
and hidden images. Table 8 shows the comparison results in

the normal attacker model regarding four categories of images
based on datasets MNIST and CIFAR-10. From this table, we
know that: (1) Our solutions leak less information compared with
GHOST and GHOST+; (2) The solutions based on NNS leak more
information than those based on LSB; (3) The MI calculated from
different categories varies, and MNIST can better protect sensitive
information than CIFAR-10. Table 9 shows the comparison results
in the strong attacker model based on four benchmarks. Besides
the similar observations in Table 8, we also find that IGHO+ and
GHOST+ that add perturbations on container images leak less
information than IGHO and GHOST. Especially, IGHO+ can well
protect sensitive data even in the face of powerful attackers.

Defense Efficacy. In white-box setting, we assume that the
attacker has the knowledge of the mobile-side network Mθ; and
tries to recover the hidden images by the features extracted from
Mθ. Fig. 12 and Fig. 13 visualize the effectiveness of feature
inversion attacks on the MNIST and CIFAR-10 datasets. From
these figures, we know that our solutions not only have high

12

TABLE 6: Comparison between Our Solutions (under LSB) and Shredder (under Laplace Noises of Scale 20)

Method Metric MNIST CIFAR-10 GTSRB SVHN

IGHO

ACC (%) 100 / 99.53 / 98.70 / 98.08 95.10 / 94.30 / 87.51 / 83.34 99.19 / 98.38 / 98.61 / 98.65 98.89 / 94.53 / 94.41 / 93.15
MI 0.9982 1.3346 1.2063 1.2196

FS (min) 7.93 / 15.86 / 24.25 / 32.11 7.95 / 22.99 / 31.20 / 39.70 6.87 / 13.78 / 18.67 / 27.56 6.21 / 11.72 / 17.95 / 24.76
Training Time (min) 2.37 / 7.81 / 39.75 / 59.8 11.23 / 14.17 / 15.62 / 16.3 9.21 / 12.72 / 14.61 / 18.44 8.35 / 14.28 / 18.94 / 23.46
Inference Time (ms) 0.010 0.33 0.11 0.14

IGHO+

ACC (%) 99.01 / 98.37 / 97.56 / 97.45 99.22 / 86.35 / 75.79 / 68.88 97.94 / 88.72 / 81.13 / 75.43 99.67 / 81.22 / 77.02 / 74.32
MI 0.7821 1.2462 1.1428 1.1964

PS (s) 5.14 / 10.38 / 15.75 / 20.54 4.4 / 8.9 / 13.5 / 17.6 3.8 / 7.69 / 11.66 / 15.21 7.28 / 14.73 / 22.34 / 29.12
Training Time (min) 4.91 / 8.75 / 16.65 / 20.69 14.40 / 15.31 / 41.20 / 41.71 34.49 / 47.45 / 70.61 / 121.55 26.28 / 26.75 / 39.83 / 48.71
Inference Time (ms) 0.013 0.36 0.15 0.17

Shredder

ACC (%) 97.15 78.16 78.52 78.29
MI 1.0484 1.7056 1.2185 1.1757

Training Time (min) 84 97.8 90.6 125.4
Inference Time (ms) 0.077 2.01 2.67 2.19

TABLE 7: The Invisibility of Hidden Images

Dataset PNSR/SSIM(Ave) / LSB PNSR/SSIM(Ave) / NNS

BASELINE IGHO IGHO+ BASELINE IGHO IGHO+

MNIST 39/0.99 40/1.0 40/0.99 36/0.99 40/0.98 41/0.99
CIFAR-10 41/0.99 41/1.0 41/1.0 36/0.99 36/0.99 37/0.99
GTSRB 37/0.99 38/0.99 39/0.99 33/0.98 34/0.98 33/0.98
SVHN 43/0.99 43/1.0 43/1.0 36/0.99 37/0.99 38/0.99

The images are invisible to naked eyes when PNSR≥ 30 and SSIM ≈1.

(a) MNIST.

