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Abstract—A Bloom filter is an effective, space-efficient data structure for concisely representing a set and supporting approximate
membership queries. Traditionally, the Bloom filter and its variants just focus on how to represent a static set and decrease the false
positive probability to a sufficiently low level. By investigating mainstream applications based on the Bloom filter, we reveal that dynamic
data sets are more common and important than static sets. However, existing variants of the Bloom filter cannot support dynamic
data sets well. To address this issue, we propose dynamic Bloom filters to represent dynamic sets as well as static sets and design
necessary item insertion, membership query, item deletion, and filter union algorithms. The dynamic Bloom filter can control the false
positive probability at a low level by expanding its capacity as the set cardinality increases. Through comprehensive mathematical
analysis, we show that the dynamic Bloom filter uses less expected memory than the Bloom filter when representing dynamic sets
with an upper bound on set cardinality, and also that the dynamic Bloom filter is more stable than the Bloom filter due to infrequent
reconstruction when addressing dynamic sets without an upper bound on set cardinality. Moreover, the analysis results hold in stand-
alone applications as well as distributed applications.

Index Terms—Bloom filters, dynamic Bloom filters, information representation.
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1 INTRODUCTION

INFORMATION representation and processing of mem-
bership queries are two associated issues that encom-

pass the core problems in many computer applications.
Representation means organizing information based on
a given format and mechanism such that information
is operable by a corresponding method. The process-
ing of membership queries involves making decisions
based on whether an item with a specific attribute value
belongs to a given set. A standard Bloom filter (SBF)
is a space-efficient data structure for representing a set
and answering membership queries within a constant
delay [1]. The space efficiency is achieved at the cost
of false positives in membership queries, and for many
applications, the space savings outweigh this drawback
when the probability of an error is sufficiently low.

The SBF has been extensively used in many database
applications [2], for example the Bloom join [3]. Recently,
it has started receiving more widespread attention in
networking literature [4]. An SBF can be used as a sum-
marizing technique to aid global collaboration in peer-to-
peer (P2P) networks [5], [6], [7], to support probabilistic
algorithms for routing and locating resources [8], [9],
[10], [11], and to share web cache information [12]. In
addition, SBFs have great potential for representing a
set in main memory [13] in stand-alone applications. For
example, SBFs have been used to provide a probabilistic
approach for explicit state model checking of finite-state
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transition systems [13], to summarize the contents of
stream data in memory [14], [15], to store the states of
flows in the onchip memory at networking devices [16],
and to store the statistical values of tokens to speed up
the statistical-based Bayesian filters [17].

The SBF has been modified and improved from dif-
ferent aspects for a variety of specific problems. The
most important variations include compressed Bloom
filters [18], counting Bloom filters [12], distance-sensitive
Bloom filters [19], Bloom filters with two hash functions
[20], space-code Bloom filters [21], spectral Bloom filters
[22], generalized Bloom filters [23], Bloomier filters [24],
and Bloom filters based on partitioned hashing [25].
Compressed Bloom filters can improve performance in
terms of bandwidth-saving when an SBF is passed on
as a message. Counter Bloom filters deal mainly with
the item deletion operation. Distance-sensitive Bloom
filters, using locality-sensitive hash functions, can an-
swer queries of the form, “Is x close to an item of S?”.
Bloom filters with two hash functions use a standard
technique in hashing to simplify the implementation of
SBFs significantly. Space-code Bloom filters and spectral
Bloom filters focus on multisets, which support queries
of the form, “How many occurrences of an item are
there in a given multiset?”. The SBF and its mainstream
variations are suitable for representing static sets whose
cardinality is known prior to design and deployment.

Although the SBF and its variations have found suit-
able applications in different fields, the following three
obstacles still lack suitable and practical solutions.

1) For stand-alone applications that know the upper
bound on set cardinality for a dynamic set in
advance, a large number of bits are allocated for an
SBF to represent all possible items of the dynamic
set at the outset. This approach diminishes the
space-efficiency of the SBF, and should be replaced
by new Bloom filters which always use an appro-
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priate number of bits as set cardinality changes.
2) For stand-alone applications that do not know the

upper bound on set cardinality of a dynamic set
in advance, it is difficult to accurately estimate a
threshold of set size and assign optimal parameters
to an SBF in advance. In the event that the cardinal-
ity of the dynamic set exceeds the estimated thresh-
old gradually, the SBF might become unusable due
to a high false positive probability.

3) For distributed applications, all nodes adopt the
same configuration in an effort to guarantee the
inter-operability of SBFs between nodes. In this
case, all nodes are required to reconstruct their
local SBFs once the set size of any node exceeds
a threshold value at the cost of large (sometimes
huge) overhead. In addition, this approach requires
that the nodes with small sets must sacrifice more
space so as to be in accordance with nodes with
large sets, hence reducing the space-efficiency of
SBFs and causing large transmission overhead.

The SBF and variants do not take dynamic sets into
account. To address the three obstacles, we propose
dynamic Bloom filters (DBF) to represent a dynamic
set instead of rehashing the dynamic set into a new
filter as the set size changes [26]. DBF can control the
false positive probability at a low level by adjusting
its capacity1 as the set cardinality changes. We then
compare the performances of SBF and DBF in three
categories of stand-alone applications which feature two
different types of sets: static sets with known cardinality
and dynamic sets with or without an upper bound on
cardinality. Moreover, we evaluate the performance of
DBFs in distributed applications. The major advantages
of DBF are summarized as follows:

1) In stand-alone applications, a DBF can enhance its
capacity on demand via an item insertion opera-
tion. It can also control the false positive probability
at an acceptable level as set cardinality increases.
DBFs can shorten their capacities as the set cardi-
nality decreases through item deletion and merge
operations.

2) In distributed applications, DBFs always satisfy
the requirement of inter-operability between nodes
when handling dynamic sets, occupying a suitable
amount of memory to avoid unnecessary waste
and transmission overhead.

3) In stand-alone as well as distributed applications,
DBFs use less expected memory than SBFs when
dealing with dynamic sets that have an upper
bound on set cardinality. DBFs are also more stable
than SBFs due to infrequent reconstruction when
dealing with dynamic sets that lack an upper
bound on set cardinality.

The rest of this paper is organized as follows. Section

1. The capacity of a filter is defined as the largest number of
items which could be hashed into the filter such that the false match
probability does not exceed a given upper bound.

2 surveys standard Bloom filters and presents the alge-
bra operations on them. Section 3 studies the concise
representation and approximate membership queries of
dynamic sets. Section 4 evaluates the performance of
DBFs in stand-alone as well as distributed applications.
Section 5 concludes this work.

2 CONCISE REPRESENTATION AND MEMBER-
SHIP QUERIES OF STATIC SETS

2.1 Standard Bloom Filters
A Bloom filter for representing a set X={x1, ..., xn} of n
items is described by a vector of m bits, initially all set
to 0. A Bloom filter uses k independent hash functions
h1, ..., hk to map each item of X to a random number
over a range {1, ..., m} [1], [4] uniformly. For each item x
of X , we define its Bloom filter address as Bfaddress(x),
consisting of hi(x) for 1 ≤ i ≤ k, and the bits belonging
to Bfaddress(x) are set to 1 when inserting x. Once the
set X is represented as a Bloom filter, to judge whether
an element x belongs to X , one just needs to check
whether all the hi(x) bits are set to 1. If so, then x is
a member of X (however, there is a probability that this
could be wrong). Otherwise, we assume that x is not a
member of X . It is clear that a Bloom filter may yield a
false positive due to hash collisions, for which it suggests
that an element x is in X even though it is not. The
reason is that all indexed bits were previously set to 1
by other items [1].

