
1

veffChain: Enabling Freshness Authentication of
Rich Queries over Blockchain Databases

Qin Liu, Member, IEEE, Yu Peng, Graduate Student Member, IEEE,
Ziyi Tang, Graduate Student Member, IEEE, Hongbo Jiang, Senior Member, IEEE, Jie Wu, Fellow, IEEE,

Tian Wang, Member, IEEE, Tao Peng, Member, IEEE, and Guojun Wang, Member, IEEE

Abstract—With the wide adoption of blockchains in data-intensive applications, enabling verifiable queries over a blockchain database
is urgently required. Aiming at reducing costs, previous solutions embed a small-sized authenticated data structure (ADS) in each block
header, so that a user can verify search results without maintaining a full copy of blockchain databases. However, existing studies focus
on exact queries with difficulty to guarantee the freshness of search results. In this paper, we propose two frameworks, called veffChain
and veffChain++, to realize freshness authentication of rich queries over blockchain databases. Specifically, veffChain concerns about
verifiable latest-K exact queries and employs RSA accumulator to generate constant-size ADSs; veffChain++ integrates RSA
accumulator into the Trie tree to further authenticate latest-K fuzzy queries. For improved scalability, an adaptive keyword splitting
(AKS) solution is proposed to enable ADSs to be incrementally updated. Compared with the state-of-the-art work, our frameworks have
the following merits: (1) Freshness Guarantee. The user can efficiently retrieve the freshest data from a blockchain database in a
verifiable way. (2) Flexibility. The user can specify different query patterns on demand to retrieve data as accurately as possible. The
detailed security analysis and extensive experiments validate the practicality of our frameworks.

Index Terms—Blockchain, latest-k queries, fuzzy matches, verifiability

F

1 INTRODUCTION

D RIVEN by the great success of cryptocurrency systems,
blockchain technology has attracted tremendous atten-

tion from all circles of society [1]. A blockchain is a public
ledger where all the data is stored in a chain of blocks
collectively maintained by a network of mutually untrusted
nodes [2]. Because of the benefits of persistency and tam-
per resistance, blockchains have been widely applied to
preserve valuable data in decentralized applications, such
as healthcare and credit record management. The ever-
increasing data volume creates a huge demand for users to
retrieve data of interest by querying blockchain databases.
In this trend, how to ensure the authenticity of search results
offered by untrusted nodes has become a key problem.

A typical blockchain network consists of two types of
nodes: light nodes and full nodes. A light node maintains
only block headers that include consensus proofs and data
digests, while a full node maintains a full copy of the
blockchain database, including both block headers and com-
plete data. A naive solution is letting a user join as a full
node querying the blockchain database locally. The main in-
sufficiency of this approach is the huge resources consumed
on the user side (e.g., a full node in the Bitcoin network
needs to have at least 500GB free disk). To address this,

Qin Liu, Yu Peng, Ziyi Tang, and Hongbo Jiang are with the College of
Computer Science and Electronic Engineering, Hunan University, Chang-
sha, Hunan Province, P.R. China, 410082. E-mail: {gracelq628, pengyu411,
ziyitang}@hnu.edu.cn; hongbojiang2004@gmail.com
Jie Wu is with the Department of Computer and Information Sciences, Temple
University, Philadelphia, PA 19122, USA. E-mail: jiewu@temple.edu
Tian Wang is with the Institute of Artificial Intelligence and Future Networks,
Beijing Normal University & UIC, Zhuhai, Guangdong Province, P. R. China,
519000. E-mail: cs tianwang@163.com
Tao Peng and Guojun Wang are with the School of Computer Science and Cy-
ber Engineering, Guangzhou University, Guangzhou, Guangdong Province,
P.R. China, 510006. E-mail: {pengtao, csgjwang}@gzhu.edu.cn

previous solutions [3] put forward to embed a small-sized
authenticated data structure (ADS) in each block header, so
that the user can join as a light node querying full nodes and
verifying search results in a light-weighted way. Despite the
reduced costs, existing studies mainly focus on exact queries
with difficulty to guarantee the freshness of search results.

In many cases, the user wants to retrieve data as ac-
curately as possible when he has only limited knowledge
about the underlying data he is searching for. For example,
bank staff can enter “Fin?n?e” to retrieve the credit records
containing the keyword “Finance”, and a doctor can enter
“Arter ∗ ” to retrieve the medical records containing the
keyword “Arteriosclerosis”, when they are unsure about
the exact spellings of search terms. Beyond that, result fresh-
ness is essential for time-sensitive applications. For example,
a bank is more interested in a client’s latest credit records
to assess the loan risk; A doctor requires a patient’s latest
medical examination reports to produce a diagnosis. There-
fore, the features of supporting fuzzy matches and freshness
authentication are especially important for improving user
experience while querying a verifiable blockchain database.