(b) CIFAR-10.
Fig. 12: The defense efficacy of IGHO and GHOST. The left-side
and right-side images belong to IGHO and GHOST, respectively.
The 1st row shows the sensitive images, the 2nd row shows the
cover images, the 3rd row shows the container images output by
NNS, and the 4th row shows the reconstructed images.

robustness against feature inversion attacks, but also outperform
the SOTA GHOST and GHOST+ solutions. In addition, we con-
duct ablation experiments to show the influence of contrastive
loss (CL) on preserving privacy of sensitive images. As shown
in Fig. 14, images generated by FMGAN without CL contain
sufficient sensitive information, while those generated with CL
contain only common features relevant to sensitive types. Hence,
contrastive loss helps enhance the privacy protection of IGHO+.

(a) MNIST.

(b) CIFAR-10.
Fig. 13: The defense efficacy of IGHO+ and GHOST+. The
left-side and right-side images belong to IGHO+ and GHOST+,
respectively. The 1st row shows the sensitive images, the 2nd row
shows the cover images, the 3rd row shows the container images
produced by NNS, the 4th row shows the perturbed container
images, and the 5th row shows the reconstructed images.

9 CONCLUSION

In this paper, we propose two private deep learning solutions,
IGHO and IGHO+, aiming to improve the practicality of GHOST
and GHOST+. Specifically, a preprocessing step is adopted to gen-
erate cover images by either feature synthesis or pixel synthesis.
Moreover, we propose a novel FMGAN structure to generate more
robust adversarial perturbations. Experimental results demonstrate
that our solutions have high applicability to mobile-cloud deep
learning applications; since they not only ensure high inference
accuracy in the case of a high hiding ratio, but also incur only a
minor increase in computation and communication overheads. As
part of our future work, we will further explore the feasibility of
steganography in preserving inference privacy; and try to extend
our solutions to multimodal deep learning scenarios.

13

TABLE 8: The MI in Normal Attacker Model

Methods MNIST / LSB MNIST / NNS CIFAR-10 / LSB CIFAR-10 / NNS

0 1 2 3 0 1 2 3 airplane automobile bird cat airplane automobile bird cat

GHOST 1.1045 0.8176 1.1917 1.1784 1.3011 0.8317 1.2233 1.2318 1.3776 1.9596 1.7893 1.9276 1.4180 2.0513 1.9977 1.9985
IGHO 1.0434 0.7479 1.0921 1.1095 1.3000 0.9019 1.2935 1.1445 1.0952 1.6311 1.2206 1.3913 1.1558 1.6569 1.2431 1.4581

GHOST+ 1.0437 0.8001 1.1755 1.1741 1.1755 0.8253 1.2113 1.2013 1.2130 1.9861 1.7916 1.8317 1.2295 1.9887 1.8006 1.8370
IGHO+ 0.7404 0.6127 0.6097 1.1657 0.7667 0.6234 0.6158 1.1421 0.9040 1.5741 1.1418 1.3649 0.9133 1.6517 1.2315 1.3769

TABLE 9: The MI in Strong Attacker Model

Dataset MI(Ave) / LSB MI(Ave) / NNS

GHOST IGHO GHOST+ IGHO+ GHOST IGHO GHOST+ IGHO+

MNIST 1.8157 1.7936 1.7844 0.5411 1.9936 1.8973 1.7921 0.5810
CIFAR-10 2.9934 2.8817 2.8973 2.8348 2.9612 2.8983 2.8977 2.8347
GTSRB 2.5641 2.4726 2.4513 1.9129 2.5211 2.4625 2.4532 1.9091
SVHN 2.3119 2.3021 2.3016 1.8096 2.3514 2.3030 2.3030 1.8095

Fig. 14: The impact of contrastive loss (CL) on CIFAR-10. The
1st row shows sensitive images, the 2nd row shows the container
images by NNS, and the 3rd and 4th rows show the reconstructed
images by FMGAN without and with CL, respectively.

REFERENCES

[1] Y. Wang, J. Liu, M. Luo, L. Yang, and L. Wang, “Privacy-preserving face
recognition in the frequency domain,” in Proc. of AAAI, 2022.

[2] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning
as a service,” in Proc. of ICMLA, 2015.

[3] K. Zhao, Z. Zhou, X. Chen, R. Zhou, X. Zhang, S. Yu, and D. Wu,
“Edgeadaptor: Online configuration adaption, model selection and re-
source provisioning for edge dnn inference serving at scale,” IEEE
Transactions on Mobile Computing, 2022.