The probability of a false positive for an element not
in the set can be calculated in a straightforward fashion,
given our assumption that hash functions are perfectly
random. Let p be the probability that a random bit
of the Bloom filter is 0, and let n be the number of
items that have been added to the Bloom filters. Then
p = (1− 1/m)n×k ≈ e−n×k/m as n× k bits are randomly
selected, with probability 1/m in the process of adding
each item. We use fBF

m,k,n to denote the false positive
probability caused by the (n + 1)th insertion, and we
have the expression

fBF
m,k,n = (1− p)k ≈ (1− e−k×n/m)k. (1)

In the remainder of this paper, the false positive
probability is also called the false match probability. We
can calculate the filter size and number of hash functions
given the false match probability and the set cardi-
nality according to formula (1). From [1], we know
that the minimum value of fBF

m,k,n is 0.6185m/n when
k = (m/n) ln 2. In practice, of course, k must be an
integer, and smaller k might be preferred since that
would reduce the amount of computation required.

For a static set, it is possible to know the whole set
in advance and design a perfect hash function to avoid
hash collisions. In reality, an SBF is usually used to
represent dynamic sets as well as static sets. Therefore,
it is impossible to know the whole set and design k
perfect hash functions in advance. On the other hand,
different perfect hash functions used by an SBF may
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cause hash collisions. Thus, the perfect hash functions
are not suitable for overcoming hash collisions in SBFs
in theory as well as practice.

On the other hand, a static set is typically not allowed
to perform data addition and deletion operations once it
is represented by an SBF. Thus, the bit vectors of the
SBF will stay the same over time, and then the SBF
can correctly reflect the set. Therefore, the membership
queries based on the SBF will not yield a false negative in
this scenario. However, the SBF must commonly handle
a dynamic set that is changing over time, with items
being added and deleted.

In order to support the data deletion operation, an
SBF hashes the item to be deleted and resets the cor-
responding bits to 0. It may, however, set a location
to 0, which is also mapped by other items. In such a
case, the SBF no longer correctly reflects the set and will
produce false negative judgments with high probability.
To address this problem, Fan et all. introduced counting
Bloom filters (CBF) [12]. Each entry in the CBF is not
a single bit but rather a small counter that consists of
several bits. When an item is added, the corresponding
counters are incremented; when an item is deleted, the
respective counters are decremented. The experimental
results and mathematical analysis show that four bits for
each counter is large enough to avoid overflows [12].

2.2 Algebra Operations on Bloom Filters
We use two standard Bloom filters BF (A) and BF (B)
as the representations of two different static sets A and
B, respectively.

Definition 1: (Union of standard Bloom filters) As-
sume that BF (A) and BF (B) use the same m and
hash functions. Then, the union of BF (A) and BF (B),
denoted as BF (C), can be represented by a logical or
operation between their bit vectors.

Theorem 1: If BF (A ∪ B), BF (A) and BF (B) use the
same m and hash functions, then BF (A∪B) = BF (A)∪
BF (B).

Proof: Assume that the number of hash functions
is k. We choose an item y from set A ∪ B randomly,
and y must also belong to set A or B. Bits hashi(y)
of BF (A ∪ B) are set to 1 for 1 ≤ i ≤ k, and at the
same time, bits hashi(y) of BF (A) or BF (B) are set to
1, thus BF (A)[hashi(y)] ∪ BF (B)[hashi(y)] are also set
to 1. On the other hand, we chose an item x from set A
or B randomly, and said x also belongs to set A∪B. Bits
hashi(x) of BF (A) ∪ BF (B) are set to 1 for 1 ≤ i ≤ k,
and at the same time bits hashi(x) of BF (A∪B) are also
set to 1. Thus, BF (A ∪ B)[i] = BF (A)[i] ∪ BF (B)[i] for
1 ≤ i ≤ m. Theorem 1 is proved to be true.

Theorem 2: The false positive probability of BF (A ∪
B) is not less than that of both BF (A) and BF (B). At
the same time, the false positive probability of BF (A)∪
BF (B) is greater than or equal to that of BF (A) as well
as BF (B).

Proof: Assume that the sizes of sets A, B, and A∪B
are na, nb, and nab respectively. According to (1), we

can calculate the false positive probability for BF (A),
BF (B), and BF (A ∪B).

In fact, given the same k and m, formula (1) is a
monotonically increasing function of n. It is true that
|A ∪B| ≥ max(|A|, |B|), thus nab is not less than na and
nb. We could infer that the false positive probability of
BF (A ∪ B) is not less than that of BF (A) and BF (B).
According to Theorem 1, we know that BF (A ∪ B) =
BF (A) ∪ BF (B), thus the false positive probability of
BF (A)∪BF (B) is also not less than the value of BF (A)
as well as BF (B). Theorem 2 is proved to be true.

Definition 2: (Intersection of Bloom filters) Assume
that BF (A) and BF (B) use the same m and hash func-
tions. Then, the intersection BF (A) and BF (B), denoted
as BF (C), can be represented by a logical and operation
between their bit vectors.

Theorem 3: If BF (A ∩B), BF (A), and BF (B) use the
same m and hash functions, then BF (A∩B) = BF (A)∩
BF (B) with probability (1− 1/m)k2×|A−A∩B|×|B−A∩B|.

Proof: Assume the number of hash functions is k. We
can derive (2) according to Definition 1, 2, and Theorem
1

BF (A) ∩BF (B) =
(BF (A−A ∩B) ∩BF (B −A ∩B)) ∪
BF (A ∩B). (2)

In fact, the items of set A ∩ B contribute the same
bits whose value is 1 to Bloom filters BF (A ∩ B) and
BF (A) ∩ BF (B). According to (2), it is easy to derive
that BF (A)∩BF (B) equals to BF (A∩B) only if BF (A−
A ∩B) ∩BF (B −A ∩B) = 0.

For any item z ∈ (B−A∩B), the probability that bits
hash1(z), . . . , hashk(z) of BF (A−A∩B) are 0 should be
pk = (1 − 1/m)k2×|A−A∩B|. Thus, we can infer that the
probability that BF (B − A ∩ B) ∩ BF (A − A ∩ B) = 0
should be (1 − 1/m)k2×|A−A∩B|×|B−A∩B|. Theorem 3 is
true.

2.3 Related Works

The most closely-related work is split Bloom filters [27].
They increase their capacity by allocating a fixed s×m
bit matrix instead of an m-bit vector as used by the SBF
to represent a set. A certain number of s filters, each
with m bits, are employed and uniformly selected when
inserting an item of the set. The false match probability
increases as the set cardinality grows. An existing split
Bloom filter must be reconstructed using a new bit
matrix if the false match probability exceeds an upper
bound. In practice, the split Bloom filters also need to
estimate a threshold of set cardinality, and encounter the
same problems faced by SBF. Although dynamic Bloom
filters adopt a similar structure as split Bloom filters, they
are different in the following aspects. First, split Bloom
filters always consume s ×m bits and waste too much
memory before the set cardinality reaches (m × ln 2)/k,
whereas dynamic Bloom filters allocate memory in an
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incremental manner. Second, split Bloom filters do not
support the data deletion operation, which is required in
order to really support dynamic sets, whereas dynamic
Bloom filters do support dynamic sets. Third, dynamic
Bloom filters propose dedicated solutions for four differ-
ent scenarios, as shown in Section 4.