In this paper, we propose two verifiable frameworks
with freshness and flexibility assurance, named veffChain
and veffChain++, to realize freshness authentication of rich
queries over blockchain databases. Specifically, veffChain
concerns about verifiable latest-K exact queries, where data
is sorted by the ascending order of their timestamps and
RSA accumulator [4] is employed to generate a constant-
size ADS summarizing the ordering information; while
veffChain++ designs a VTrie tree by integrating RSA ac-
cumulator into the traditional Trie tree [5] to further au-
thenticate latest-K fuzzy queries. For improved scalability,
an adaptive keyword splitting (AKS) solution is proposed

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

2

to enable the ADS embedded in a new block header to
be incrementally updated from that in the previous block
header. Detailed discussions are also provided to improve
query performance and support Boolean range queries. The
main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first attempt
to devise built-in ADSs to realize verifiable latest-K
exact and fuzzy queries in blockchain databases.

• We propose two blockchain frameworks to enable
freshness authentication of rich queries and propose
an AKS solution for improved scalability. Compared
with the state-of-the-art work, our frameworks have
the following merits: (1) Freshness Guarantee. The
user can efficiently retrieve the freshest data from a
blockchain database in a verifiable way; (2) Flexibility.
The user can specify different query patterns on
demand to retrieve data as accurately as possible.

• We conduct formal security analyses and an empiri-
cal study to validate the proposed frameworks.

Paper Organization. We introduce the related work in
Section 2, before formulating the problem in Section 3. We
construct the proposed solutions in Sections 4 and 5 before
describing the AKS solution in Section 6 and analyzing the
performance and security in Section 7. After discussing the
extensions in Section 8, we evaluate the proposed solutions
in Section 9. Finally, we conclude this paper in Section 10.

2 RELATED WORK

2.1 Blockchain Structure
A blockchain consists of a series of blocks, and each block
keeps a pointer to the previous block hence forming a
chain [1]. Each block consists of two parts: header and body.
The block body contains a collection of transactions and a
Merkle hash tree (MHT) built based on these transactions.
The block header mainly includes four parts: (1) PreHash,
the hash value of the previous block. (2) TimeStamp (TS), the
time of block generation. (3) ConsProof, the consensus proof
data. (4) MerkleRoot, the root hash of MHT. Although the
blockchain is maintained by untrusted peers, the ConsProof
guarantees that all peers hold identical data replicas, while
the MerkleRoot ensures data authenticity. To authenticate a
transaction, a user reconstructs the MHT by using a verifi-
cation object (VO) returned by a full node, and compares its
root hash with the MerkleRoot in the block header [3].

2.2 Verifiable Query Technologies in Blockchain
To ensure the authenticity of results returned by untrusted
full nodes, existing studies usually construct an ADS based
on verifiable query techniques, such as accumulator and
MHT [4, 6, 7]. Dai et al. [8] integrated Bloom Filter (BF)
into MHT to realize verifiable historical transactions in
Bitcoin systems. To enrich query expressions, Xu et al.
[3] proposed the vChain framework, which implemented
verifiable boolean range queries and subscription queries
based on the accumulator technology. However, vChain
suffered from the limitations of linear-scan search perfor-
mance in the worst case and a large size of public keys.
To overcome these problems, Wang et al. [9] proposed
vChain+ by designing a sliding window-based accumulator
index and an object registration index. In addition, Peng

et al. [10] presented a collaborative blockchain database
by utilizing accumulator-based ADSs to provide verifiable
keyword and range queries. Another line of work focused
on providing verifiable query services in hybrid storage
systems combining on-chain and off-chain storages. Zhu et
al. [11] designed a blockchain database to provide SQL-like
verifiable queries based on Merkle B-tree. To realize multiple
complex analytical query primitives, Pei et al. [12] proposed
a verifiable query scheme over hybrid storage blockchains
by using Merkle semantic Trie-based indexing technique.
Wu et al. [13] designed a verifiable query layer deployed
in the cloud and utilized Merkle Patricia Tree to provide
verifiable query services for blockchain systems. To reduce
the GAS cost of smart contracts, Zhang et al. [14] replaced
the expensive write operations with light-weighted opera-
tions (e.g., read and compute). Their subsequent work [15]
proposed a new index structure based on chameleon vector
commitment to realize constant GAS costs. In summary,
abundant researches have been proposed aiming at improv-
ing search efficiency and query expressions in verifiable
blockchain systems. However, most of them support only
exact queries without considering freshness guarantee.

