
SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018 1

The Dynamic Cuckoo Filter
Hanhua Chen, Member, IEEE, Liangyi Liao, Hai Jin, Senior Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—The emergence of large-scale dynamic sets in real applications creates stringent requirements for approximate set
representation structures: 1) the capacity of the set representation structures should support flexibly extending or reducing to cope with
dynamic change of set size; 2) the set representation structures should support reliable delete operation. Existing techniques for
approximate set representation, e.g., the cuckoo filter, the Bloom filter and its variants cannot meet both the requirements of a dynamic
set. To solve this problem, in this paper we propose the dynamic cuckoo filter (DCF) to support reliable delete operation and elastic
capacity for dynamic set representation and membership testing. Two factors contribute to the efficiency of the DCF design. First, the
data structure of a DCF is extendable, which allows the representation of a dynamic set space efficient. Second, a DCF utilizes a
monopolistic fingerprint for representing an item and guarantees reliable delete operation. Experiment results show that when
compared to the existing state-of-the-art designs, DCF achieves a 75% reduction in memory cost, 50% improvement in construction
speed, and 80% improvement in speed of membership query. We implement a prototype file backup system and use DCF for data
deduplication. Comprehensive experiment results demonstrate the efficiency of our DCF design compared to existing schemes.

Index Terms—Dynamic set representation; set membership testing; cuckoo filter

F

1 INTRODUCTION

S ET representation and membership testing are two core
problems of many computer applications. Set represen-

tation means organizing the information of the elements of
a set using a data structure, which makes the information
of the set elements operable by corresponding methods.
Set membership testing means checking and determining
whether an element with a given attribute value belongs to
a given set with a given set representation structure.

A naive set membership testing data structure is hash
coding [2]. In conventional hash coding, a hash area is
organized into an array of cells. An iterative pseudorandom
computational process h(·), also called a hash function, is
used to generate hash addresses of empty cells from the
given set of elements S = {x1, x2, . . . , xn}. The raw data
of the elements are then stored into the empty cells. If we
need to test whether or not an item y is an element of S, we
first obtain h(y), the hash address of y, and then we check y
against the raw data stored in the h(y)th cell. If matched, we
determine that y is an element of S. Otherwise, y does not
belong to S. The traditional hash coding scheme does not
have false positives based on raw data matching. However,
such a scheme is costly in both space for storing the raw
data and computation for membership testing with raw data
matching.

It is not difficult to see that if we allow an error with a
low probability in set membership testing, it is not necessary
to store the complete raw data in the hash space. Instead,
Boolean labels or fingerprints of raw data can be utilized to
replace the raw data to save the space. The schemes may

• H. Chen, L. Liao and H. Jin are with Big Data Technology and System
Lab, Cluster and Grid Computing Lab, Services Computing Technology
and System Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, 430074, China.
E-mail:{chen, liaoliangyi, hjin}@hust.edu.cn.

• J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122, U USA.
E-mail:jiewu@temple.edu.

bring false positives because different items may happen
to collide in the same hash addresses or have the same
fingerprints. Such an approximate set membership testing
technique is used in many real-world application systems,
e.g., Web caches [10], P2P applications [19], routers [20]
and file backup systems [11], etc. Approximate set repre-
sentation structures have attracted much attention in the re-
search community. Most of the existing work focuses on the
tradeoff between cost and error rate. Commonly, a smaller
number of bits used by the labels or fingerprints leads to
a higher false positive rate. In order to balance efficiency
and accuracy, several hash coding techniques have been
introduced into set representation data structures [3, 9].

A standard Bloom filter (SBF) [3] is the most popular
approximate set representation structure [25]. An SBF is
essentially an array of m bits all initially set to “0”. It
maps every item of the set S = {x1, x2, . . . , xn} into the
bit address space [0,m − 1] using a number of k uniform
and independent hash functions h1(·), . . . , hk(·). For the
item x belonging to S, the bits with the hash addresses
hi(x) are all set to “1” for 1 ≤ i ≤ k. When we decide
whether the item y belongs to S or not, we first compute
hi(y) for 1 ≤ i ≤ k. If all the corresponding hi(y)

th bits
are “1”, y belongs to S with high probability; otherwise, y
is definitely not a member of S. An SBF does not support
delete operation because multiple items in S may share any
of the hash addresses hi(x) (1≤ i ≤ k). Deleting an item x
by flipping all the bits with hash addresses hi(x) (1 ≤ i ≤ k)
from “1” to “0” may lead to the problem of false negative.

In practice, real applications commonly involve a highly
dynamic set with members joining and leaving dynamically
and with an unpredictable size of the set [23]. For example,
in popular stream applications [22], an unbounded sequence
of data tuples come with the data flow. This requires a set
representation data structure to have the ability to cope with
sets with a changing cardinality. furthermore, in a Web cache
proxy [4], the cached set of Web pages is frequently updated
according to the cache replacement strategies. This requires

0 2 4 6 8 10
0.00

0.01

0.02

0.03

0.04

0.05

103

M
ul

tip
le

 a
dd

re
ss

 ra
te

(a) Set cardinality

 multiple address rate

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.02

0.04

0.06

0.08

Fa
ls

e
po

si
tiv

e
ra

te

(b) Multiple address rate

 false positive rate

Fig. 1: Multiple address problem in DBF. (The number of
hash functions is set to seven. The number of CBFs varies
from one to 10. Each CBF has 40,960 bits and can hold 1024
items. Totally 10,240 items are inserted in the experiment.)

a set representation structure to support delete operation.
The above features of dynamic sets in real applications bring
more stringent requirements for approximate set representa-
tion structures: 1) The capacities of the data structure should
support flexibly extending or reducing. 2) The data structure
should support reliable delete operation, i.e., the deletion of
any element of the set will not affect the accuracy of the
membership testing of other elements in the set.

Counting Bloom filter (CBF) [10] replaces each bit of an
SBF with a counter of s bits to support item deletion.
However, the space cost of a CBF is s times larger than that
of the SBF. Inserting or deleting an item x corresponds to
increasing or decreasing the value of the hi(x)th counters
by one for 1 ≤ i ≤ k.

Another data structure which can support delete oper-
ation is the cuckoo filter recently proposed by Fan et al. [9].
A CF consists of an array of l buckets. An item xi of the
set S = {x1, x2, . . . , xn} is represented by its fingerprint ξxi

and stored in one of the bucket. Essentially, a fingerprint is
an f -bit fixed-size bit vector derived from the item using
a hash function. Each item xi monopolizes a fingerprint ξx
and thus removing the fingerprint ξxi

will not influence the
membership testing of any other elements xj (j 6= i) in
S. For the inserting operation, each item can choose either
one from the two buckets with the addresses computed by
the two independent hash functions h1(·) and h2(·). Each
bucket in the array has a number of b storage units, also
called entries, and each entry can host one fingerprint. If we
need to check whether or not an item y is contained in S,
we compare all the fingerprints stored in the h1(y)th and
the h2(y)th buckets with the fingerprint ξy . If matched, we
believe y belongs to S with high probability. Otherwise, y is
definitely not a member of S. Removing an item x from S
corresponds to the deletion of the matched fingerprints ξx
in the h1(x)th or the h2(x)th bucket.

To cope with the issue of set extension, Guo et al. [12]
propose the dynamic Bloom filter (DBF). A DBF consists of a
linked list of s homogeneous CBFs. Whenever the current
DBF structure is full, it extends the capacity by appending
a new building block of CBF. Inserting an element x is
performed by increasing the hi(x)

th counter by one for
1 ≤ i ≤ k in the current active CBF (which is not full) at the
end of the link. Querying an item y needs to probe every
CBF until one is found with all the hi(y)th bits (1 ≤ i ≤ k)
being nonzero digits.