Another related work is scalable Bloom filters [28]
which address the same problem and adopt a similar
solution proposed by DBFs [26]. A scalable Bloom filter
also employs a series of SBFs in an incremental manner,
but uses a different method to allocate memory for each
SBF. It allocates m × ai−1 bits for its ith SBF where a
is a given positive integer and 1 ≤ i ≤ s, while a
DBF allocates m bits for each DBF. It achieves a lower
false positive probability than a DBF that holds the same
number of SBFs by using more memory, but suffers
from a drawback due to the use of heterogeneous SBFs
featuring different sizes and hash functions. It causes
large overhead due to the need to calculate the Bloom
filter address for items in each SBF when performing a
membership query operation. In a DBF, the Bloom filter
address of items in each SBF is the same. This makes it
possible to optimize the storage and retrieval of a DBF by
using the bit slice approach, as shown in Section IV-E. On
the other hand, it also lacks an item deletion operation
and solutions for dedicated application scenarios.

3 CONCISE REPRESENTATION AND MEMBER-
SHIP QUERIES OF DYNAMIC SET

DBF focuses on addressing dynamic sets with changing
cardinality rather than static sets, which were addressed
by the previous version. It should be noted that DBFs
can support static sets. Throughout this paper, an SBF
is called active only if its false match probability does
not reach a designed upper bound; otherwise it is called
full. Let nr be the number of items accommodated by an
SBF. The nr is equal to the capacity c for a full SBF, and
less than c for an active SBF. In the rest of this paper, we
use SBF to imply counting Bloom filters for the sake of
supporting the item deletion operation.

3.1 Overview of Dynamic Bloom Filters

A DBF consists of s homogeneous SBFs. The initial value
of s is one, and the initial SBF is active. The DBF only
inserts items of a set into the active SBF and appends
a new SBF as an active SBF when the previous active
SBF becomes full. The first step to implement a DBF is
initializing the following parameters: the upper bound
on false match probability of the DBF, the largest value
of s, the upper bound on false match probability of the
SBF, the filter size m of the SBF, the capacity c of the SBF,
and number of hash functions k of the SBF. As we will
discuss further on in this paper, the approaches used to
initialize these parameters are not identical in different
scenarios. For more information, readers may refer to
Section 4.

Algorithm 1 Insert (x)
Require: x is not null

1: ActiveBF ← GetActiveStandardBF ()
2: if ActiveBF is null then
3: ActiveBF ← CreateStandardBF (m, k)
4: Add ActiveBF to this dynamic Bloom filter.
5: s ← s + 1
6: for i = 1 to k do
7: ActiveBF [hashi(x)] ← ActiveBF [hashi(x)] + 1
8: ActiveBF.nr ← ActiveBF.nr + 1

GetActiveStandardBF()
1: for j = 1 to s do
2: if StandardBFj .nr < c then
3: Return StandardBFj

4: Return null

Given a dynamic set X with n items, we will first
show how a DBF is represented through a series of item
insertion operations. Algorithm 1 contains the details
regarding the process of the item insertion operation. It
is clear that the DBF should first discover an active SBF
when inserting an item x of X . If there are no active
SBFs, the DBF creates a new SBF as an active SBF and
increments s by one. The DBF inserts x into the active
SBF, and increments nr by one for the active SBF. If X
does not decrease after deployment, only the last SBF of
the DBF will be active, whereas the other SBFs are full.
Otherwise, those full SBFs may become active if some
items are removed from the set X .

It is convenient to represent X as a DBF by invoking
Algorithm 1 repeatedly. After achieving the DBF, we
can answer any set membership queries based on the
DBF instead of X . The detailed process is illustrated
in Algorithm 2, which uses an item x as input. If all
the hashj(x) counters are set to a non-zero value for
1 ≤ j ≤ k in the first SBF, then the item x is a member of
X . Otherwise, the DBF checks its second SBF, and so on.
In summary, x is not a member of X if it is not found
in all SBFs, and is a member of X if it is found in any
SBF of the DBF.

Algorithm 2 Query (x)
Require: x is not null

1: for i = 1 to s do
2: counter ← 0
3: for j = 1 to k do
4: if StandardBFi[hashj(x)] = 0 then
5: break
6: else
7: counter ← counter + 1
8: if counter = k then
9: Return true

10: Return false

If an item x is removed from X , the corresponding
DBF must execute Algorithm 3 with x as the input in
order to reflect X as consistently as possible. First of all,
the DBF must identify the SBF in which all the hashj(x)
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Algorithm 3 Delete (x)
Require: x is not null

1: index ← null
2: counter ← 0
3: for i = 1 to s do
4: if BF[i].Query(x) then
5: index ← i
6: counter ← counter + 1
7: if counter > 1 then
8: break
9: if counter = 1 then

10: for i = 1 to k do
11: BF [index][hashi(x)] ← BF [index][hashi(x)]− 1
12: BF [index].nr ← BF [index].nr − 1
13: Merge()
14: Return true
15: else
16: Return false
Merge()

1: for j = 1 to s do
2: if StandardBFj .n < c then
3: for k = j + 1 to s do
4: if StandardBFj .nr + StandardBFk.nr < c

then
5: StandardBFj ← StandardBFj ∪

StandardBFk

6: StandardBFj .nr+ ← StandardBFk.nr

7: Clear StandardBFk from the dynamic
Bloom filter.

8: Break

counters are set to a non-zero for 1 ≤ j ≤ k. If no
SBF exists that satisfies the constraint in the DBF, the
item deletion operation will be rejected since x does
not belong to X . If there is only one SBF satisfying the
constraint, the counters hashj(x) for 1 ≤ j ≤ k are
decremented by one. If there are multiple SBFs satisfying
the constraint, then x may appear to be in multiple SBFs
of the DBF. Thus, it is impossible for the DBF to know
which is the right one. If the DBF persists in removing
membership information of x from it, the wrong SBF
may perform the item deletion operation with given
probability. The wrong item deletion operation destroys
the DBF, and leads to at most k potential false negatives.
To avoid producing false negatives, the membership in-
formation of such items is kept by the DBF but removed
from X .

Furthermore, two active SBFs should be replaced by
the union of them if the addition of their nr is not greater
than the capacity c of one SBF. The union operation
of counting Bloom filters is similar to that of standard
Bloom filters, which performs the addition operation be-
tween counter vectors instead of the logical or operation
between bit vectors. Note that there is at most one pair
of SBFs which satisfy the constraint of union operation
after an item is removed from the DBF.

The average time complexity of adding an item x to
an SBF and a DBF is the same: O(k), where k is the

number of hash functions used by them. The average
time complexities of membership queries for SBF and
DBF are O(k) and O(k × s), respectively. The average
time complexity of a member deletion for SBF and DBF
are O(k) and O(k × s), respectively.

3.2 False Match Probability of Dynamic Bloom Fil-
ters

In this subsection, we analyze the false positive prob-
ability of a DBF under two scenarios. Items of X are
not allowed to be deleted from X in the first scenario,
whereas they are allowed to in the second scenario.

As discussed above, a DBF with s = dn/ce SBFs can
represent a dynamic set X with n items. If we use the
DBF instead of X to answer a membership query, we
may meet a false match at a given probability. We will
evaluate the probability with which the DBF yields a
false positive judgment for an item x not in X . The
reason is that all counters of bfaddress(x) in any SBF
might have been set to a non-zero value by items of X .