2.3 Verifiable Fuzzy Queries and Freshness Queries

To improve user experience, Li et al. [16] used locality-
sensitive hashing (LSH), BF, and homomorphic message au-
thentication code (MAC) to achieve verifiable ranked fuzzy
queries. For improved efficiency, Tong et al. [17] constructed
an index tree based on the graph-based keyword partition
algorithm to achieve adaptive sublinear retrieval. However,
the above verifiable fuzzy query schemes are hard to reach
completely accurate search due to the inherent false positive
and false negative of BF and LSH, respectively. To solve
this problem, Shao et al. [18] proposed a wildcard-based
verifiable fuzzy query scheme, which integrated keyed-hash
MAC into a Trie tree to ensure accuracy. However, this
method required all the users to share the key of MACs
for verification. That is, the security would be compromised
if the key was exposed to untrusted servers [19].

As for verifiable freshness queries, Jin et al. [20] ex-
ploited broadcast encryption, key regression, and MHT
to achieve instant freshness check for cloud storges. Zhu
et al. [21] guaranteed the freshness of cloud data by de-
veloping a timestamp-chain. Hu et al. [22] designed a
linked key span MHT to provide real-time freshness guar-
antee for outsourced key-value stores. In summary, existing
fuzzy/freshness query schemes were devised in the context
of data outsourcing without considering the unique features
of blockchain, e.g., the append-only mode and the consis-
tency of data replicas. Besides, the Trie tree supports fast
and accurate matches of wildcards (e.g., ′?′ and ′∗′), and
thus could be regarded as the building block of veffChain++.

3 PROBLEM FORMULATION

3.1 The System and Threat Model

As shown in Fig. 1, our system model consists of full nodes
maintaining the entire blockchain database, and light nodes
retaining only the block headers. According to different
roles in the verifiable query process, the nodes can be
divided into miners, users, and service providers (SPs).

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

3

UserSR & VO

Miner

Block headers

Query
Block headers & bodys

o
n-1

…

…

PreHash ConsProofTS MerkleRoot

o
n-1

…

…

PreHash ConsProofTS MerkleRoot ADS

o
n

SP

Fig. 1: System and threat model.

• Miner. The miner as a full node is responsible for
constructing consensus proofs and appending new blocks
to the blockchain. To enable verifiable searches, the miner
constructs an ADS and embeds it into each regular header.
The data in the blockchain database is modeled as a collec-
tion of objects. Each object ox is represented as (x, tx,Wx),
where x is the object identifier, tx is the timestamp when the
object is generated, and Wx is a set of relevant keywords.
• User. The user as a light node wishes to retrieve the

latest objects of interest, and is allowed to verify search
results by using the ADS in a block header and the VO
returned by the SP. For improved query experience, this
work is committed to supportting two kinds of queries:

• Latest-K exact query. Q = (T ,K), where T is an ex-
act search term excluding any wildcards. It retrieves
the latest K objects containing keyword w s.t. w = T .

• Latest-K fuzzy query. Q̃ = (T̃ ,K), where T̃ as a
fuzzy search term contains wildcards. It retrieves the
latest K objects for all keywords similar to T̃ .

• SP. The SP as a full node offers verifiable query services
to the user. On receiving a query request, the SP searches
the blockchain database and constructs a VO that will be
returned together with the search results SR. Specifically,
for a latest-K exact query Q = (T ,K), the SP locates the
keyword equal to the exact search term T and puts the K
objects with the latest timestamps into SR. For a latest-K
fuzzy query Q̃ = (T̃ ,K), the SP first finds all the keywords
similar to the fuzzy term T̃ , and for each similar keyword,
it puts the K objects with the latest timestamps into SR.

In our threat model, the SP is assumed to be a potential
adversary and may return incorrect search results uninten-
tionally or intentionally. Specifically, the user authenticates
the search results SR from the following aspects:

• Integrity. All the objects in SR satisfy the query
criteria, and haven’t been tampered with.

• Freshness. No object outside SR satisfies the query
criteria and has later timestamp than an object in SR.

• Completeness. No keyword similar to the fuzzy
search term is overlooked in the search process.

Note that, for latest-K exact queries, the user only needs
to verify result integrity and freshness, but for latest-K
fuzzy queries, the user needs to verify all these properties.