[4] Avivah Litan, “AI in organizations: Managing AI risk leads to positive
business outcomes”, 2022. [Online]. Available: https://www.gartner.com/

[5] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Memguard: De-
fending against black-box membership inference attacks via adversarial
examples,” in Proc. of CCS, 2019.

[6] J. Domingo-Ferrer, K. Muralidhar, and M. Bras-Amorós, “General con-
fidentiality and utility metrics for privacy-preserving data publishing
based on the permutation model,” IEEE Transactions on Dependable
and Secure Computing, 2021.

[7] P. Kairouz, B. Mcmahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu,
“Practical and private (deep) learning without sampling or shuffling,” in
Proc. of ICML, 2021.

[8] Y. Mao, W. Hong, B. Zhu, Z. Zhu, Y. Zhang, and S. Zhong, “Secure
deep neural network models publishing against membership inference
attacks via training task parallelism,” IEEE Transactions on Parallel and
Distributed Systems, 2022.

[9] J. Wang, S. Guo, X. Xie, and H. Qi, “Protect privacy from gradient
leakage attack in federated learning,” in Proc. of INFOCOM, 2022.

[10] L. Lyu, Y. Li, K. Nandakumar, J. Yu, and X. Ma, “How to democratise
and protect AI: Fair and differentially private decentralised deep learn-
ing,” IEEE Transactions on Dependable and Secure Computing, 2022.

[11] Z. Lu, H. J. Asghar, M. A. Kaafar, D. Webb, and P. Dickinson, “A
differentially private framework for deep learning with convexified loss
functions,” IEEE Transactions on Information Forensics and Security,
2022.

[12] C. Guo, B. Karrer, K. Chaudhuri, and L. van der Maaten, “Bounding
training data reconstruction in private (deep) learning,” in Proc. of ICML,
2022.

[13] C. Ganhör, D. Penz, N. Rekabsaz, O. Lesota, and M. Schedl, “Unlearning
protected user attributes in recommendations with adversarial training,”
in Proc. of SIGIR, 2022.

[14] I.-C. Hsieh and C.-T. Li, “Netfense: Adversarial defenses against privacy
attacks on neural networks for graph data,” IEEE Transactions on
Knowledge and Data Engineering, 2023.

[15] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. March, and V. Lempitsky, “Domain-adversarial training of
neural networks,” Journal of Machine Learning Research,2016.

[16] P. Xie, B. Wu, and G. Sun, “Bayhenn: Combining bayesian deep learning
and homomorphic encryption for secure dnn inference,” in Proc. of
IJCAI, 2019.

[17] S. Bian, T. Wang, M. Hiromoto, Y. Shi, and T. Sato, “Ensei: Efficient
secure inference via frequency-domain homomorphic convolution for
privacy-preserving visual recognition,” in Proc. of CVPR, 2020.

[18] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in Proc.
of USENIX Security, 2020.

[19] Q. Lou and L. Jiang, “Hemet: A homomorphic-encryption-friendly
privacy-preserving mobile neural network architecture,” in Proc. of
ICML, 2021.

[20] M. Li, S. S. M. Chow, S. Hu, Y. Yan, C. Shen, and Q. Wang, “Optimizing
privacy-preserving outsourced convolutional neural network predictions,”
IEEE Transactions on Dependable and Secure Computing, 2022.

[21] W. He, S. Li, W. Wang, M. Wei, and B. Qiu, “Cryptoeyes: Privacy
preserving classification over encrypted images,” in Proc. of INFOCOM,
2021.

[22] N. K. Jha, Z. Ghodsi, S. Garg, and B. Reagen, “Deepreduce: Relu
reduction for fast private inference,” in Proc. of ICML, 2021.

[23] G. Lloret-Talavera, M. Jorda, H. Servat, F. Boemer, C. Chauhan,
S. Tomishima, N. N. Shah, and A. J. Pena, “Enabling homomorphically
encrypted inference for large dnn models,” IEEE Transactions on Com-
puters, 2022.

[24] M. Sun and W. P. Tay, “On the relationship between inference and data
privacy in decentralized iot networks,” IEEE Transactions on Information
Forensics and Security, 2020.

[25] L. Lyu, J. C. Bezdek, J. Jin, and Y. Yang, “Foreseen: Towards differ-
entially private deep inference for intelligent internet of things,” IEEE
Journal on Selected Areas in Communications, 2020.