If the cardinality of X is not greater than the capacity
of an SBF (n ≤ c), then the false match probability of the
DBF can be calculated according to formula (1) since the
DBF is just an SBF. Otherwise, the false match probability
of the DBF can be calculated in a straightforward way.
The false positive probability of the first s − 1 SBFs is
fBF

m,k,c, and that of the last SBF is fBF
m,k,nl

with nl = n −
c × bn/cc. Then, the probability that not all counters of
bfaddress(x) in each SBF of the DBF are set to a non-zero
value is (1−fBF

m,k,c)
bn/cc(1−fBF

m,k,nl
). Thus, the probability

that all the counters of bfaddress(x) in at least one SBF
of the DBF are set to a non-zero value can be denoted
as

fDBF
m,k,c,n = 1− (1− fBF

m,k,c,c)
bn/cc(1− fBF

m,k,c,nl
)

= 1− (1− (1− e−k×c/m)k)bn/cc

(1− (1− e−k×(n−c×bn/cc)/m)k). (3)

In the following discussion, we will use DBF as well
as SBF to represent X , and observe the change trend of
fDBF

m,k,c,n and fBF
m,k,n as n increases continuously. For 1 ≤

n ≤ c, the false positive probability of DBF equals that of
SBF. In this case, the DBF becomes the SBF, and formula
(3) also becomes formula (1). For n > c, the false positive
probability of the DBF increases gradually with n, while
that of the SBF increases quickly to a high value and
then slowly increases to almost one. For example, when
n reaches 10 × c, fBF

m,k,10×c becomes about one hundred
times larger than fBF

m,k,c, but fDBF
m,k,c,10×c is about ten times

larger than fBF
m,k,c. We can draw a conclusion from the

formulas (1), (3), and Figure 1 that DBF scales better than
SBF after the actual size of X exceeds the capacity of one
SBF.

Furthermore, we use multiple DBFs and SBFs to repre-
sent X, and study the trend of fBF

m,k,n/fDBF
m,k,c,n as the cardi-

nality n of X increases continuously. In our experiments,
we chose four kinds of DBFs using four SBFs different
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n=133, false positive probability is       
0.0098.                                    
                                           

Fig. 1. False positive probability of dynamic and standard
Bloom filters are functions of the actual size n of a
dynamic set, where m = 1280, k = 7, and c = 133.

with respect to size. For all four SBFs, the number of
hash functions is 7, and the predefined upper bound
on false positive probability is 0.0098. The experimental
results are shown in Figure 2. It is obvious that all four
curves follow a similar trend. The ratio fBF

m,k,n/fDBF
m,k,c,n

is a function of the actual size n of X . For 1 ≤ n ≤ c,
the ratio equals 1. For n > c, the ratio quickly reaches
to the peak due to the slow increase in fDBF

m,k,c,n and the
quick increase in fBF

m,k,n, and then decreases slowly. After
n exceeds c, the DBF with a different parameter m scales
better than the corresponding SBF. In fact, the value of
m has no effect on the trend of fBF

m,k,n/fDBF
m,k,c,n.

We know that fBF
m,k,n and fDBF

m,k,c,n are monotonically
decreasing functions of m according to formulas (1) and
(3). In other words, fDBF

m1,k,c,n < fDBF
m2,k,c,n for m1 > m2, this

means that the curve of fDBF
m1,k,c,n is always lower than the

curve of fDBF
m2,k,c,n as n increases. In fact, so does fBF

m,k,n.
We also conduct experiments to confirm this conclusion,
and illustrate the result in Figure 4.

3.3 Algebra Operations on Dynamic Bloom Filters

Given two different dynamic sets A and B, we can use
two dynamic Bloom filters DBF (A) and DBF (B) or two
standard Bloom filters BF (A) and BF (B) to represent
them, respectively.

Definition 3: (Union of dynamic Bloom filters) Given
the same SBF, we assume that DBF (A) and DBF (B) use
s1 ×m and s2 ×m bit matrixes, respectively. DBF (A) ∪
DBF (B) could result in a (s1 + s2)×m bit matrix. The
ith line vector equals the ith line vector of DBF (A) for
1 ≤ i ≤ s1, and the (i− s1)th line vector of DBF (B) for
s1 < i ≤ (s1 + s2).

Theorem 4: The false positive probability of DBF (A)∪
DBF (B) is larger than that of DBF (A) as well as
DBF (B).

Proof: Assume that DBF (A) ∪ DBF (B), DBF (A),
and DBF (B) uses the same SBF with parameters m,
k, c, and the actual sizes of dynamic set A and B are
na and nb, respectively. The false positive probability of
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Fig. 2. The ratio of false positive probability of a standard
Bloom filter to the value of a DBF is a function of the actual
size n of a dynamic set, where k = 7 and c = 133.

DBF (A) ∪DBF (B) is

fDBF
m,k,c,na+nb

= 1− (1− fBF
m,k,c)

(bna/cc+bnb/cc) ×
(1− (1− e−k×(na−c×bna/cc)/m)k)×
(1− (1− e−k×(nb−c×bnb/cc)/m)k). (4)

The false positive probability of DBF (A) and
DBF (B) are fDBF

m,k,c,na
and fDBF

m,k,c,nb
, respectively. In fact,

given the same k, m, and c, the value of formula (4)
minus fDBF

m,k,c,na
is larger than 0, and the value of for-

mula (4) minus fDBF
m,k,c,nb

is also larger than 0. Thus, we
can easily derive that the false positive probability of
DBF (A) ∪ DBF (B) is larger than that of DBF (A) as
well as DBF (B).

Theorem 5: If the size of A and B is not zero and
less than c, the false positive probability of DBF (A) ∪
DBF (B) is less than that value of BF (A) ∪BF (B).

Proof: The false positive probability of DBF (A) ∪
DBF (B) is denoted as fDBF

m,k,c,na+nb
, and that of BF (A)∪

BF (B) is denoted as fBF
m,k,na+nb

. Because the size of A
and B is less than c, formula (4) can be simplified as
formula (5). Let x = e−k×na/m and y = e−k×nb/m, we
can obtain formula (6) which denotes fBF

m,k,na+nb
minus

fDBF
m,k,c,na+nb

according to formula (1) and formula (5).

fDBF
m,k,c,na+nb

=

1− (1− (1− e−k×na/m)k)(1− (1− e−k×nb/m)k)(5)
f(x, y) =

(1− xy)k + ((1− x)(1− y))k −
(1− x)k − (1− y)k (6)

f(a)− f(d) =
f(d)(a− d) + . . . + fk−1(d)(a− d)k−1/(k − 1)! +
fk(ξ)(a− d)k/k!, d < ξ < a (7)

f(c)− f(b) =
f(c)(c− b) + . . . + fk−1(b)(c− b)k−1/(k − 1)! +
fk(ξ)(c− b)k/k!, b < ξ < c (8)

Let a = 1 − xy, b = (1 − x) × (1 − y), c = 1 − x, and
d = 1−y. Thus, b < c < a, b < d < a because of 0 < x < 1
and 0 < y < 1. If c < d, then we obtain formulas (6) and
(7) according to the Taylor formula. f(z) = zk, 0 < z <
1, is a monotonically increasing function of z and has
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Fig. 3. False positive probability of BF (A)∪BF (B) minus
that of DBF (A) ∪ DBF (B) is a function of size na of
dynamic set A and nb of set B, where m = 1280, k = 7,
and c = 133.
a continuous k-rank derivative. The ith derivative is a
monotonically increasing function for 1 < i ≤ k. It is
obvious that a − D = c − b, d < c < a, b < d < a. Thus,
each item of f(a) is larger than the corresponding item
of f(c), and so (6) is larger than 0. If c > d, the result is
the same. Theorem 5 is proved to be true.