3.2 Notations
Let λ ∈ N be a security parameter. Notation [x, y] represents
the set of integers {x, . . . , y}, which can be abbreviated
as [y] when x = 1. For a finite set X = {x1, . . . , xn},
notation |X| denotes its cardinality. The set of binary strings
of length x is denoted by {0, 1}x and the set of finite binary
strings is denoted by {0, 1}∗. Given a string S , |S| refers
to the number of characters in S , and S[x, y] denotes the
substring starting from the x-th character and ending at the

TABLE 1: Summary of Notations

Notations Descriptions

B[i] A sequence of blocks (B1, . . . ,Bi) for i ∈ [t]

(wj , lnj) The keyword/latest-number pair of keyword wj

(wj , hnj) The keyword/history-number pair of keyword wj

(wj , unj) The keyword/update-number pair of keyword wj

(wj , idk, k) The k-th keyword/object/serial tuple of keyword wj

Wi,W[i] The set of keywords in block Bi and blocks B[i]

LN[i] The latest number set constructed from blocks B[i]

SO[i] The sorted object set constructed from blocks B[i]

SO[i].j The sorted object subset associated with keyword wj

HNi,HN[i] The history number sets for block Bi and blocks B[i]

UNi,UN[i] The update number sets for block Bi and blocks B[i]

acc(X) The accumulative value of set X

y-th character of string S , which can be abbreviated as S[y]
when x = 1. Notation ∥ denotes string concatenation.

The blockchain consists of a serial of blocks (B1, . . . ,Bt).
We use B[i] to denote a sequence of blocks (B1, . . . ,Bi) for
i ∈ [t]. The set of keywords updated in block Bi and blocks
B[i] are denoted by Wi and W[i] = ∪ik=1Wk, respectively. Ea-
ch keyword wj is associated with a keyword/latest-number
pair (wj , lnj), a keyword/history-number pair (wj , hnj), a
keyword/update-number pair (wj , unj), and a set of key-
word/object/sequence-number tuples {(wj , idk, k)}

lnj

k=1. A
latest number set and a sorted object set constructed from
blocks B[i] are denoted by LN[i] = {(wj , lnj)}wj∈W[i]

and
SO[i] =

∪
wj∈W[i]

SO[i].j, respectively, where SO[i].j =

{(wj , idk, k)}
lnj

k=1 is the sorted object subset of keyword wj .
A history number set and an update number set constructed
from block Bi are denoted by HNi = {(wj , hnj)}wj∈Wi

and UNi = {(wj , unj)}wj∈Wi , respectively, with HN[i] =∪i
k=1 HNk and UN[i] =

∪i
k=1 UNi denoting the correspond-

ing union sets constructed from blocks B[i]. For quick refer-
ence, the most relevant notations are shown in Table 1.

3.3 Cryptographic Preliminaries

RSA Accumulator [4]. It provides a constant-size digest for
an arbitrarily large set and a constant-size witness to verify
the (non-)membership of any elements in this set. Let N =
p · q, where p, q are two large primes such that |p · q| >
3λ, let g be the generator of a cyclic group QRN, and let
H : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function.
RSA accumulator takes the public key pk = {N, (g,QRN)}
as the implicit input of all the following algorithms:
• GenAcc(X) → acc(X) : Given a set of elements X =

{x1, . . . , xn} with xi ∈ {0, 1}∗, this algorithm generates the
accumulative value acc(X)← g

∏n
i=1 P(H(xi)) mod N 1.

• GenWit(Y,X) → π : It generates the witness π for
Y ⊆ X as acc(X − Y)← g

∏
xi∈(X−Y) P(H(xi)) mod N.

• VeriWit(Y, π,acc(X))→ {0, 1} : This algorithm checks
the witness regarding Y ⊆ X , and outputs 1 only when
π
∏

xi∈Y P(H(xi)) mod N = acc(X).
The security of RSA accumulator is based on strong RSA

assumption. That is, given the public key and set X , the
difficulty of finding x′ ̸∈ X and π′ s.t. π′P(H(x′)) mod N =
acc(X) equals that of solving the strong RSA problem.

Trie Tree [5]. It is an ordered multi-way tree data struc-
ture, where each node contains a character and denotes a
string of characters in the path from the root to itself. The

1. P(xi) ∈ {0, 1}3λ denotes the prime number corresponding to ele-
ment xi. It can be implemented by a two-universal hash function [23].

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

4

time complexity for searching a string S from a Trie tree is
O(|S|). When a Trie tree is used to store keywords, the route
from the root to every leaf node results in the generation of
a specific keyword. By traversing the Trie tree, it is possible
to quickly locate the keyword equal to an exact search
term and all the keywords similar to a fuzzy search term.
In this paper, we assume that each keyword/search term
is appended with a beginning symbol ′$′ and an ending
symbol ′#′. Appendix A illustrates an example of Trie tree.