The DBF, however, does not support reliable dele-
tion [12], because the DBF is not able to distinguish which

0

1

2

4

3

5

6

7

item x relocate

i

g

q

g

i

q

0

1

2

4

3

5

6

7

x

Before inserting x After inserting x

h1(x)

h2(x)

0

1

2

4

3

5

6

7

g

b

Process of inserting x

ξ q

ξ g

ξ r ξ sξ p

ξ hξ fξ e

ξm ξ o

ξ i ξ j ξ k ξ l

ξ n

item x

h1(x)

h2(x)

(a) Cuckoo hash table (b) Cuckoo filter

Fig. 2: Cuckoo hash table and cuckoo filter

CBF stores the bit information of the item x when the
hi(x)

th (1 ≤ i ≤ k) counters are found nonzero in multi-
ple CBFs. Such multiple address is a common case when
the number of CBFs increases in the DBF. Thus, the DBF
gives up the delete operation and leaves the redundant bits
information remained in the data structure. This will result
in much more serious false positives of the DBF. Figure 1
analyzes the multiple address problem of the DBF in greater
detail using experiments. The result in Fig.1(a) shows that
the increment of the number of items inserted in the DBF
leads to the growth of multiple address rate (the probability
of the occurrence of multiple address when deleting). The
growth of the multiple address rate deteriorates the false
positives of the DBF (Fig. 1(b)). Therefore, the DBF does not
support reliable delete operation for dynamic sets.

In this work, we propose the dynamic cuckoo filter (DCF),
which successfully meets both of the two requirements for
approximate dynamic set representation and membership
testing for large-scale data collections. First, DCF utilizes a
monopolistic fingerprint for representing an item and thus
enables reliable delete operation. Second, DCF exploits a
novel extendable and compressible structure to make the
data structure space efficient for a dynamic set. We conduct
comprehensive experiments using real world datasets as
well as implement a prototype file backup system to eval-
uate the performance of our DCF design. The results show
that the proposed DCF reduces the required memory space
of the DBF by 75% as well as improve the speeds of inserting
and membership testing by 50% and 80%, respectively. The
implementation of a prototype system demonstrates the
superiority of our DCF design in applying to data dedu-
plication in file backup systems.

The rest of this paper is organized as follows. Section
II introduces the background and the related work. Section
III presents the DCF design and its operations. Section IV
analyzes the false positive rate and examine how the delete
operation affects the false positive rate of a DCF. Section
V discusses the optimization of the configuration of this
design. Section VI evaluates the performance of the DCF
using experiment and prototype system implementation.
Section VII concludes this work.

2 BACKGROUND AND RELATED WORK

In this section, we briefly introduce the background and
the related work of this research. We mainly introduce the
recently proposed CF and DBF designs which are mostly
similar to our design.

2

2.1 Cuckoo Hash Table

A cuckoo hash table [17] consists of an array of l buckets.
Each bucket is a basic storage unit for storing an item.
Each item has two candidate buckets whose addresses are
computed by two independent hash functions h1(·) and
h2(·). Inserting an item x is performed following the steps
below: 1) The cuckoo hash table computes the candidate
buckets addresses h1(x) and h2(x); 2) If either the h1(x)th

or the h2(x)th bucket is empty, store x into any of the empty
buckets; 3) If both the buckets are occupied, the cuckoo
hash table randomly selects an occupied bucket and kicks
out the item stored in the selected bucket. The item that
is kicked out, also called the victim, relocates itself to its
alternative bucket; 4) If the alternative bucket is empty, then
store x in the empty alternative bucket and the insert process
terminates. Otherwise, repeat step 3) until all the items
find their own place or the number of relocations reaches
a specified upper bound.

Figure 2(a) illustrates an example of inserting an item x
into a cuckoo hash table with eight buckets. After hashing
mapping, x can be placed in the 2nd or the 6th bucket and
neither of the two buckets is empty. Therefore, the algorithm
randomly picks a bucket, e.g., the 6th bucket, kicks out the
existing item q and inserts x into the 6th bucket. The victim
item q relocates itself to the alternative 4th bucket by kicking
out the existing item g. After the item g is inserted into
the empty alternative 1st bucket, all the items find their
own buckets and the insert operation terminates. To control
the cost of relocations, the cuckoo hash table specifies an
upper bound of the number of relocations, denoted as MNK.
When reaching the upper bound, the cuckoo hash table is
regarded as a full cuckoo hash table. To reduce the cost for
possible frequent relocations, Dietzfelbinger et al. [5] extend
the cuckoo hash table by allowing multiple items stored in
a single bucket.

2.2 Cuckoo Filter

By replacing the original element x with a fingerprint of
the element (denoted as ξx) in the cuckoo hash table, Fan
et al. recently proposed a new approximate set membership
testing data structure, called cuckoo filter (CF) [9]. Because
the fingerprint ξx takes much fewer bits than x itself, CF
is space efficient. Formally, a CF leverages an array of l
buckets, and each bucket has a number of b entries. Each
entry has a fixed size of f bits, where f equals to the size
of a fingerprint. Hence, the fingerprint of an item can be
stored in a single entry. Storing a fingerprint of an item
other than the raw data raises challenges during relocation:
it is difficult for a victim element to find the alternative
hosting bucket. To solve the problem, CF leverages the
partial-key cuckoo hashing, which computes the alternative
bucket address by performing the XOR operation on the
current bucket address and the evicted fingerprint. The two
candidate bucket addresses for x are computed as below.

h1(x) = hash(x),

h2(x) = h1(x)⊕ hash(ξx).
(1)

where ξx represents x’s fingerprint.

Based on such a design, the insert operation of a CF
differs from that of the cuckoo hash table in the calculation
of the hashing address of the alternative buckets for possible
victim elements. When querying an item y in set S, one
first needs to compute the fingerprint of y, denoted as ξy ,
and the addresses of the candidate buckets for hosting ξy ,
denoted as h1(y) and h2(y). The CF then checks ξy the
fingerprints stored in the h1(y)

th and h2(y)
th buckets. If

matched, y is regarded a member of S; otherwise, y does
not belong to S. The delete operation simply removes the
matched fingerprint.

Figure 2(b) shows an example of a CF with eight buckets
(l = 8), each with four entries (b = 4). When inserting
an item x, the CF first calculates the addresses of the
candidate buckets and tries to find a spare entry. At the
obtained addresses, if there is a bucket with a spare entry,
the fingerprint ξx of the item x will be stored in the entry. If
both of the buckets are full (e.g., the 2nd and the 6th buckets),
the CF randomly kicks out a fingerprint in a randomly
chosen bucket (e.g., fingerprint ξq in the 6th bucket). Then,
the victim ξq continues to relocate itself to the alternative 4th

bucket by kicking out the fingerprint ξg . After the victim
ξg successfully relocates itself to the 1st bucket, all the
fingerprints find their own places and the insert operation
terminates.

The upper bound of false positive rate can be computed
by the equation [9],

fpCF = 1− (1− 1

2f
)2b ≈ 2b

2f
. (2)

Compared with an SBF, the greatest advantage of a CF
is the support of delete operation. A CF achieves deletion
by removing the monopolistic fingerprint for an item xi. It
is clear that removing the fingerprint of an item xi will not
affect the membership testing of any other elements xj (j 6=
i) in the CF. Although a CF, in some degree, satisfies the
deletion requirement of the representing dynamic sets, it
lacks the ability to flexibly extend its capacity on demand.

2.3 Dynamic Bloom Filter
The most similar work with our design is the dynamic bloom
filter [12]. A DBF consists of a linked list of s homogeneous
CBFs and extends its capacity by appending new building
blocks of CBFs. The capacity of a CBF c denotes the number
of inserted items when the false positive rate of the CBF
reaches the limit of the allowed false positive rate εCBF.
Formally, given the number of inserted items nr , the CBF
is called an active CBF when nr < c. When there are no
active CBFs in the current DBF, the DBF creates a new CBF
and appends the new one to the linked list. Inserting a new
item x into a DBF first needs to find an active CBF, and then
insert x into the active CBF by increasing all the hi(x)

th

counters of the CBF by one for 1 ≤ i ≤ k. Checking an item
y needs to probe every CBFs until finding a CBF with all the
hi(y)

th bits (1 ≤ i ≤ k) are nonzero digits.
When deleting an item x, the DBF first needs to deter-

mine whether or not the item x exists in the DBF. If only
one CBF is found matched, the delete operation will be
performed by decreasing all the hi(x)

th counters by one
for 1 ≤ i ≤ k in the matched CBF. If more than one

3

TABLE 1: Notations in DCF

Notations Description
CFk the kth CF in DCF
S a set of items to be represented
xi the ith item in set S
ξxi

the fingerprint of the item xi
s the number of CFs in DCF
l the number of buckets in each CF
b the number of entries in each bucket

µxi
, νxi

two bucket addresses of the item xi
Bk(µxi

), Bk(νxi
) two candidate buckets of xi in CFk

εCF false positive rate of each CF
εDCF false positive rate of DCF
c the capacity of each CF

CBFs are found with matched result, the DBF is not able
to decide which CBF contains the item x. The problem is
called multiple address [12]. In the presence of the multiple
address, the DBF gives up the delete operation to avoid
possible false deletion of an item. However, this keeps the
redundant information remained in the DBF and leads to
the rising of false positive rate. Such a problem becomes
even acute when the set cardinality changes frequently
and makes the DBF not available for large-scale real world
applications.