[26] F. Mireshghallah, M. Taram,P. Ramrakhyani, D. Tullsen, and H. Es-
maeilzadeh, “Shredder: Learning noise distributions to protect inference
privacy,” in Proc. of ASPLOS, 2020.

[27] J. Yang, L. Xiang, J. Yu, X. Wang, B. Guo, Z. Li, and B. Li, “Matrix
gaussian mechanisms for differentially-private learning,” IEEE Transac-
tions on Mobile Computing, 2021.

[28] L. Xiang, W. Li, J. Yang, X. Wang, and B. Li, “Differentially-private
deep learning with directional noise,” IEEE Transactions on Mobile
Computing, 2021.

[29] P. Vepakomma, J. Balla, and R. Raskar, “Privatemail: Supervised mani-
fold learning of deep features with privacy for image retrieval.” in Proc.
of AAAI, 2022.

[30] Q. Liu, J. Yang, H. Jiang, J. Wu, T. Peng, T. Wang, and G. Wang, “When
deep learning meets steganography: Protecting inference privacy in the
dark,” in Proc. of INFOCOM, 2022.

[31] C. K. Chan and L. M. Cheng, “Hiding data in images by simple lsb
substitution,” Pattern Recognition, 2004.

[32] S. Baluja, “Hiding images within images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

[33] X. Liao, J. Yin, M. Chen, and Z. Qin, “Adaptive payload distribution in
multiple images steganography based on image texture features,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[34] C. Xiao, B. Li, J. yan Zhu, W. He, M. Liu, and D. Song, “Generating
adversarial examples with adversarial networks,” in Proc. of IJCAI, 2018.

14

[35] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial net-
works,” arXiv preprint, 2014. [Online]. Available: https://arxiv.org/abs/
1406.2661

[36] Amazon SageMaker. https://aws.amazon.com/sagemaker/
[37] ClosedLoop. https://www.closedloop.ai/
[38] J. Donahue and K. Simonyan, “Large scale adversarial representation

learning,” in Proc. of NeurIPS, 2019.
[39] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by

learning an invariant mapping,” in Proc. of CVPR, 2006.
[40] Z. He, T. Zhang, and R. B. Lee, “Attacking and protecting data privacy

in edge-cloud collaborative inference systems,” IEEE Internet of Things
Journal, 2021.

[41] Y. Lecun, L. D. Jackel, L. Bottou, C. Cortes, and V. Vapnik, “Learning
algorithms for classification: A comparison on handwritten digit recog-
nition,” Neural Networks, 1995.

[42] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Handbook of Systemic Autoimmune Diseases, 2009.

[43] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, 2012.

[44] Y. Netzer, T. Wang, A. Coates, A. Bissacco, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in Proc. of
NeurIPS, 2011.

[45] J. H. Cheon, D. Kim, and K. Lee, “Mhz2k: MPC from HE over Z2k with
New Packing, Simpler Reshare, and Better ZKP,” in Proc. of CRYPTO,
2021.

[46] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convo-
lutional auto-encoders for hierarchical feature extraction,” in Proc. of
ICANN, 2011.

[47] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,”
in Proc. of ICLR, 2017.

[48] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for
high fidelity natural image synthesis,” in Proc. of ICLR, 2019.

[49] T. Zhang, “Solving large scale linear prediction problems using stochastic
gradient descent algorithms,” in Proc. of ICML, 2004.

[50] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not
just privacy: Improving performance of private deep learning in mobile
cloud,” in Proc. of KDD, 2018.

[51] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proc. of AAAI, 2020.

[52] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” arXiv preprint, 2017. [Online]. Available:
https://arxiv.org/abs/1703.00810

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
2012.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc of ICLR, 2015.

[55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Process, 2004.

Shulan Wang received her B.Sc. in Network Engi-
neering in 2021 from Anhui University, China. Cur-
rently, she is working toward the M.Sc. in the College
of Computer Science and Electronic Engineering at
Hunan University, China. Her research interests in-
clude privacy issues in artificial intelligence.