4 THE VEFFCHAIN FRAMEWORK

4.1 The Strawman Solution

As a starting point, we describe a strawman solution that
realizes verifiable latest-K exact queries over blockchain.
For ease of understanding, we introduce the following defi-
nitions related to a sequence of blocks B[i] where i ∈ [t]:
Definition 1 (Latest Number Set). Each keyword wj ∈ W[i]

is associated with a keyword/latest-number pair (wj , lnj), which
means that the latest number of objects containing keyword wj is
lnj when block Bi is generated. The latest number set constructed
from blocks B[i] is defined as LN[i] = {(wj , lnj)}wj∈W[i]

.

Definition 2 (Sorted Object Set). Each keyword wj ∈ W[i] is
associated with a set of keyword/object/sequence-number tuples
SO[i].j = {(wj , idk, k)}

lnj

k=1, where (wj , idk, k) means that
the object with identifier idk is the k-th latest object containing
keyword wj when block Bi is generated. The sorted object set con-
structed from blocks B[i] is defined as SO[i] =

∪
wj∈W[i]

SO[i].j.
When a new block Bt is appended, the full node sorts

the relevant objects by the ascending order of their times-
tamps for each keyword wj ∈ W[t], so that the fresher
object will be assigned with a higher sequence number,
and the highest sequence number equals lnj , the latest
number of objects containing keyword wj . Therefore, the
latest-K objects containing keyword wj can be denoted by
{(wj , idk, k)}

lnj

k=lnj−K+1. To speed up the construction of
sorted object sets, the inverted index [24] that records the
identifiers and locations of relevant objects for each key-
word is adopted. With the inverted index, the complexity of
searching keyword wj is O(lnj) which is not only sublinear,
but also optimal. Compared to the block size, the inverted
index consumes a relatively smaller space, and thus can be
locally kept by full nodes to quickly locate all the relevant
objects instead of traversing the whole blockchain.

The details of the strawman construction are shown
in Alg. 1. To stress the main points, the verification of
object authenticity is omitted, since it can be easily verified
through MerkleRoot in the block header. Our main idea
is to let the ADS newly generated summarize the sorted
objects and the latest object numbers for all the keywords.
Specifically, Bt.ADS consists of two accumulative values:
ΦI = acc(SO[t]) and ΦF = acc(LN[t]). Given the query
Q = (T = ws,K), the SP searches the inverted index to
locate all the objects containing keyword ws, and puts the
latest K objects into the search results SR. To construct the
VO, the SP puts the keyword/latest-number pair (ws, lns)
and the latest K keyword/object/sequence-number tuples
{(ws, idk, k)}lns

k=lns−K+1 into set SRF and set SRI , respec-
tively, while generating the corresponding witnesses as
πF = acc(LN[t] − SRF) and πI = acc(SO[t] − SRI).

Algorithm 1 Strawman Solution in veffChain
ADS Generation (by the miner)
Input: Blockchain B[t]

Output: The ADS of the new block Bt.ADS
1: Construct a latest number set LN[t] according to Def. 1
2: Construct a sorted object set SO[t] according to Def. 2
3: ΦI ← GenAcc(SO[t]); ΦF ← GenAcc(LN[t])
4: Bt.ADS ← (ΦI ,ΦF)

VO Construction (by the SP)
Input: Query Q = (T = ws,K), blockchain B[t]

Output: Search result Q.SR, the VO of query Q.VO
1: Construct a latest number set LN[t] according to Def. 1
2: Construct a sorted object set SO[t] according to Def. 2
3: SRF ← (ws, lns); πF ← GenWit(SRF , LN[t])
4: SRI ← {(ws, idk, k)}lns

k=lns−K+1; πI ← GenWit(SRI ,SO[t])
5: Q.SR ← Objects with identifiers in SRI

6: Q.VO ← (SRI , SRF , πI , πF)

Verification (by the user)
Input: The VO of query Q.VO, the latest ADS Bt.ADS
Output: Verification report Q.VR

1: Parse Bt.ADS as (ΦI ,ΦF); Q.VR ← 0
2: if VeriWit(SRI , πI ,ΦI) ∧ VeriWit(SRF , πF ,ΦF) then
3: Q.VR ← 1 ◃ 1 indicates verification passes

Once receiving Q.VO = (SRI ,SRF , πI , πF), the user
checks if the VO meets the following requirement or not: (1)
There are K tuples in set SRI and their sequence numbers
are consecutive. (2) The highest sequence number in set SRI

equals lns, the latest object number in set SRF . If so, the user
runs algorithm VeriWit to verify search results. Note that
VeriWit(SRI , πI ,Bt.ΦI) outputs 1 only when SRI ⊆ SO[t]

due to the security of RSA accumulator. This means that the
objects in set SRI indeed contain keyword ws, validating
result integrity. Similarly, VeriWit(SRF , πF ,Bt.ΦF) outputs
1 only when SRF ⊆ LN[t]. This means that set SRF contains
the latest object number of keyword ws and set SRI contains
the identifiers of latest-K objects, validating result freshness.