It is clear that existing work cannot satisfy both the two
requirements for dynamic sets. In this work, we propose a
novel dynamic cuckoo filter design which supports an elastic
capacity as well as a reliable delete operation.

3 DYNAMIC CUCKOO FILTER

3.1 Overview
A DCF consists of a number of s linked homogenous
CFs {CF1, . . . , CFs}. Each CF is an array of l buckets
{B(1), . . . , B(l)}. A fingerprint ξi (1 ≤ i ≤ n) is a hash
code with a fixed size of f bits for representing an item xi
(1 ≤ i ≤ n) in a given set S = {x1, . . . , xn}. Each bucket
Bk(µ) has a number of b entries. Every entry is a vector with
f bits, initially all set to “0”. Thus, an entry can store one
fingerprint to represent an element of S. Every fingerprint
ξi has two candidate buckets with the addresses µ and ν.
The address is generated by the hash function µ = h1(xi)
while the address ν is encoded using a partial-key cuckoo
hash ν = µ ⊕ h1(ξi). The fingerprint ξi represents xi in
the kth CF in the DCF and is stored in the bucket Bk(µ)
or Bk(ν) (1 ≤ k ≤ s). Querying an item y against S
needs to probe every CF in the DCF until a matched result
is found. The algorithm first calculates the corresponding
fingerprint ξy , and the bucket addresses µ, ν for y. If there
exists a CFk (1 ≤ k ≤ s) which stores ξy in either the
bucket Bk(µ) or Bk(ν), we assume the item y belongs to
S. Otherwise, y is definitely not a member of S. Deleting
an item x first calculates the candidate addresses µ, ν for x,
and then matches the corresponding fingerprint of x against
the fingerprints in Bk(µ) and Bk(ν) for 1 ≤ k ≤ s. If
matched, set the entry which holds the matched fingerprint
to “0”. Inserting an item into DCF simply corresponds to
fingerprint insertion in one of the CFs. Table 1 summarizes
the notations for the definition of a DCF.

 Full entry Relocation Compaction

0

1

2

4

3

5

6

7

h1(x)

h2(x)

CF1 (full) CF2 (sparse) CF3 (sparse)

curCF

ξx g

bξ q

ξ g

ξ r ξ sξ p

ξ hξ fξ e

ξm ξ o

ξ i ξ j ξ k ξ l

ξ n

ξ u

nextCF

ξ t

Fig. 3: An example of DCF

It is not difficult to see that compared to a CF, no extra
operations are needed for inserting an item into DCF. There-
fore, the time complexity of insert operations of a DCF and
a CF are both O(1). For a membership query operation, a
DCF needs to probe every CF in the worst case. Accordingly,
the time complexity of membership query operation of a
DCF and a CF are O(bs) and O(b), respectively. Deleting
an item needs to find the bucket Bk(µ) holding a matched
fingerprint. Thus, a query operation should be performed
ahead of the removal of the matched fingerprints. The time
complexity of the delete operations are the same as that of
the membership query operations, i.e., O(bs) for a DCF and
O(b) for a CF.

Essentially, a DCF extends its capacity by appending
new CFs and decreases its capacity by dropping the vacant
CFs. Each CF has a counter to record the number of items
inserted inside the CF. A CF is full when the value of the
counter increases to a predefined capacity c and is empty
when the counter decreases to “0”. We call a CF active when
it is not full. When the current CFs are full, a new empty CF
will be appended to the DCF. An item xi with the fingerprint
ξi can be inserted in any active CF in the DCF. Based on
the observation, we can design a novel compact algorithm
which repeats moving the fingerprints from a sparse CF to
the corresponding buckets of other CFs until the sparse CF
becomes empty. Thus, we can release the space occupied by
the empty CF to improve better memory efficiency of a DCF.

We use εDCF and εCF to denote the false positive rates of a
DCF and a CF, respectively. It is not difficult to see that εDCF
is apportioned by each εCF. Querying an item needs to go
through every CF in the worst case. Therefore, the total false
positive rate εDCF will grow due to the partial increment of
the false positive rate εCF of each CF and vice versa. From
Eq. (2), εCF is affected by f , the size of fingerprint. A smaller
value of f makes a CF occupy less space while leads to a
higher probability of fingerprint collision. On the contrary, if
we increase the value of f , we can trade off space efficiency
for a lower false positive rate εCF, further contributing to the
reduction of εDCF.

In the following Section 3.2, we present the operations of
a DCF in detail. In Section 4, we will conduct deeper theo-
retical analysis of DCF after presenting the basic operations.

3.2 Operations of DCF
Insert. Initially, a DCF consists of a single cuckoo filter, and
the insert operation has no difference from that of a CF.
We design two extension strategies with the consideration
of different application efficiency requirements of space and
time, i.e., active extension and passive extension.

4

Algorithm 1 Insert (x)

1: ξx = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1

⊕
hash(ξx);

4: if curCF is full then
5: curCF ← allocate new building block;
6: i = randomly pick i1 or i2;
7: for n = 0; n < MNK; n++ do
8: randomly pick an entry e from bucket curCF.B(i);
9: swap ξx and fingerprint in e;

10: i = i
⊕

hash(ξx);
11: if curCF.B(i) has an empty entry then
12: insert ξx into curCF.B(i);
13: return true;
14: victim← the last item kicked out;
15: nextCF ← curCF ; //Initialized as current CF
16: for victim exists do
17: nextCF ← the next building block of nextCF ;
18: insert victim into nextCF ;
19: return true.

For applications preferring fast insert speed, the DCF
provides the active extension strategy. In active extension, the
DCF appends the new, empty CF aggressively whenever
an insert failure occurs. An original CF is considered full
when the insert failure occurs, i.e., the number of relocations
for inserting an item reaches a specified maximum value,
denoted as MNK. The last kicked out victim will be evicted
and stored in the newly appended CF. It is clear that such
an active extension strategy provides lower inserting delay at
the cost of more space. The setting of the parameter MNK
greatly affects the tradeoff between the space utilization
and the insert time. We will analyze the influence of the
parameter MNK in detail in Section V.

A passive extension strategy is provided for applications
with stricter requirement of space efficiency. Specifically, the
passive extension strategy assigns each CF a uniform capacity
c, which guarantees an acceptable memory efficiency. This
strategy allows the DCF to keep inserting items into the
CF until its counter reaches the capacity c. Thus, a failure
handle algorithm is essential in the passive extension to han-
dle the kicked out victim when the number of relocations
exceeds MNK.

Algorithm 1 specifies the insert operation in detail. The
algorithm keeps two pointers, curCF and nextCF. The curCF
points to the current CF and if the curCF is full, then a new
CF building block will be allocated and assigned to curCF.
The fingerprint will be inserted into curCF first, which is
the same as the insert operation of CF. If the number of
relocation reaches the specified maximum value, denoted as
MNK, the algorithm will record the last fingerprint kicked
out. In order to avoid insert failure, DCF keeps inserting the

Algorithm 2 Membership Query (x)

1: ξx = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1

⊕
hash(ξx);

4: for k = 1 to s do
5: if CFk.B(i1) or CFk.B(i2) has ξx then
6: return true;
7: return false.

Algorithm 3 Delete (x)

1: ξx = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1

⊕
hash(ξx);

4: for k = 1 to s do
5: if CFk.MembershipQuery(x) success then
6: remove a copy of ξx;
7: return true;
8: return false.

victim into the nextCF iteratively.
Figure 3 shows an example of inserting element x into a

DCF that currently has three building blocks. In Fig. 3, the
first building block is already full. The pointer curCF points
to the second building block, where the next insert operation
will be performed. The fingerprint ξx is first generated by
hash function and the two candidate buckets (the 2nd bucket
and the 6th bucket) are computed by Eq (1). Assume we
leverage the passive extension here. The fingerprint will be
inserted into the building block pointed by curCF, i.e., the
second building block. The insert process is the same as
CF: after finding that the two candidate buckets are full,
the fingerprint ξq in the 6th bucket is randomly chosen.
The fingerprint ξq relocates itself and takes up the entry
of ξg . After ξg relocates itself into the empty entry in the
1st bucket, the insert process ends. If insert failure occurs
(i.e., the number of relocations in the second building block
reaches the predefined MNK), the fingerprint kicked out
will be inserted into the following building blocks (the
3rd bucket in Fig. 3) one by one until the fingerprint is
successfully inserted. New building blocks will be generated
and appended to DCF if there are no following building
blocks.