On the other hand, we used MATLAB to calculate the
result of fBF

m,k,na+nb
minus fDBF

m,k,c,na+nb
. As shown in Fig-

ure 3, the false positive probability of DBF (A)∪DBF (B)
is also less than that of BF (A)∪BF (B), even though the
size of A and B exceeds c.

3.4 Evaluations of Item Deletion Algorithm

3.4.1 Mathematical Analysis
As mentioned above, multiple SBFs tend to allocate
Bfaddress(x) for an item x ∈ X in a DBF. It is clear
that only one SBF ever truly represented x during its
input process; the other SBFs are false positives. The
item deletion operation of DBF always omits such items,
keeping their set membership information. The moti-
vation is to prevent the DBF from producing potential
false negatives caused by an incorrect item deletion. As
a direct result of the item deletion operation, queries of
such items will yield false positives.

Recall that X has n items, and the DBF uses s = dn/ce
SBFs. After the representation of X , we can consider the
event where a particular item x of X appears to be in
multiple SBFs. If x was represented by one of the first s−
1 SBFs during the item insertion process, the probability
of this event can be calculated by

f1(n) = 1− (1− fBF
m,k,c)

s−2(1− fBF
m,k,nl

). (9)

If item x was represented by the sth SBF during the
item insertion process, this event means that at least one
of the first s− 1 SBFs produce a false positive judgment
for x, and the probability of this event can be calculated
by

f2(n) = 1− (1− fBF
m,k,c)

s−1. (10)

It is easy to know that the value of formula (10) is
larger than that of formula (9). We use formula (10) as
an estimated upper bound on the probability that x of
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Fig. 4. The false positive probability of four kinds of DBFs
are functions of the actual size n of a dynamic set, where
k = 7, and the predefined threshold of false positive
probability of each DBF is 0.0098.

X appears to be in multiple SBFs, and then achieve an
estimated upper bound n×f2(n) on the number of such
items which have more than one Bloom filter address.
Our experimental results show that the real number is
less than the estimated upper bound. If all items of X are
deleted, the DBF will try to perform the same operation.
However, the DBF cannot guarantee deletion of all items
due to its special item deletion operation. In reality, the
DBF still holds the membership information of at most
n × f2(n) items. If other items join X at the same time
that the original items are deleted, the DBF can reflect
the membership information of all items of X and at
most n × f2(n) remaining items. It is logical that the
false positive probability of the DBF is always larger
than the theoretical value. Our experimental findings
show similar results, and the difference between the real
value and theoretical value is small. In other words, the
negative impact of the item deletion operation on a DBF
can be controlled at an accepted level.

3.4.2 Experimental Analysis
In this section, we will first describe the implementation
of k random and independent hash functions. Then, we
will compare the analytical model to the experimental re-
sults for the number of items which have multiple Bloom
filter addresses. One critical factor in our experiments is
creating a group of k hash functions. In our experiments,
they will be generated as

hi(x) =
(
g1(x) + i× g2(x)

)
mod m. (11)

g1(x) and g2(x) are two independent and random
integers in the universe with range {1, 2, . . . , m}. i ranges
from 0 to k − 1. We use the SDBM MersenneTwister
method to generate the two random integers for any item
x. Let the output of the SDBM Hash function as the
seed of the random number generator (RNG) Mersen-
neTwister. Then, the MersenneTwister will produce the
two desired random integers. The SDBM hash function
seems to have a good over-all distribution for many
different sets. It also works well in situations where there
are high variations in the MSBs of the items in a set. The
MersenneTwister is capable of quickly producing very
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Fig. 5. False positive probability of dynamic Bloom filters
and the percentage of data which has multiple Bloom filter
addresses, where m = 1280, k = 7, and c = 133.

TABLE 1
Experimental upper bound and real value of r with

c = 133

n/c 2 3 4 5 6 7 8 9 10
Upperbound 4 7 11 22 37 53 74 98 123

Real value 3 4 4 6 9 13 20 30 36

high-quality pseudo-random numbers. This mechanism
requires one hash function and one random number
generator to run k−1 rounds of (11) in order to generate
a Bloom filter address Bfadddress(x) for item x. It
provides a considerable amount of processing reduction
compared to using k actual hashes. Kirsch et al. shows
that this method does not increase the probability of false
positives [29].

The multiple address problem causes some items to
remain in a DBF even after they have been deleted from
set X . The ratio of the number of such items to the
cardinality of set X is denoted as r. Recall that f2(n) is
an estimated upper bound on r based on mathematical
analysis. The experimental upper bound on r and real
value of r are the average values achieved from 100
rounds of simulations with different sets in each round.

Note that dynamic Bloom filters are designed to rep-
resent many possible sets, and there are no benchmark
sets in the field of Bloom filters. Our experiments do
not seek particular sets but simply use names of files at
some peers in a peer-to-peer trace as the data source.
The P2P trace is a snapshot of files that were shared by
eDonkey peers between Dec 9, 2003 and Feb 2, 2004, and
record 11014603 distinct files. We initialize ten sets with
cardinality i × c for 1 ≤ i ≤ 10 using the trace data,
and then implement ten DBFs. In our experiment, the
parameters of each SBF are m = 1280, k = 7, and c = 133.
For each DBF, the number of items possessing multiple
Bloom filter addresses from the corresponding set is
determined, and then the experimental upper bound of
r is calculated. For each DBF, the item deletion algorithm
mentioned above is performed, and the ratio of the
number of remaining items to the original cardinality
of the corresponding set is the real value of r. Table 1
shows the experimental results under different dynamic
sets.
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Fig. 6. False positive probability of dynamic Bloom filters
are functions of the actual size n of a dynamic set and the
remaining data, where m = 1280, k = 7, and c = 133.

Figure 5 shows that the real value of r is less than the
experimental upper bound, the estimated upper bound
and the false positive probability of a DBF. All four
curves increase as the size of the dynamic set increases.
The curve for the real value r increases smoothly and
maintains a low level when the real size of the set is
less than ten times that of the estimated threshold. On
the other hand, the frequency of deleting all items from
a set and its corresponding DBF is often low, and the
period is usually long.

Let’s consider the dynamic sets with n/c = 10, 8, 5. We
first delete all items of those sets based on the item dele-
tion algorithm, and then continuously add new items
to the set. It is easy to understand that the remaining
items can increase the false match probability of the
DBF. Figure 6 shows that the more remaining items there
are, the greater the false positive probability will be. In
practice, the frequency of deleting all items from a set
and its corresponding DBF is very low; the false positive
probability of a DBF is often larger than the expected
value, but still maintains a lower, more stable level. On
the other hand, the real capacity of a DBF decreases
with the number of those remaining items. Applications
can use the change in the real capacity as a metric to
evaluate the influence of the item deletion operation and
to decide whether to represent the updated set again. In
the future, we will seek a better method to solve the
multiple address problem for an item.

3.5 Optimizations of Dynamic Bloom Filters
In this subsection, we consider cases in which applica-
tions do not require DBFs to provide the item deletion
operation. In those cases, DBFs use SBFs as a compo-
nent and may be optimized from the following aspects.
None of the optimization strategies proposed below are
suitable to other cases in which DBFs use CBFs as a
component.