4.2 The Verifiable Solution for Latest-K Exact Queries

When a new block is appended into the system, the straw-
man solution calculates the accumulative values of all sets
from the beginning, resulting in performance degradation
over time. For improved scalability, we utilize the dynamic
property of RSA accumulator, enabling the accumulative
value of a large set to be rapidly calculated from that of
its subset with only the public key, i.e., when Y ⊂ X , we
have acc(X) = acc(Y)

∏
x∈X−Y P(H(x)) mod N. Given a

sequence of blocks B[i] for i ∈ [t], the basic solution works
under the following assumption and definitions:
Assumption 1. The timestamps of all objects in a new block are
larger than those of the objects in the previous block.
Definition 3 (Update Number Set). Each keyword wj ∈ Wi is
associated with a keyword/update-number pair (wj , unj), which
means that the number of objects containing keyword wj is
updated to unj when block Bi is generated. The update number
set constructed from block Bi and blocks B[i] are defined as
UNi = {(wj , unj)}wj∈Wi and UN[i] =

∪i
k=1 UNk, respectively.

Definition 4 (History Number Set). Each keyword wj ∈ Wi

is associated with a keyword/history-number pair (wj , hnj),
which means that the number of objects containing keyword wj

is hnj before the generation of block Bi. The history number

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

5

Algorithm 2 Basic Solution in veffChain
ADS Generation (by the miner)
Input: Blockchain B[t]

Output: The ADS of the new block Bt.ADS
1: (Φ′

I ,Φ
′
U ,Φ

′
H)← Bt−1.ADS

2: Construct sorted object sets SO[t] and SO[t−1] using Def. 2
3: Construct an update number set UNt according to Def. 3
4: Construct a history number set HNt according to Def. 4
5: ΦI ← (Φ′

I)
∏

x∈SO[t]−SO[t−1]
P(H(x))

6: ΦU ← (Φ′
U)

∏
x∈UNt

P(H(x)); ΦH ← (Φ′
H)

∏
x∈HNt

P(H(x))

7: Bt.ADS ← (ΦI ,ΦU ,ΦH)

VO Construction (by the SP)
Q.SR and Q.VO = {SRI ,SRF , πI , πF } are constructed in the
same way as the strawman solution, except that:

πF ←
∏

x∈(LN[t]−SRF) P(H(x))
Verification (by the user)
Input: The VO of query Q.VO, the latest ADS Bt.ADS
Output: Verification report Q.VR

1: Parse Bt.ADS as (ΦI ,ΦU ,ΦH); Q.VR ← 0

2: if VeriWit(SRI , πI ,ΦI) ∧ (ΦU = Φ
πF ·

∏
x∈SRF

P(H(x))

H) then
3: Q.VR ← 1 ◃1 indicates verification passes

set constructed from block Bi and blocks B[i] are defined as
HNi = {(wj , hnj)}wj∈Wi

and HN[i] =
∪i

k=1 HNk, respec-
tively. In the special case, we have HN1 = HN[1] = ∅.

A blockchain is an append-only data structure, and thus
we have SO[i−1] ⊂ SO[i] under Assumption 1, enabling
Bi.ΦI to be incrementally updated from Bi−1.ΦI . Owing
to LN[i−1] ̸⊂ LN[i], we additional define an update number
set UNi and a history number set HNi for each block Bi,
and replace Bi.ΦF with (Bi.ΦU ,Bi.ΦH), which are the accu-
mulative values of union sets UN[i] and HN[i], respectively.
Because of UN[i−1] ⊂ UN[i] and HN[i−1] ⊂ HN[i], both Bi.ΦU

and Bi.ΦH can be incrementally updated. Alg. 2 shows the
main differences from the strawman solution. In subsequent
contents, the mod N operation is omitted for simplicity.