Membership Query. Membership testing with a DCF
needs to probe every CF in the DCF, i.e., 2bs entries, in
the worst case. Algorithm 2 presents the operation of the
membership query in detail. The algorithm looks through
all the s CFs and performs query evaluation in every CF. If
a matched fingerprint is identified, the algorithm returns
the positive result. If none of the CFs have a matched
fingerprint, the DCF determines that the item x is not a
member of the set. The time complexity of the membership
query operation of a DCF and a CF are O(bs) and O(b),
respectively.

Delete. The deletion of an item x needs to first perform a
membership query operation. If a corresponding fingerprint
ξx is found, then the matched fingerprints will be removed
from the DCF. Algorithm 3 shows the details of the delete
operation. The time complexity of the delete operation is the
same as those of the membership query operation, i.e., O(bs)
for a DCF and O(b) for a CF.

Compact. DCF provides a compact operation to release
the vacant space and achieve better space efficiency when
the size of the dynamic set decreases. With items of a dy-
namic set having been deleted, the space utilization of a DCF
may decrease with time. To achieve better space efficiency,
the compact operation of the DCF iteratively moves the
fingerprints from sparse CFs to their counterpart buckets in
other denser CFs. In order to release a CF with the least fin-
gerprint movements, we leverage a greedy strategy, which

5

Algorithm 4 Compact ()

1: for k = 1 to s do
2: if CFk is not full then
3: add CFk to CFQ;
4: sort CFQ by ascending order;
5: for i = 2 to m do // m is the number of CF s in CFQ
6: curCF ← CFQ.element[i− 1];
7: for j = 1 to l do
8: if bucket curCF.B(j) is not empty then
9: for k = m to i do

10: CFQ.element[k].B(j)← fingerprints of
curCF.B(j);

11: if curCF is empty then
12: remove curCF from DCF ;
13: break;
14: return true.

moves the items out of the currently sparsest CF. Figure 3
illustrates an example where CF1 is a full building block
while CF2 is the sparest one. By moving ξt and ξn in CF3

to the corresponding 3rd and 5th bucket addresses in CF2,
CF3, the sparsest building block becomes empty and then
can be released. Algorithm 4 presents the compact operation
in detail. The DCF maintains a CF queue called CFQ to store
the CFs whose counters are less than the capacity c. The CFs
in the queue is sorted in an ascending order of the number
of items stored. Each time the sparsest CF at the head of
the queue is picked out and the fingerprints inside it are
moved to the CF at the tail of the queue. If the CF at the tail
of the queue cannot host all the fingerprints moved from
another CF, those fingerprints will continually be moved
to the second last CF in the queue by such analogy until
the first CF becomes empty or all the CFs in the queue are
traversed.

4 ANALYSIS OF DCF
4.1 False Positive Rate
According to the membership query operation of a DCF, the
membership testing of an item x that does not belong to S,
needs to check a number of s CFs. The false positive rate
is defined as the probability that at least one CF among all
the CFs reports a false positive for x. Assuming the false
positive rate of each CF is εCF, the probability that no false
positives happen in all the s CFs is (1− εCF)

s. Therefore, the
upper bound of a DCF’s false positive rate is,

εDCF = 1− (1− εCF)
s. (3)

By replacing εCF with Eq. (2) and further leveraging the
Taylor formula, we can obtain the following approximation,

εDCF = 1− (1− εCF)
s = 1− (1− 1

2f
)2bs ≈ 2bs

2f
. (4)

We plot Fig. 4 according to Eq. (4). The figure shows
that the false positive rate of the DCF is correlated with
both the number of CFs in DCF and the fingerprint size.
Specifically, increasing the value of f will greatly reduce the
false positive rate εDCF. At the same time, given the bucket
size b and the fingerprint size f , the growth of the parameter
s leads to the increase of the false positive rate εDCF.

of CFs in DCF
0 5 10 15 20

Fa
ls

e
po

si
tiv

e
ra

te

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

f=8 bits
f=10 bits
f=12 bits

Fig. 4: The false positive rate of DCF

4.2 Reliable Deletion
In the following subsection, we evaluate the delete opera-
tion of DBF and DCF. As aforementioned, in order to avoid
false negatives, a DBF has to give up the delete operation
and leaves the redundant bits information remained in DBF.
We will compare the delete operation of a DCF with that of
DBF in this subsection.

As mentioned in [12], a DBF has the multiple address
problem, i.e., a particular item x of set S is tested to be in
multiple CBFs. At most only one CBF has x inserted, while
all the other CBFs’ reports of matching x are false positives.
It is difficult to distinguish which CBF truly represents item
x. Therefore, the DBF is not able to decide which CBF
should perform the delete operation. Basically, there are
two choices for a delete operation when such a multiple
address problem occurs. 1) Randomly choose a CBF and
performing the delete operation. If the selected CBF is a
false positive, the delete operation should be a false deletion
which destroys the DBF and leads to at most a number of
k potential false negatives. 2) Perform delete operation in
all the CBFs appearing to represent x. This guarantees that
the item x will be deleted thoroughly. However, it leads
to more serious false negatives problem. Both of the above
two options will bring false negatives to DBF, which makes
the DBF not usable. Thus, the DBF chooses neither of the
solutions above. Instead, it gives up the delete operation
and keeps the membership information of x remained to
avoid introducing false negatives.

It is clear to see that the redundant information remained
in the DBF will raise up the false positive rate. Assuming the
number of deleted items in DBF is n0, the upper bound of
the probability of multiple address problem is computed by
εmulti = 1 − (1 − εBF)

s−1 [12]. After n0 items are deleted,
there will be at most n0 × εmulti items facing the multiple
address problem. After deleting n0 items, the false positive
rate should be,

εreal(n) = εDBF(n+ n0 × εmulti), (5)

where εreal(n) denotes the false positive rate after deleting
n0 items, while εDBF represents the false positive rate of DBF
without multiple address problem. Theoretically, it is clear
to see from Eq.(5) that the items remained will increase the
false positive.

DCF offers a better solution, the delete operation first
requires a membership query evaluation. It is possible to

6

1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

R
at

io
 o

f i
te

m
s m

is
se

d

False positive

 DCF
 false positive

Fig. 5: Ratio of items missed under different false positive

find multiple matched fingerprints when traversing all the
fingerprints in the total number of 2bs entries. Different
from the multiple address problem of the DBF, the multiple
address problem of a DCF is the case when an item x
appears to be represented by multiple fingerprints hosted
in a DCF. The upper bound of the probability of a DCF’s
multiple address problem is calculated by,

ε∗multi = 1− (1− 1/2f)2bs−1. (6)

Basically, there are three possible solutions for dealing
with the multiple address problem of a DCF. The first option
is to delete all the matched fingerprints in the DCF. This
guarantees that the item x will be removed thoroughly.
However, it brings false negatives to the DCF because it
removes not only item x but also the items which happen
to have the same fingerprints ξx. The probability of false
deletion is bounded by ε∗multi. The second option is to keep
the fingerprint information in DCF. This will lead to the
same problem as DBF: a number of n0 × ε∗multi redundant
fingerprints are kept by the DCF after deleting n0 items. This
further influences the false positive rate of DCF. Therefore,
the DCF adopts the third option, which removes one copy
of the matched fingerprints. It is clear that compared with a
DBF, the delete algorithm of DCF will not lead to redundant
information left and will not leave a permanent influence
to false positive rate. Therefore, we conclude that our DCF
design outperforms DBF in supporting of delete operation,
and thus DCF is more practical in representing dynamic sets
in real world applications.

In the following discussion, we discuss the reliability
of the delete operation of the DCF design. Obviously, in
order to guarantee a safe deletion, only previously inserted
items can be removed. Thus, we only consider the delete
operation with two abnormal but inevitable situations in
practice, including multiple value and duplicates.