3.5.1 Improvement of Item Insertion Operation
The item insertion algorithm proposed previously could
be optimized in two scenarios. First, sometimes it seems
to a new item of a normal set that it has been represented
by a DBF, even if it is not. In this case, the new item is still
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Fig. 7. The ratio of the number of items which have
at least one Bloom filter address before they are rep-
resented to the threshold c is a function of s and the
threshold f .

inserted into an active SBF of the DBF. This kind of item
may cause the DBF to allocate unnecessary SBFs. Second,
duplicate insertions of an identical item in a multi-set
do not necessarily harm an SBF, but they may cause a
DBF to extend unnecessarily [30]. Solving this issue re-
quires a membership query before each insert; however,
doing so increases the insertion complexity from k to
O(k×s). Considering the additional computational costs,
DBFs should only adopt the improved item insertion
algorithm if the previous Algorithm 1 causes at least one
unnecessary SBF.

As discussed in Section 3.4, n × f2(n) denotes an
estimation of the number of items which have multiple
Bloom filter address after all items are represented,
and are very similar to the experimental results. The
experimental results, as well as the estimation, are larger
than the number of items which already have at least one
Bloom filter address before they are represented in the
two scenarios. Thus, the improved algorithm should be
used only if

ratio =
n× f2(n)

c
≥ 1,

which implies that Algorithm 1 incurs at least one un-
necessary SBF. The ratio is a monotonically increasing
function of s and f which denotes an upper bound
on the false match probability of an SBF. As shown in
Figure 7, the value of ratio is always less than one if
f ≤ 0.01, s ≤ 10 or f ≤ 0.001, s ≤ 20; hence, it is
not necessary to use the improved algorithm. Under
other conditions, Algorithm 1 should be replaced by the
improved algorithm since the former causes at least one
unnecessary SBF.

The above discussions fail to consider the impact of a
multi-set. If the distribution of duplicate items in a multi-
set is known in advance, a multi-set could be treated as
a normal set where those duplicate items act as identical
items in a normal set, and could be analyzed in the same
way. Otherwise, we recommend adopting the improved
item insertion algorithm, which could be optimized by
a better method of storing dynamic Bloom filters, as
discussed below.

3.5.2 Compressed Dynamic Bloom Filters
In some distributed applications, an SBF at a node is
usually delivered to one or more nodes as a message.
In this case, besides the three metrics of SBFs we have
seen so far, (1) the computational overhead of an item
query operation, (2) the size of the filter in memory, and
(3) the false match rate, a fourth metric can be used: the
size of a message used to transmit an SBF across the net-
work. The compressed Bloom filters might significantly
save bandwidth at the cost of larger uncompressed
filters and some additional computation to compress and
decompress the filter sent across the network. In the
idealized setting, using compression always reduces the
false positive probability by adopting a larger Bloom
filter size and fewer hash functions than an SBF uses.
Interested readers may obtain details concerning all of
the theoretical and practical issues of compressed Bloom
filters in [18].

It is reasonable to compress a DBF by using com-
pressed Bloom filters instead of SBFs. The compressed
DBFs and MDDBFs could reduce both the transmission
size and false positive probability of the uncompressed
versions at the cost of larger memory and additional
computation overheads.

3.5.3 Approach for Storing Dynamic Bloom Filters
There are two ways of storing a dynamic Bloom filter
with a set number of s SBFs. These are referred to as
the bit string and bit slice methods, respectively [31].
The bit string approach stores the s SBFs dependently
and sequentially. Instead of storing a DBF as an s × m
long bit strings, the bit slice method stores a DBF as an
m × s long bit slices. We know that only a subset of
the bit positions in each SBF need to be examined on a
query. One problem with the bit string approach is that
all s × m bits need to be retrieved on a query. For the
bit slice approach, only a fraction of the bit slices need
to be retrieved on a query.

4 PERFORMANCE EVALUATIONS

We use α to denote an upper bound on the false match
probability of an SBF representing a static set with fixed
cardinality n. Given α and n, the parameters k and
m could be optimized for the SBF with m = dn ×
log(α)/ log(0.61285)e and k = d(m/n) ln 2e. Given α and
m, the capacity c can be optimized for the SBF with
c = dm× log(0.61285)/ log(α)e. It is clear that the amount
of memory allocated to an SBF increases linearly with
n. SBF and its variations are practical approaches to
represent static sets; however, most applications often
encounter dynamic sets without fixed cardinality besides
static sets. According to the structure of DBFs, we know
that DBFs can represent dynamic sets as well as static
sets. In this section, we will first evaluate the perfor-
mances of DBFs and SBFs in stand-alone applications
with three different sets, and then discuss the distributed
applications of DBFs.
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Fig. 8. The ratio of size of a Bloom filter to that of a DBF
is a function of a non-negative integer, which denotes the
ratio of n to c. The experimental condition is the same as
that in Figure 3.

4.1 Static Set with Fixed Cardinality

A dynamic set could be regarded as a series of static
sets over a sequence of discrete time. In this section,
we use SBF and DBF to represent a dynamic set, and
compare them from two aspects at any given discrete
time. The SBF is reconstructed according to its optimal
configuration, as determined by the set cardinality.

For a dynamic set X , let s be dn/ce where n and c
denote the cardinality of X and capacity of SBF used
by DBF, respectively. For a DBF representing the set,
formula of its false positive probability is simplified
as formula (12). For an SBF representing that set, it
calculates how many bits it must consume in order to
achieve the same false positive probability as the DBF.
Finally, we establish the relationship between formulas
(1) and (12), and achieve formula (13) to denote the ratio
of the number of bits m1 used by an SBF to the number
of bits s×m used by a DBF.

fDBF
m,k,c,n = 1− (1− (1− e−k×c/m)k)dn/ce (12)

m1

s×m
=

−k × c

m× ln(1− k
√

1− (1− y)s)
(13)

The following conclusions can be drawn from formula
(13) and Figure 8. To obtain the same false match prob-
ability, SBF and DBF use the same bits to represent X if
n ≤ c. However, the SBF consumes fewer bits than the
DBF if n > c. The difference of bits used by DBF and
SBF is small if s is not too large.

Let us compare the false positive probability of an
SBF and a DBF which use the same bits to represent
an identical dynamic set. That is, an SBF is allowed
to expand its size to s × m and to re-represent the
dynamic set as the set cardinality grows. In this case, the
standard Bloom filter is defined as NBF. The false match
probability of an SBF could be calculated according to
(1). The false match probability of a DBF should still be
(3). It is necessary to compare fDBF

m,k,c,n and fNBF
m,k,c,n under

this situation, and we have

fNBF
m,k,c,n = (1− e−k×n/(m×dn/ce))k (14)
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Fig. 9. False positive probability of dynamic and standard
Bloom filters are functions of the actual size of a dynamic
set. Standard Bloom filters can expand the filter size m to
dn/ce ×m. m = 1280, k = 7, and c = 133.

The experimental results are shown in Figure 9. We
conclude that fDBF

m,k,c,n = fNBF
m,k,c,n ≤ fBF

m,k,c for n ≤ c. For
n > c, fDBF

m,k,c,n grows as the set cardinality increases,
and fNBF

m,k,c,n fluctuates between i× c and (i + 1)c, where
i is any non-negative integer. Let nx < c be any non-
negative integer, thus fNBF

m,k,c,nx+(i−1)×c is not larger than
fNBF

m,k,c,nx+i×c. In fact, fNBF
m,k,c,n grows as the set cardinality

increases in the whole range, but the increase rate is
slower than that of fDBF

m,k,c,n.
In summary, to achieve the same false match probabil-

ity, an SBF never uses more bits than a DBF to represent
any static version of that dynamic set if the SBF is
actively reconstructed as the increase of set cardinality. It
is clear that the SBF produces large, even huge, overhead
due to frequent reconstructions. On the contrary, a DBF
is not required to be reconstructed if its false match
probability is controlled at an acceptable level with the
increase of set cardinality. Note that the false match
probability of a DBF might sometimes become too large
to be tolerated by many applications. It is necessary to
occasionally reconstruct the DBF. In the next subsection,
we will compare DBFs and SBFs in the whole lifetime of
a dynamic set instead of comparing them in a series of
discrete time.