Qin Liu received her B.Sc. in Computer Science in
2004 from Hunan Normal University, China, received
her M.Sc. in Computer Science in 2007, and received
her Ph.D. in Computer Science in 2012 from Cen-
tral South University, China. She has been a Visiting
Student at Temple University, USA. Her research in-
terests include security and privacy issues in cloud
computing. Now, she is an Associate Professor in the
College of Computer Science and Electronic Engi-
neering at Hunan University, China.

Yang Xu received the Ph.D. degree in Computer Sci-
ence and Technology from Central South University,
China, in 2019. He is currently an Associate Professor
at the College of Computer Science and Electronic
Engineering, Hunan University, Changsha. His re-
search interests include cloud computing, blockchain,
federated learning, and privacy computing. He is a
member of Blockchain Technical Committee of China
Computer Federation (CCF) and China Society for
Industrial and Applied Mathematics (CSIAM), and a
member of IEEE and ACM.

Hongbo Jiang received the PhD degree from Case
Western Reserve University, in 2008. After that, he
joined the faculty of the Huazhong University of Sci-
ence and Technology as a full professor. Now, he is
a full professor with the College of Computer Sci-
ence and Electronic Engineering, Hunan University.
His research concerns computer networking, espe-
cially algorithms and protocols for wireless and mobile
networks. He is serving as an editor for the IEEE/ACM
Transactions on Networking, associate editor for the
IEEE Transactions on Mobile Computing, and asso-

ciate technical editor for the IEEE Communications Magazine.

Jie Wu is the Chair and a Laura H. Carnell Profes-
sor in the Department of Computer and Information
Sciences at Temple University, Philadelphia, PA, USA.
Prior to joining Temple University, he was a Program
Director at the National Science Foundation and a
Distinguished Professor at Florida Atlantic University.
His current research interests include mobile comput-
ing and wireless networks, network trust and security,
and routing protocols. Dr. Wu has regularly published
in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, includ-

ing IEEE Transactions on Services Computing, and Journal of Parallel and
Distributed Computing. Dr. Wu is a CCF Distinguished Speaker and a Fellow
of the IEEE. He is the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

Tian Wang received his BSc and MSc degrees in
Computer Science from the Central South University
in 2004 and 2007, respectively. He received his PhD
degree in City University of Hong Kong in 2011. Cur-
rently, he is a professor at the Institute of Artificial
Intelligence and Future Networks, Beijing Normal Uni-
versity & UIC, China. His research interests include
internet of things and edge computing.

Tao Peng received the B.Sc. in Computer Science
from Xiangtan University, China, in 2004, the M.Sc. in
Circuits and Systems from Hunan Normal University,
China, in 2007, and the Ph.D. in Computer Science
from Central South University, China, in 2017. Now,
she is an Associate Professor of School of Computer
Science and Cyber Engineering, Guangzhou Univer-
sity, China. Her research interests include network
and information security issues.

Guojun Wang received his Ph.D. degree in Computer
Science, at Central South University, China in 2002.
He is a Pearl River Scholarship Distinguished Pro-
fessor of Higher Education in Guangdong Province,
and a Doctoral Supervisor of School of Computer Sci-
ence and Cyber Engineering, Guangzhou University,
China. He has been listed in Chinese Most Cited Re-
searchers (Computer Science) by Elsevier in the past
eight consecutive years (2014-2021). His research
interests include artificial intelligence, big data, cloud
computing, Internet of Things (IoT), and blockchain.

He is a Distinguished Member of CCF, a Member of IEEE, ACM and IEICE.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1703.00810

	Introduction
	Related Work
	Preliminaries
	Steganography
	BigBiGAN
	Overview of GHOST and GHOST+

	Overview
	System and Threat Models
	GHOST vs. IGHO
	GHOST+ vs. IGHO+

	IGHO: The Improved Version of GHOST
	Feature Synthesis
	Pixel Synthesis

	IGHO+: The Improved Version of GHOST+
	A Strawman Construction
	The Details of FMGAN

	Privacy Measurement
	The Privacy of IGHO
	The Privacy of IGHO+

	Evaluation
	Experimental Settings
	 Accuracy and Efficiency
	Effectiveness of Privacy Protection

	Conclusion
	References
	Biographies
	Shulan Wang
	Qin Liu
	Yang Xu
	Hongbo Jiang
	Jie Wu
	Tian Wang
	Tao Peng
	Guojun Wang