Multiple Value: Different from the multiple address
problem of the DBF, diverse items have very low proba-
bility to be inserted with the same fingerprint in the same
bucket address in the DCF design. To differentiate from
the multiple address problem, we call this multiple value.
We consider the case where the items x and y share the
same bucket address and happen to collide in the same
fingerprint (ξx = ξy). According to Eq. (1), the addresses of
the alternative buckets of items x and y are the same as well.
If deleting x removes one copy of the fingerprint, the item y

can still be found. In this case, it seems that the false positive
rate increases since querying x still succeeds. However,
we should notice that determining the existence of item x
after the deletion of x is essentially equivalent to a false
positive, whose probability is computed by Eq. (4). Even if
the DCF encounters multiple value, removing one matched
fingerprints does not lead to redundant information left due
to the monopolistic fingerprint, which guarantees that no
false negative is introduced. Therefore, we can conclude that
compared with the DBF, our DCF design supports reliable
delete operation.

Duplicates: Duplicated items commonly occur in real
world systems. Assuming the item x has been inserted
twice, there must be two copies of the fingerprint ξx inserted
in the DCF. Obviously, deleting item x thoroughly requires
removing fingerprint ξx twice. If inserting duplicated items
is not allowed, the DCF can filter the duplicate by per-
forming a query operation before insertion. This guarantees
that items can be removed thoroughly by removing the
fingerprint once. At the same time, it might introduce slight
false negatives. Considering the case that we mentioned in
multiple value, items x and y share the same bucket address
and happen to collide in the same fingerprint (ξx = ξy).
When x and y both need to be inserted into the DCF, only
one copy of the fingerprint is inserted to avoid duplicates.
After inserting a single copy, a possible false negative may
occur. For example, item y will no longer be found if we
delete item x. We examine the ratio of items missed during
insert operation (the fraction of items that should be inserted
but filtered as duplicates by mistake) under different false
positive rates. Figure 5 shows the ratio changes slowly
when the false positive rate varies, and storing enormous
duplicates will result in the decrease of the space efficiency
due to the nonuniform distribution of fingerprints to trade
off extremely slight false negative for a higher space effi-
ciency is preferable for certain applications. According to the
analysis above, we recommend not to filter the fingerprints
when handling data sets with rare duplicates while filtering
duplicates is preferable for data sets with large fraction of
duplicates to achieve better space efficiency.

5 OPTIMIZATION OF DCF
In this section, we discuss the optimization of the DCF. We
mainly analyze two important aspects, including the setting
of MNK (i.e., the maximum number of relocations) and how
to optimize the space cost.

5.1 Maximum Number of Relocations
Here, we mathematically analyze how the settings of the
parameter MNK affects the DCF in detail. Given a CF with
l buckets each with b entries, the utilization of the CF is pro-
portional to the number of inserted items while the average
insert time has positive correlation to the total number of
relocations of all the inserted items. Therefore, we turn to
analyzing the influence of MNK on the expected number
of inserted items as well as the expected total number of
relocations during the insert operation.

The expected number of inserted items. When the num-
ber of inserted items is n, the probability that a certain
bucket is full can be computed by,

7

Value of k
0 2 4 6 8 10

R
at

io
 o

f
sp

ac
e

w
as

te
d

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
 to

ta
l r

el
oc

at
io

ns

0

2

4

6

8

10

Ratio of space wasted

Number of relocations

Fig. 6: Ratio of space wasted and number of relocations

ρ(n) =
Pnb × P

(l−1)b
n−b

P lbn
, n ∈ [0, lb]. (7)

where Pnb denotes b-permutations of n.
By leveraging Eq. (5), the probability that a number of τ

relocations happen when successfully inserting the nth item
can be computed by,

P (T = τ |N = n) = ρτ (n− 1)[1− ρ(n− 1)], τ ∈ [0,+∞). (8)

Accordingly, the probability that less than MNK reloca-
tions happen when successfully inserting the nth item can
be computed by Eq. (9),

P (T < MNK|N = n) =

MNK−1∑
τ=0

P (T = τ |N = n)

= 1− ρMNK(n− 1).

(9)

The probability of successfully inserting the nth item
with a failure of inserting the (n + 1)th item is quantified
by Eq. (10), which quantifies the probability that the DCF
only successfully inserts n items.

Θ(N = n) = {
n∏
j=1

P (T < MNK|N = j)}

× P (T > MNK|N = n+ 1)

= {
n∏
j=1

[1− ρMNK(j − 1)]} × ρMNK(n).

(10)

Thus, the expected number of inserted items in a CF is
as bellow,

E[N] =

lb∑
i=0

i×Θ(N = i)

=

lb∑
i=0

{i×
i∏

j=1

[1− ρMNK(j − 1)]× ρMNK(i)}.
(11)

According to Eq. (11), the expected number of items
which could be stored in a CF is related to the variable
MNK. By setting the number of bucket l to eight and the
number of entries b to four, we plot the ratio of space wasted

in Fig. 6. Figure 6 shows that a fraction of 95% of the entries
can be filled with fingerprints when the value of MNK is set
to five. The utilization changes slowly when MNK reaches
three. Figure 6 also shows that the space efficiency increases
with the growth of MNK. If we pay more attention to the
space utilization of a CF, we can set MNK relatively large in
practice.

The expected total number of relocations. According to
Eq. (8), the expected number of relocations of inserting the
nth item is computed by,

E[R](τ, c) =
MNK−1∑
τ=0

τ × P (T = τ |N = n)

=
MNK−1∑
τ=0

τ × ρτ (n− 1)[1− ρ(n− 1)].

(12)

By leveraging the number of inserted items E[N] ob-
tained from Eq. (11), the total number of expected reloca-
tions of inserting a number of n items can be derived from
Eq. (13),

SUME=

E[N]∑
c=1

E[R] =

E[N]∑
c=1

MNK−1∑
τ=0

τ × ρτ (c− 1)[1− ρ(c− 1)].

(13)

Figure 6 shows that the expected total number of reloca-
tions increases with the growth of the value of MNK.

In the example shown in Fig. 6, we can find that there
exists a knee point in the ratio of the space wasted curve, i.e.,
when MNK is around three in the example in Fig. 6. After
reaching the knee point, the ratio of wasted space decreases
slowly while the growth of the number of relocations still in-
creases normally. Therefore, we suggest setting MNK equal
to the knee point to achieve an optimum tradeoff between
space and time costs during the construction of the DCF.

5.2 Space Optimization
We analyze the space cost of the DCF by adjusting the
table length and the number of building blocks. In real
application systems, the largest size of set N can be several
orders of magnitude larger than the average cardinality [8].
Therefore, it is important for the DCF to optimize the space
efficiency according to the history records. In real systems,
the attributes, such as the maximum number of items N
that can be processed and the distribution of the size of
a dynamic data set can be easily obtained through system
logs.

Assuming that the DCF has s building block CFs. Ac-
cording to Eq. (3), given the false positive rate of DCF
εDCF, the false positive rate for each CF is computed by
εCF = 1 − (1 − εDCF)

1
s . Assuming that a DCF can ac-

commodate at most N items, the capacity of each CF can
be computed by c = dNs e. With a given distribution of
the size of the dynamic set, e.g., uniform, normal, or Zipf
distribution, let pj represent the probability that the set S
has a number of j items (1 ≤ j ≤ N and

∑N
j=1 pj = 1).

In order to compute the expected number of bits used, we
need to know the probability of a number of i CFs are used
(1 ≤ i ≤ s). We simply use the notation ri to represent the

8

of CFs in DCF
10 20 30 40 50 60

E
xp

ec
te

d
m

em
or

y
si

ze
(b

its
)

#104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

uniform
normal
minimum zipf
maximum zipf
random zipf

Fig. 7: The expected memory size under
different distribution.

Set cardinality
0 2000 4000 6000 8000 10000 12000

R
at

io
 o

f
D

C
F'

s
m

em
or

y
to

 C
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

uniform
normal
minimum zipf
maximum zipf
random zipf

Fig. 8: The ratio of the optimal expected
memory size of DCF to CF.