4.2 Dynamic Set with an Upper Bound on Set Cardi-
nality
In this section, we use SBF as well as DBF to represent a
dynamic set X with an upper bound N on set cardinality.
Let α denote the upper bound on false match probability
of the SBF as well as DBF. In many applications, the
distribution of set cardinality covers a large range [32],
[33]. In such a distribution, the upper bound is some-
times several orders of magnitude larger than the mean
or minimum cardinality. Applications usually allocate
a large number of bits for an SBF at the outset with
m = dN × log(α)/log(0.61285)e. These bits are large
enough for the SBF to accommodate all possible items of
X , while decreasing the space-efficiency of the SBF. DBF,
however, allocates enough bits in an incremental and on-
demand fashion. A common objective of SBF and DBF
is to guarantee that the false match probability never
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α=0.0098.
exceeds the α and to make sure that they are not required
to be reconstructed as the set cardinality changes.

We now address the problem of designing a minimum
size DBF when the probability density function of the set
cardinality is known. We assume that s homogeneous
SBFs make up the DBF, and δ denotes the upper bound
on the false match probability of each SBF. The overall
false match probability α for the DBF has to be appor-
tioned among the individual SBFs. According to formula
(3), we know that α = 1 − (1 − δ)s. As a result, we can
derive the value of parameter δ with δ = 1− (1− α)1/s.

The capacity of the DBF is N since at most N items
of the set are accommodated by it. Since the N items
are allocated to a certain number of s SBFs evenly, the
capacity of the ith SBF is defined as ci = dN/se for 1 ≤
i ≤ s. In order to solve this problem, we must determine
the parameters m, k, δ and s such that the false match
probability DBF never exceeds the upper bound α.

Let pi represent the probability that X has i items
where 1 ≤ i ≤ N , i.e.,

∑N
i=1 pi = 1. We associate

the ith SBF of the DBF with a ri which implies an
upper bound on the probability that this SBF is used.
Let r1 = 1 and ri =

∑N
j=c×(i−1)+1 pj for i = 2, 3, ..., s,

where c denotes the capacity of any SBF. The expected
number of bits used by the DBF is upper bounded by∑s

i=1 m× ri. Recall that the bits used by each SBF is m =
d(N/s)× log(δ)/ log(0.6185))e. We formulate the problem
to minimize

∑s
i=1 ri × (N/s)× log(δ)/ log(0.6185).

Minimize
∑s

i=1
ri × (N/s)× log(δ)/ log(0.6185)

Subject to
δ = 1− (1− α)1/s

s > 0

The optimized value of parameter s could be derived
from the solution of this optimization problem. Once
we have s, it can be used to calculate the false match
probability δ and capacity c for these homogeneous SBFs,
and then determine the parameters m and k according
to the design method of an SBF. The set cardinality
distribution has a direct impact on the result of this opti-
mization problem. We compare the minimized memory

size of a DBF under five different cardinality distribu-
tions through experiments: normal distribution, uniform
distribution, random Zipf distribution, minimum Zipf
distribution, and maximum Zipf distribution.

The first two distributions have been widely used
for generating synthetic sets to emulate real sets [34].
In many networking applications, it is observed that
the set cardinality at each node conforms to a Zipf
distribution with a long tail. There is a bijective mapping
from the cardinality values to the rank values. The Zipf
distribution is called random if any rank value is mapped
to a random integer over a range {1, ..., N} uniformly.
It is called minimum if the largest and second largest
cardinality values are mapped to the last and second
last ranks respectively, and so on. It is called maximum
if the largest and second largest cardinality values are
mapped to the first and second ranks respectively, and
so on.

As shown in Figure 10, all five curves follow a similar
trend as s increases under the constraints that N=1330
and α=0.0098. The expected memory size of each curve
first decreases as s grows, and then increases after the
s exceeds one or more keen points on the whole. It is
clear that the expected memory size under the maximum
Zipf distribution is always larger than that under other
distributions of the same value of s. The reason is that
the ri under the maximum Zipf distribution is greater
than that under other distributions for 2 ≤ i ≤ s and any
given value of s. For each curve of DBF, the minimum
memory size is achieved when the value of s is equal
to a keen point on the curve, and is less than that of an
SBF under the same constraints.

We then evaluate the impact of set cardinality on the
minimum memory size of the SBF and the five different
DBFs where α=0.0098. Figure 11 shows that a DBF with
random Zipf distribution uses almost the same amount
of memory as a DBF with uniform distribution, while
DBFs with maximum and minimum Zipf distributions
consume the most and least memory among the five
DBFs, respectively. All DBFs, however, consistently out-
perform SBFs independent of set cardinality, and the
performance difference seems to widen as set cardinality
increases. In experiments, we also focus on the influence
of set cardinality on the ratio of memory size of DBF
to that of SBF. As shown in Figure 12, DBFs with
maximum Zipf distribution, random Zipf distribution,
normal distribution, and minimum Zipf distribution can
save about 5%, 19%, 20%, and 35% of the memory used
by SBF, respectively. The experimental results show that
the set cardinality has a trivial impact on the ratio of the
memory size of DBF to that of SBF, while the cardinality
distributions have a major impact on that metric.

Moreover, we evaluate the impact of false match prob-
ability on the minimum memory size of SBF and the five
different DBFs where N=13300. Figure 11 shows that
DBFs with maximum and minimum Zipf distributions
consume the most and least memory among the five
DBFs, respectively. The five DBFs, however, consistently
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outperform SBFs independent of false match probability.
In experiments, we also focus on the influence of the
false match probability on the memory size of DBF, and
the ratio of memory size of DBF to that of SBF. As shown
in Figure 13, for each DBF, the memory size decreases as
the false match probability increases. As shown in Figure
14, for each DBF, the ratio increases as the false match
probability increases; however, it will always be less than
1 when the false match probability is not larger than 5%.
Actually, the ratio for each DBF will reach, at most, 1
when the false match probability exceeds 5%. That is,
the five DBFs never consume more memory than SBF,
and save more memory as the false match probability
decreases.

Figure 15 shows the impact of the Zipf parameter on
memory size under different Zipf distributions2 where
N=1330 and α=0.0098. We observe that DBFs with a
minimum Zipf distribution perform better as the pa-
rameter value increases, and DBFs with a random Zipf
distribution outperform SBFs almost independent of the
Zipf parameter value. If the Zipf parameter is less than
0.6, DBFs with a maximum Zipf distribution also out-
perform SBFs, otherwise, they perform worse than SBFs.
Figure 16 shows the impact of standard deviation σ on
the memory size of DBFs with normal distribution. We
observe that DBFs with normal distribution use more
memory as the value of σ increases, however, they

2. A large Zipf parameter means that the frequencies of some
cardinality values are much higher than others. A small Zipf parameter
means that the frequency of each cardinality value occurs just as often
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always outperform SBFs.