ADS Generation. The ADS in block Bt is replaced by
(ΦI ,ΦU ,ΦH), all of which can be dynamically updated
from previous accumulative values (Φ′

I ,Φ
′
U ,Φ

′
H). If key-

word wj is updated in block Bi, its latest object number
will be put into set UNi, i.e., lnj = unj for wj ∈ Wi,
and its previous object number will be put into set HNi.
That is, for each keyword in W[i], ΦU summarizes the
full update history of object number, and ΦH summa-
rizes the full update history except for the last update
(i.e., excluding the latest object number). Hence, we have

UN[i] = HN[i]

∪
LN[i] and ΦU = Φ

∏
x∈LN[i]

P(H(x))

H . In the
special case of HN[1] = HN1 = ∅, we set B1.ΦH to g.

VO Construction. The VO construction algorithm is sim-
ilar to that of the strawman solution, except that the witness
πF is replaced by the exponential value of acc(LN[t]−SRF).
Besides, the SP locally keeps φj =

∏
x∈SO[t].j

P(H(x)),
the exponential value of acc(SO[t].j) for each keyword
wj ∈ W[t] to accelerate the calculation of witness πI . Given
{φj}wj∈W[t]

, the witness πI can be rapidly calculated as:

g
∏

wj∈W[t],j ̸=s φj ·
∏

x∈SO[t].s−SRI
P(H(x))

= g
∏

x∈SO[t]−SRI
P(H(x))

.

Under Assumption 1, φj can be incrementally updated as:
φj = φ′

j ·
∏

x∈SO[t].j−SO[t−1].j
P(H(x)).

where φ′
j =

∏
x∈SO[t−1].j

P(H(x)) is the previous value.

Body:

Block B2

Object Timestamp Keywords

O1 t1 {w1, w2}

O2 t2 {w1}

Block B1

Keyword Objects Number

w1 O1,O2 2

w2 O1 1

Regular header & ADS

Update

Body:
Object Timestamp Keywords

O3 t3 {w2}

O4 t4 {w1}

Regular header & ADS

Keyword Objects Number

w1 O1,O2,O4 3

w2 O1,O3 2

Fig. 2: Illustrative example for veffChain. The timestamp of
object oi is assumed to be smaller than that of object oi+1.

Verification. If the VO meets the requirements described
in the strawman solution, the user verifies result integrity as

before and tests if ΦU equals Φ
πF ·

∏
x∈SRF

P(H(x))

H or not for

freshness validation. Note that ΦU = Φ

∏
x∈LN[t]

P(H(x))

H and
πF =

∏
x∈LN[t]−SRF

P(H(x)). The equation is satisfied only
when SRF ⊆ LN[t]. This means that set SRF contains the
latest object number and set SRI contains the latest-K re-
sults regarding the search term, validating result freshness.

4.3 Illustrative Examples

Given a sequence of blocks B[2], the collection of data
objects packed in each block are shown in Fig. 2. Sup-
pose that the user issues an exact query Q = (w1, 2) to
retrieve the latest 2 objects containing keyword w1. When
block B1 is generated, we have LN[1] = {(w1, 2), (w2, 1)},
SO[1] = {(w1, o1, 1), (w1, o2, 2), (w2, o1, 1)}, UN1 = LN[1]

and HN1 = ∅; When block B2 is generated, we have LN[2] =
{(w1, 3), (w2, 2)}, SO[2] = SO[1] ∪ {(w1, o4, 3), (w2, o3, 2)},
UN2 = {(w1, 3), (w2, 2)} and HN2 = {(w1, 2), (w2, 1)}.
Therefore, we have UN[i] = HN[i] ∪ LN[i] for i ∈ [2].

Strawman Solution. For i ∈ [2], the miner sets the ADS
in the block header as Bi.ADS = (Bi.ΦI ,Bi.ΦF), where
Bi.ΦI = acc(SO[i]) and Bi.ΦF = acc(LN[i]). In VO con-
struction, the SP constructs SRI = {(w1, o2, 2), (w1, o4, 3)}
and SRF = {(w1, 3)}, and calculates πI = acc(SO[2]−SRI)
and πF = acc(LN[2] − SRF), so that the user verifies search
results by testing the following equations:

π
∏

x∈SRI
P(H(x))

I
?
= B2.ΦI , π

∏
x∈SRF

P(H(x))

F
?
= B2.ΦF .

The above equations are satisfied only when SRI ⊆ SO[2]

and SRF ⊆ LN[2]. This means that the latest object number
is 3 and the latest-2 objects are {o2, o4} for keyword w1.