Set cardinality
0 2000 4000 6000 8000 10000 12000R

at
io

 o
f

D
C

F'
s

m
em

or
y

to
 D

B
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

uniform
normal
minimum zipf
maximum zipf
random zipf

Fig. 9: The ratio of the optimal expected
memory size of DCF to DBF.

probability that a number of i (1 ≤ i ≤ s) CFs are used. It
is clear that ri can be computed by ri =

∑c×i
j=c×(i−1)+1 pj .

Assuming each CF uses a number of m bits, the expected
number of bits used by the DCF can be computed by∑s
i=1 i × m × ri. According to the structure of the CF,

the total number of bits used is m = dNs e ×
f
α where f

represents the size of a fingerprint and α represents the
load factor (or utilization) of the CF. Thus, the expected
number of bits used is

∑s
i=1(ri × i × (Ns) ×

f
α). After

substituting f with f = log2(
2b
εCF

), which is derived from
Eq. (2). The optimization problem can be modeled as a linear
programming problem,

MIN
s

s∑
i=1

ri × i× (
N

s
)×

log2(2b
εCF

)

α

s.t. εCF = 1− (1− εDCF)
1
s , s > 0.

(14)

With the above linear programming, we aim at obtaining
a certain value of s to achieve the minimal expected number
of bits used by the DCF. Once the value of s is determined,
the capacity c, false positive rate εCF and the fingerprint
size f can also be obtained from the equation. Therefore,
we can obtain all the parameters required from the linear
programming equation to build a space optimized DCF.
We can solve the linear programming problem using the
simplex method [7].

Figure 7 shows the expected memory size of the DCF
under five distributions of the dynamic set cardinalities
where the false positive rate εDCF is set to 9.8× 10−3, while
the upper bound of the set cardinality N is 1,330. The result
shows how the expected memory size changes with the
number of CFs (s varying from one to 64).

The baseline implies that the space is allocated by the
CF. The baseline remains unchanged because the space of
the CF is pre-allocated for all possible items. With current
parameters, the optimal memory size is achieved when s is
equal to an inflection point under all the five distributions.
We set the value of s to the inflection point under different
distributions and plot the ratio of the optimized memory
sizes of the DCF to those of the CF in Fig. 8. We can see from
Fig. 8 that the DCF reduces the optimal expected memory
size of the CF by 25% under uniform, normal and ran-
dom Zipf distributions. The DCF reduces optimal expected
memory size of the CF by 15% and 40% under maximum
Zipf and minimum Zipf distributions, respectively. Figure 9

shows how the ratio of the DCF’s optimal expected memory
size changes with the DBF’s optimal expected memory size.
The DCF reduces the memory size of the DBF by 75%.

6 PERFORMANCE

We have implemented the DCF toolkit [1]. In this section,
we evaluate the performance of the DCF by comparing
the performance of the DCF with that of the previous
DBF design. We further implement a prototype file backup
system and examine the performance of the DCF for data
deduplication using large-scale real world datasets.

6.1 Experiment Results
As aforementioned, a DBF requires k hash functions to
generate k bit addresses for membership testing. Thus, the
computation for hash addressing would be performed k
times. Some optimization techniques speed up the process
of generating k bit addresses by using hash functions twice
instead of k times. Such a kind of optimization is effective
in query intensive applications where computationally non-
trivial hash function are used [6]. For example, A. Kirsch et
al. [13] use two hash functions h1(x) and h2(x) to simulate
the rest k−2 hash functions by using the following equation,

hi+2(x) = hi(x) + ihi+1(x) + i2. (15)

We choose SHA1 to generate the hash values. In the
DCF implementation, we use the highest 32 bits and lowest
32 bits to represent the fingerprint and one of the bucket
address, respectively. In DBF, the corresponding two parts
of the hash value represent the value of h1(x) and h2(x),
respectively. The DBF further simulates the other k− 2 hash
values using Eq. (15). Thus, the implementations of DCF
and DBF consume nearly the same computation in the hash
functions.

In the experiment, we set the false positive rate of DCF
and DBF to the same fixed value of 1.17×10−2. We conduct
two groups of experiments. The first group of experiments
compares the operation speeds of DCF and DBF for item
insert, membership query and element delete. In the ex-
periment, we configure both DCF and DBF with the space
optimized parameter settings when varying the size of a
dynamic set from zero to 64,512. In the experiment, we
observe that under the chosen set cardinality, the optimal

9

Set cardinality #104
0 1 2 3 4 5 6 7

In
se

rt
 ti

m
e

(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
DCF
DBF

Fig. 10: Insert time with dif-
ferent value of N

Value of s
0 20 40 60 80 100

In
se

rt
 ti

m
e

(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DCF
DBF

Fig. 11: Insert time with dif-
ferent value of s

Set cardinality #104
0 1 2 3 4 5 6 7

Q
ue

ry
 ti

m
e

(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DCF
DBF

Fig. 12: Query time with dif-
ferent value of N

Value of s
0 20 40 60 80 100

Q
ue

ry
 ti

m
e

(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DCF
DBF

Fig. 13: Query time with dif-
ferent value of s

Set cardinality #104
0 1 2 3 4 5 6 7

D
el

et
e

tim
e

(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DCF
DBF

Fig. 14: Delete time with dif-
ferent value of N

Value of s
0 20 40 60 80 100

D
el

et
e

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

DCF
DBF

Fig. 15: Delete time with dif-
ferent value of s

Number of item deleted #104
0 1 2 3 4 5

C
om

pa
ct

 r
at

e

0

0.2

0.4

0.6

0.8

1

s = 6
s = 24
s = 96

Fig. 16: Compact rate with
different number of item
deleted

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

C
om

pa
ct

 ti
m

e
(s

)

Empty rate

 s=6
 s=12
 s=24
 s=48
 s=96

10-3

Fig. 17: Compact time with
different empty rate

spaces for DCF and DBF are achieved when the value of s is
around six. Therefore, in the first group of experiments we
fix the parameter s at six for both DCF and DBF. The second
group of experiments evaluate the influence of parameter
s when the set cardinality is fixed at 46,080. We vary the
value of s to see how it influences the operation speed of
item insert, membership query and element delete of both
DCF and DBF. We evaluate the speed of different operations
by computing the time consumed by each operation and the
number of operated items.

Item Insert. Figure 10 shows the time consumed by DCF
and DBF for the insert operation with different sizes of set
when s is set to six. The results show that DCF reduces
the construction time of DBF by 35%, while improving
the construction speed of DBF by 50% in average. We can
also see that the performance gap for item insert operation
between DCF and DBF becomes greater with the increase of
the set cardinality.

Figure 11 illustrates the time consumed by DCF and DBF
for item insert when s varies from six to 96. The results
show that the time consumed for insert by both DCF and
DBF changes very slightly with the increase of s. The results
are in agreement with the analysis in Section 3. The insert
operation in DCF and DBF are operated in a certain CF or
CBF and it requires no extra operations. Therefore, the value
of s has no significant influence on the insert operation. We
can also derive from Fig. 11 that the DCF nearly always
outperforms DBF by 50% in terms of construction speed.

The results show that the insert speed of DCF is slightly
affected by the elastic structure. The changing trends of the
insert time under different values of s are linear with the
growth of set cardinality. Such an advantage of the DCF
provides a fast and stable construction speed in practical

implement, which is crucial for applications with a huge
incoming data flow.

Membership Query. To evaluate the performance of
membership query, we let all the queried items in the
experiment pre-inserted into DCF and DBF. Figure 12 and
13 present the time spent for membership query.

Figure 12 shows the time spend for membership query
during different number of queried elements when s = 6.
The results show that the time spent for both DCF and
DBF change nearly linearly when the number of queried
elements increases. We can see that DCF reduces the query
time of DBF by 45%, while it improvs the query speed of
DBF by 80% in average. The performance gap between DCF
and DBF increases with the growth of the number of queried
elements.

Figure 13 shows how the membership query time
changes when s varies from six to 96. Different from the
insert operation, the membership query time of both DCF
and DBF grow linearly with the increase of s. The results
show that DCF achieves a higher speed for membership
query than DBF. The increase of the membership query
time with s is in the expectation, since the membership
query operation needs to probe every CF until a matched
result is found. Thus, a larger value of s definitely results
in the rise of the cost for the membership query operation.
If the system administrator only considers the speed of the
membership query operation, the value of s should be set
as small as possible. However, when more factors are taken
into consideration, more attention should be paid to achieve
a good tradeoff between space and time.