4.3 Dynamic Set without an Upper Bound on Set
Cardinality

In this section, we consider another scenario in which ap-
plications do not know the upper bound N in advance.
Let β and γ denote the left and right upper bounds on
the false match probability with β < γ. In this scenario,
applications use a pair of β and γ instead of a tight upper
bound α. In reality, applications expect the false match
probability is less than β, and also tolerate an event that
the false match probability is sometimes greater than β
but less than γ. A common objective of DBF and SBF is to
guarantee that the false match probability never exceeds
γ as the set cardinality changes. In order to satisfy this
objective, the DBF and the SBF may be reconstructed as
the cardinality changes.

For a dynamic set, applications usually estimate a
threshold n0 of the set cardinality and use an initial
SBF to represent the dynamic set. In practice, it is very
difficult to estimate n0 in an accurate manner. One
possible approach is to trace the change of a dynamic
data set, and then to investigate the statistic metric of
set size before using DBF to represent that data set.
The parameters m and k for an SBF are initialized with
m=dn0 × log(β)/ log(0.61285)e and k=d(m/n0) ln 2e. As
shown in Figure 1, the false match probability exceeds β
dramatically when the set cardinality exceeds n0 grad-
ually. Moreover, the false match probability exceeds γ
once the set cardinality is greater than n0× log(β−γ). To
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size
handle this issue, n0 is assigned a new value which is at
least greater than n0× log(β−γ), and then the initial SBF
is reconstructed using new parameters to represent the
dynamic set again. There exist many policies to enlarge
the value of n0. This paper does not discuss this in detail
since different policies have less impact on the final
results. If the false match probability exceeds γ again,
the SBF is adjusted in the same way.

DBF first adopts an SBF to represent the dynamic set,
and may expand its capacity by allocating more SBFs as
the set cardinality increases. As shown in Figure 1, the
false match probability of DBF increases slower than SBF
when the set cardinality gradually exceeds c. The false
match probability exceeds γ once the set cardinality is
greater than n0 × dlog(1 − γ)/ log(1 − β)e. To deal with
this issue, c is reassigned a new value which is at least
greater than n0 × dlog(1 − γ)/ log(1 − β)e, and the DBF
is reconstructed to represent the dynamic set again. This
paper does not discuss policies to enlarge n0 in detail for
similar reasons. If the false match probability of a new
DBF exceeds γ again, the DBF must be adjusted in the
same way.

In reality, it is unavoidable to reconstruct DBFs and
SBFs under specific conditions if the upper bound on
set cardinality is not known a priori. Fortunately, the
adjustment frequency of DBF is lower than that of SBF,
especially when the difference between β and γ is large;
that is, DBF causes less overhead and is more stable than
SBF due to infrequent reconstructions as the increase of
set cardinality. Note that if the difference between β and
γ is very low, the benefit of our approach using left
and right bounds on the false match probability becomes
trivial. To address this rare case, we use the approaches
proposed in Section 4.2 after estimating the cardinality
distribution and initializing N=n0 and α=γ.

4.4 Distributed Application Scenarios

In the above discussions, we considered SBF and DBF as
objects residing in memory in stand-alone applications.
In distributed applications, however, they are not just
objects that reside in memory, but objects that must
be transferred between nodes. In this case, all nodes
are required to adopt the same configuration of m, k,
and hash functions in order to guarantee compatibility
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memory size

and interoperability of SBF or DBF between any pair of
nodes.

We first consider the case in which the upper bounds
N and α on the set size and false match probability
over nodes, depending on the applications, are known a
priori. Nodes can construct a local but homogeneous SBF
with m=dN × log(α)/ log(0.61285)e and k=d(m/N) ln 2e
even if those sets are different in size. This approach
requires the nodes with small sets to sacrifice more space
to be in accordance with those nodes with the large
sets, hence hurting the space-efficiency and causing large
transmission overhead. As discussed in Section 4.2, DBF
can address this drawback of SBF if the distribution of
set sizes over nodes is known by the relevant applica-
tion. The reason is that each node allocates just enough
memory to a DBF according to its set size, and can satisfy
the requirement of compatibility and inter-operability of
DBF with other nodes. Although the approaches pro-
posed in Section 4.2 focus on stand-alone applications,
they are also suitable to distributed applications. The
only difference is that the expected number of bits used
by a DBF is minimized in stand-alone applications, while
the total number of bits used by DBFs at all nodes is min-
imized in distributed applications. For more information,
we refer the reader to Section 4.2.

We then consider the case in which the upper bound
on set sizes over nodes is not known in advance. In
this scenario, as discussed in Section 4.3, applications
impose β and γ (β < γ) as a pair of upper bounds
on the false match probability over nodes, and estimate
a threshold n0 on the upper bound on set sizes over
nodes. If applications use SBFs to represent sets over
nodes, an event where the size of the set at any node
exceeds n0 × log(β − γ), will trigger a reconfiguration
of its SBF, thereby propagating a new configuration to
other nodes, and reconstructing an SBF at each node.
It is clear that frequent reconfigurations lead to huge
overhead and destroy the stability of applications. One
possible solution to this problem is to overestimate n0

and allocate a larger SBF at each node. This solution,
however, hurts the space-efficiency of SBF and causes
large transmission overhead. If applications use DBFs
instead of SBFs, all nodes reconfigure their DBFs only if
the set size at any node exceeds n0×dlog(1−γ)/ log(1−
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β)e. Note that the node just expands its DBF without
performing the consistency operation over all nodes if
its set size is greater than n0 × log(β − γ) but less than
n0×dlog(1−γ)/ log(1−β)e. It is clear that the adjustment
frequency of DBF is lower than that of SBF especially
when the difference between β and γ is large. DBFs are
more stable than SBFs with the increase of set cardinality
in this case. For more information, we refer the reader
to Section 4.3.

After discussing the use of approaches of DBF, we
consider a necessary procedure to update a DBF in
distributed applications. For each DBF, we adopt an in-
cremental update procedure by only sending those SBFs
which are changed. For each varied SBF, the procedure
to send updates first inspects if an old version of the SBF
exists in the previous DBF. If not, this must be an added
SBF and the update is simply the SBF itself. Otherwise,
an update is sent by computing the xor of the current
version with the previous version. All updates can be
compressed using arithmetic coding before being sent
reliably. At the other end, the procedure to receive each
updated SBF first inspects if a previous SBF exists. If not,
this must be an added new SBF and the update is simply
stored in the corresponding DBF. Otherwise, the updated
SBF is treated as an incremental one and its previous SBF
is modified suitably by computing its bitwise xor with
the new update.

5 CONCLUSION

A Bloom filter is an excellent data structure for succinctly
representing static sets with fixed cardinality in order to
support membership queries. However, it does not take
dynamic sets into account. In reality, most applications
often encounter dynamic data sets as well as static sets.
We present dynamic Bloom filters to deal with dynamic
sets as well as static sets. Dynamic Bloom filters not
only inherit the advantage of Bloom filters, but also
have better features than Bloom filters when dealing
with dynamic sets. The false match probability of Bloom
filters increases exponentially with the increase of the
cardinality of a dynamic set, while that of dynamic
Bloom filters increases slowly because it expands ca-
pacity in an incremental manner according to the set
cardinality.

Through comprehensive mathematical analysis, we
show that dynamic Bloom filters use less expected mem-
ory than Bloom filters when dealing with dynamic sets
with upper bounds on set cardinality, and that dynamic
Bloom filters are more stable than Bloom filters due to
infrequent reconstruction when addressing dynamic sets
without upper bounds on set cardinality. Moreover, the
analytical results hold in stand-alone applications as well
as distributed applications. The only disadvantage is that
dynamic Bloom filters do not outperform Bloom filters
in terms of false match probability when dealing with a
static set with the same size memory.
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