Element Delete. To evaluate the performance of element
delete, we let the items pre-inserted into both DCF and
DBF. We evaluate the delete speed by computing the time

10

TABLE 2: Dataset description

Dataset
Total size

(GB)
Total files

(thousands) Versions
Avg. snapshot

size (GB)
Avg. number of files

in a snapshot
Kernels(Linux 2.6.0-2.6.39) 13 903 40 0.3 23

CentOS (5.0-5.6) 31 1,300 7 4.5 195

consumed for the delete operation. Figure 14 shows that
the time spent for the delete operation of DCF and DBF
increases when the number of deleted elements grows. DCF
reduces the delete time of DBF by 20%, while improving
the delete speed of DBF by 25% in average, when we set s
to six in the implementation. Figure 15 compares the delete
time of DCF and DBF under different settings of s. It is clear
that the value of s has great impact on the delete speed
for both DCF and DBF. A higher value of s results in a
lower delete speed, because the delete operation needs to
perform a membership query operation to locate the target
fingerprint, while a membership query operation needs to
probe every CFs until a matched result is found. Therefore,
the value of s will pose a direct impact on the delete speed.
The results in Fig. 15 show that the delete time of DBF
doubles when s changes from six to 96 while the delete time
of DCF with s = 96 is greater than that with s = 6 by 60%.
For the purpose of speeding up the delete operation, the
value of s should be set to a small value.

Space Compact. The compact algorithm is essential for
the support of the DCF’s elastic capacity, which guaran-
tees the space efficiency of the DCF especially under the
condition of frequent delete operations. For evaluating the
compact algorithm of DCF, we compared the number of CFs
in DCF before the performing the compact operation with
that after the operation. We compute the ratio of space saved
by performing the algorithm with different settings of the
number of items deleted. We further vary the parameter s
from six to 96 to examine how the values of s influence the
performance of the compact operation.

In the experiment, we surprisingly find that the compact
algorithm is highly sensitive to the number of deleted items
while the algorithm can achieve a compact rate extremely
close to the upper bound shown in Fig. 16. For example, in
the experiment we implement 46,080 items in a DCF with
s = 6. Theoretically, when the faction of deleted items is
1/6, the compact algorithm can achieve an empty CF and
release the space, thus obtaining a compact rate of 1/6. In
the experiment, we set the faction of deleted items to 0.1666,

Chunk Sequence

SSD

Chunk

Physical

Storage

Chunk

Index

Version 2

Version 1

HDD

DRAM

Chunk Cache

Chunk Digest

Fig. 18: Prototype system of data deduplication

which is a little smaller than 1/6, and 0.1667, which is a
little larger than 1/6. We find that the achieved compact
rate is zero in the former setting, while it is 1/6 in the
latter. We observe the same high sensitivity when varying
the faction of deleted items and the value of s. We run each
of the above experiments fifty times and report the average
results. The results show that the space will shrink when the
number of items in DCF is at least ten items less than that
of theoretical compact limit. The high sensitivity of compact
algorithm is mainly because the distribution of fingerprints
is nearly absolutely random in each CF. Essentially, the
hash function we choose and the relocation technique of
fingerprints mainly contributes to this randomness.

Figure 16 also shows the upper bound of the compact
rate with different settings of the number of deleted item
and different value of s. The higher value of s contributes
to a higher theoretical upper bound of the compact rate.
In order to achieve a higher average compact rate, we can
increase the value of s.

We further analyze the time spent for the compact oper-
ation for 46,080 items under different delete fraction. Figure
17 shows that the compact time has no distinct relation
with the value of s while it yields a linear relation to the
delete fraction, which directly influences the fingerprints
relocation workload. Moreover, the highest compact time
takes only 1.12% of the membership query time for 46,080
items under the same configuration. The time consumed by
compact operation is next to nothing compared with the
query time and it will not bring too much interference to
other operations in practice. Thus, we conclude from the
analysis that the compact algorithm is a highly sensitive and
efficient algorithm.

From the results above, it is clear that the value of s
plays an important role in the time and space efficiency of
the DCF. A higher value of s leads to a higher compact rate
with the lower speeds of membership query and element
delete. The tradeoff between the space and time is important
for a system administrator of a DCF. Considering both of the
space and time, we suggest the value of s should be set to
the value that achieves the optimized space for DCF, which
can be calculated by solving the linear program problem
denoted by Eq. (14).

6.2 Implementation in File Backup System

We apply the DCF in the file backup system for data
deduplication [11]. The system eliminates duplicated data
chunks during file backup to save unnecessary storage space
and provide cost-effective Internet scale service. Previous
research shows that indexing chunks of the data requires a
large amount of space (e.g., indexing every 1PB data raises
8TB index). It is clear that storing such a huge size of index
in DRAM is prohibitively costly. Moreover, identifying new
chucks by checking against the chuck index stored in HDD
suffers the disk I/O bottleneck [26]. Instead of relying on

11

5 10 15 20 25 30 35 40

5.0x104

1.0x105

1.5x105

2.0x105

D
up

lic
at

e

Versions

 Unique
 Duplicate

Fig. 19: Chunk Type

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

D
ed

up
lic

at
io

n
R

at
io

Versions

 Deduplication Ratio

Fig. 20: Deduplication Ratio

0 5 10 15 20 25 30 35 40
0.0

5.0x104

1.0x105

1.5x105

D
is

k
IO

Versions

 Total IO
 Saving IO

Fig. 21: Disk IO saving

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

To
ta

l F
ile

 S
iz

e
(G

B
)

Versions

 Total File Size

0.0

0.6

1.2

1.8

 Space Cost

Sp
ac

e
C

os
t (

M
B

)

Fig. 22: Space Cost

1 2 3 4 5 6 7
0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

D
up

lic
at

e

Versions

 Unique
 Duplicate

Fig. 23: Chunk Type

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

D
ed

up
lic

at
io

n
R

at
io

Versions

 Deduplication Ratio

Fig. 24: Deduplication Ratio

1 2 3 4 5 6 7
0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

D
is

k
IO

Versions

 Total IO
 Saving IO

Fig. 25: Disk IO saving

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

To
ta

l F
ile

 S
iz

e
(G

B
)

Versions

 Total File Size

0

2

4

6

8

10

12

14

 Space Cost

Sp
ac

e
C

os
t (

M
B

)

Fig. 26: Space Cost

the on-disk chuck index, our idea is to represent the set
of all the stored chucks using DCF and store the succinct
data structure in DRAM for chunk deduplication. When a
new version of a file is uploaded, the system checks against
the DCF to identify new chunks instead of checking the
on-disk index. Therefore, the system can quickly determine
new chunks and avoid storing duplicated chunks to save
a potential huge amount of unnecessary disk I/O and
backend storage.

Figure 18 presents the architecture of the prototype file
backup system. In the system, a file uploaded by a user
is divided into chunks based on the content [16]. The sys-
tem computes a fingerprint for each chunk using a hash
function. The Chunk Digest, which resides in the DRAM,
represents the set of fingerprints for all the chunks stored
in the backend physical storage system. By checking against
the Chunk Digest, the system can identify new chunks with-
out accessing the Chunk Cache in SDD [14] (the Chunk Cache
caches the recently frequently requested chunks) and the
Chunk Index in HDD. We deploy the dedeuplication module
on a machine equipped with an octa-core 2.4GHz Xeon
CPU, 32GB RAM and 1TB HDD.

Data chunks can be generated by three kinds of dedupli-
cation algorithms [18], i.e., file level chunking, fixed block
chunking, and variable chunking algorithms. In file level
chunking, data is partitioned according to file boundaries.
By dividing data into fixed-size data chunks, fixed block
chunking can offer a fined-grained deduplication method
with high processing rate and low level CPU overhead.
However, fixed block chunking suffers from the boundary-
shifting problem. When considering two versions of the
same file, version 1 and 2, the two versions of the file
only has minor differences, which is caused by adding a
single byte in the beginning of version 2. After exerting
the fixed block chunking algorithm, chunks generated by
version 2 will be totally different from version 1, because the
corresponding data in version 2 has been shifted to the latter
data chunks. Another type of chunking algorithm is called

variable chunking, also called content-defined chunking
[15]. It leverages a sliding window moving forward alone
the data until a matched data pattern is found and the end
of the data pattern is considered the boundary of a chunk.
Obviously it can avoid boundary-shifting problem caused
by data adding or removing, and only the first chunk of
version 2 will be different from version 1 in the boundary-
shifting issue in fixed block chunking.

Table 2 summarizes the datasets we use as backup files
and their characteristics [21]. Kernels is the uncompressed
source code of Linux kernel. It includes 903,000 files, 13GB in
total and 40 versions spanning from version 2.6.0 to 2.6.39.
CentOS is the installation files of seven different versions
of CentOS Linux distribution spanning from 5.0 to 5.6. It
includes 1,300,000 files and 31GB in total.

In the same time, variable chunking algorithm, i.e.,
Rabin-based CDC is also implemented to generate data
chunks and the corresponding fingerprint. Rabin fingerprint
can be computed in linear time because it is computed using
polynomials over a finite field. Cooperating with a sliding
window, Rabin fingerprint can quickly compute and judge
the incoming data byte by byte [24].

In the two different datasets, the expected building block
number is set to six according the estimation of the total
chunk number and the false positive rate is limited to 0.001
The expected chunk size in Rabin chunking algorithm is set
to 4KB.

Figures 19 and 23 show the duplicate and unique chunk
number identified by DCF in two different datasets, Kernels
and CentOS, respectively. In Kernels dataset, 80% to 95%
chunks are duplicated compared with previous versions
and in CentOS dataset the duplicate chunks takes up only
50% to 67% of the total chunk number.

Figures 20 and 24 show the deduplication ratio of the
two datasets recorded by DCF. The deduplication ratio is
computed by 1− size after deduplication

size before deduplication . Obviously, Kernels
dataset leads to a higher deduplication ratio, 80% at most,
and CentOS datasets only has a 45% deduplication ratio.

12

Figures 21 and 25 show the disk IO saved by imple-
menting DCF and the original IO cost during deduplication
process. After implementing DCF, unnecessary IO for KV
index lookups can be saved by identifying those unique
chunks. It is easy to obtain from Fig. 22 and Fig. 26 that
DCF saves a steady portion of disk IO of the total IO, and
the more unique chunks exists, the more IO DCF can save.

Figure 22 and Fig. 26 show the space cost of DCF alone
with the increment of ingested files. The DCF extends its
capacity dynamically and steadily alone with the increment
of data size ingested and remains a extremely low space
overhead compared with the file size.

7 CONCLUSION

In this paper, we propose the DCF design for approximate
representation and membership testing for a dynamic set.
To the best of our knowledge, the DCF is the first data struc-
ture to support both reliable element deletion and flexible
structure extending/reducing for approximate dynamic set
representation. We show that the DCF greatly reduces the
space cost of the existing schemes as well as provide the
reliable delete operation. Experiment results show that this
DCF design greatly outperforms the state-of-the-art designs.

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for the comments with
care and insights. The preliminary result of this work was
presented in IEEE ICNP 2017.

REFERENCES

[1] The Dynamic Cuckoo Filter Toolkit, https://github.
com/CGCL-codes/DCF, 2017.

[2] A. P. Batson, “The organization of symbol tables,”
Communications of the ACM, vol. 8, no. 2, pp. 111–112,
1965.

[3] B. H. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” Communications of the ACM,
vol. 13, no. 7, pp. 422–426, 1970.

[4] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti,
“Cliffhanger: Scaling performance cliffs in web mem-
ory caches,” in Proceedings of NSDI, Santa Clara, CA,
March 2016, pp. 379–392.

[5] M. Dietzfelbinger and C. Weidling, “Balanced alloca-
tion and dictionaries with tightly packed constant size
bins,” Theoretical Computer Science, vol. 380, no. 1-2, pp.
47–68, 2007.

[6] P. C. Dillinger and P. Manolios, “Fast and accurate
bitstate verification for SPIN,” in Proceedings of SPIN,
Barcelona, Spain, 1-3 April 2004.

[7] J. Dongarra and F. Sullivan, “Guest editors’ introduc-
tion: The top 10 algorithms,” Computing in Science and
Engineering, vol. 2, no. 1, pp. 22–23, 2000.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On
power-law relationships of the internet topology,” in
Proceedings of SIGCOMM, Philadelphia, Pennsylvania,
USA, 1-3 June 1999.

[9] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzen-
macher, “Cuckoo filter: Practically better than bloom,”

in Proceedings of CoNEXT, Sydney, Australia, 2-5 De-
cember 2014.

[10] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Sum-
mary cache: a scalable wide-area web cache sharing
protocol,” IEEE Transactions on Neural Networks, vol. 8,
no. 3, pp. 281–293, 2000.

[11] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
Y. Zhang, and Y. Tan, “Design tradeoffs for data dedu-
plication performance in backup workloads,” in Pro-
ceedings of FAST, Santa Clara, CA, USA, 16-19 February
2015.

[12] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The
dynamic bloom filters,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 1, pp. 120–133, 2010.

[13] A. Kirsch and M. Mitzenmacher, “Less hashing, same
performance: Building a better bloom filter,” Random
Structures and Algorithms, vol. 33, no. 2, pp. 187–218,
2008.

[14] H. Ma, L. Liu, L. Pan, and J. Xu, “LSB page refresh
based retention error recovery scheme for MLC NAND
flash,” SCIENCE CHINA Information Sciences, vol. 59,
no. 4, pp. 042 408:1–042 408:11, 2016.

[15] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-
bandwidth network file system,” in Proceedings of the
18th ACM Symposium on Operating System Principles,
SOSP, Chateau Lake Louise, Banff, Alberta, Canada,
21-24 October 2001, pp. 174–187.

[16] A. Muthitacharoen, B. Chen, and D. Mazires, “A low-
bandwidth network file system,” Acm Sigops Operating
Systems Review, vol. 35, no. 5, pp. 174–187, 2001.

[17] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of
Algorithms, vol. 51, no. 2, pp. 122–144, 2004.

[18] J. Paulo and J. Pereira, “A survey and classification of
storage deduplication systems,” ACM Comput. Surv.,
vol. 47, no. 1, pp. 11:1–11:30, 2014.

[19] P. Reynolds and A. Vahdat, “Efficient peer-to-peer key-
word searching,” in Proceedings of Middleware, Rio de
Janeiro, Brazil, 16-20 June 2003, pp. 21–40.

[20] H. Song, F. Hao, M. S. Kodialam, and T. V. Lakshman,
“Ipv6 lookups using distributed and load balanced
bloom filters for 100gbps core router line cards,” in
Proceedings of INFOCOM, Rio de Janeiro, Brazil, 19-25
April 2009, pp. 2518–2526.

[21] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuen-
ning, and E. Zadok, “Generating realistic datasets for
deduplication analysis,” in 2012 USENIX Annual Tech-
nical Conference, Boston, MA, USA, 13-15 June 2012, pp.
261–272.

[22] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. V. Ryaboy,
“Storm@twitter,” in Proceedings of SIGMOD, UT, USA,
22-27 June 2014.

[23] J. Wei, H. Jiang, K. Zhou, and D. Feng, “DBA: A
dynamic bloom filter array for scalable membership
representation of variable large data sets,” in Proceed-
ings of IEEE/ACM MSWiM, Singapore, 25-27 July 2011,
pp. 466–468.

[24] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu,
Q. Liu, and Y. Zhang, “Fastcdc: a fast and efficient
content-defined chunking approach for data dedupli-

13

cation,” in 2016 USENIX Annual Technical Conference,
USENIX ATC, Denver, CO, USA, 22-24 June 2016, pp.
101–114.

[25] S. Zengin and E. G. Schmidt, “A fast and accurate
hardware string matching module with bloom filters,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 305–
317, 2017.

[26] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the
disk bottleneck in the data domain deduplication file
system,” in Proceedings of FAST, San Jose, CA, USA, 26-
29 February 2008, pp. 269–282.

Hanhua Chen received the PhD degree in
computer science and engineering from the
Huazhong University of Science and Technol-
ogy, China, in 2010, where he is currently a
professor at the School of Computer Science
and Technology.

Liangyi Liao is currently a master student in the
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy.

Hai Jin received the PhD degree in computer
engineering from the Huazhong University of
Science and Technology, China, in 1994, where
he is currently a professor at the School of Com-
puter Science and Technology.

Jie Wu received the PhD degree in computer
engineering from the Froida Atlantic University,
USA, in 1989, where he is currently a professor
at the computer and information science depart-
ment at Temple University.

14