Basic Solution. For i ∈ [2], the ADS in the block header
is in the form of Bi.ADS = (Bi.ΦI ,Bi.ΦU ,Bi.ΦH). In the
first place, the miner calculates B1.ΦI ← GenAcc(SO[1]),
B1.ΦU ← GenAcc(UN[1]), and B1.ΦH ← g. Next, the ADS
can be dynamically generated as follows:

B2.ΦI ← (B1.ΦI)
∏

x∈SO[2]−SO[1]
P(H(x))

= acc(SO[2]),

B2.ΦU ← (B1.ΦU)
∏

x∈UN2
P(H(x)) = acc(UN[2]),

B2.ΦH ← (B1.ΦH)
∏

x∈HN2
P(H(x)) = acc(HN[2]).

In VO construction, the SP constructs sets SRI and SRF ,
and witness πI as the strawman solution, but calculates wit-
ness πF as

∏
x∈LN[2]−SRF

P(H(x)). In verification, the users
verifies result integrity as before, and tests the following
equation for freshness authentication:

B2.ΦU
?
= (B2.ΦH)πF ·

∏
x∈SRF

P(H(x)).

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

6

The above equation is satisfied only when SRF ⊆ LN[2].
This would imply that, for keyword w1, the latest object
number is 3 and the latest-2 objects are {o2, o4}.

5 THE VEFFCHAIN++ FRAMEWORK

5.1 Search Terms, Distance, and Similarity

The veffChain framework allows a user to retrieve the fresh-
est objects in a verifiable way, but supports only latest-K ex-
act queries. To improve user query experience, veffChain++
classifies search terms into exact terms excluding any wild-
cards and fuzzy terms containing wildcards. An exact term
is a string of characters chosen from the English alphabet
A, and a fuzzy term contains two types of wildcards: ′?′

denoting an arbitrary character in A, and ′∗′ denoting zero,
one, or multiple arbitrary characters in A. For example, a
user can enter either “secur???” or “secur ∗ ” to retrieve
objects containing the keyword “security”.

Given a string S1 excluding any wildcards, and a string
S2 that may contain wildcards ′?′, their distance, denoted by
∆(S1,S2), is calculated according to Def. 5 (which also can
be used to quantify the distance between two exact strings).
As for the distance between string S1 and a string S3 that
contains a wildcard ′∗′, we first obtain a transformed string
S ′3 by replacing wildcard ′∗′ with max{0, |S1| − |S3| + 1}
wildcards ′?′, and then set ∆(S1,S3) to ∆(S1,S ′3).
Definition 5 (Distance). Let e1 be the number of operations
required to transform keyword S1 to S2, and let e2 be the number
of wildcard ’?’s in S2. We have ∆(S1,S2) = |e1 − e2|.

Based on the above definition, a keyword w is regarded
as similar to a fuzzy term T̃ , denoted by w ≈ T̃ , if
∆(w, T̃) = 0. For example, ∆(“salt”, “sa??”) = 0 and
∆(“salt”, “se??”) = 1. Therefore, we have “salt” ≈ “sa??”
and “salt” ̸≈ “‘se??”. As for fuzzy terms “sa*” and “se*”,
we first replace the wildcard ′∗′ with two wildcards ’?’
and obtain ∆(“salt”, “sa*”) = ∆(“salt”, “sa??”) = 0 and
∆(“salt”, “se*”) = ∆(“salt”, “se??”) = 1. Hence, we have
“salt” ≈ “sa ∗ ” and “salt” ̸≈ “‘se ∗ ”.

5.2 The VTrie Tree

Given a sequence of blocks B[i], we first build a Trie tree
for all keywords in W[i] as described in Section 3.3. A VTrie
tree VT is constructed from the bottom up by integrating
the verification information into Trie tree nodes. As shown
in Fig. 3, a leaf node Nu ∈ VT corresponding to a distinct
keyword wj ∈ W[i] is defined as follows:

Nu = (Cu,Su, au, nu), (1)
where Cu =′ #′ is the character in nodeNu that denotes the
end of traverse, Su is a string of characters in the path from
the root node to its parent node satisfying Su||Cu = wj ,
au = acc(SO[i].j) is the accumulative value of the sorted
object subset of keyword wj , and nu = lnj is the latest
object number of keyword wj . A non-leaf node Nv ∈ VT
with c children nodes Nv1 , . . . ,Nvc is defined as follows:

Nv = (Cv,Sv, hv), (2)
where Cv is the character contained in node Nv , Sv is a

string of characters in the path from the root to its parent
(if v is the root node, Cv =′ $′ denoting the start of traverse
and Sv = ⊥), and hv = H(H(Nv1)|| . . . ||H(Nvc)) denotes
the digest of children nodes’ hashes. For the uniqueness of

Algorithm 3 Match
Input: A Trie tree node Nx = (Cx,Sx, ∗), a search term ST
Output: Matching resultMR

1: MR← 0 ◃ 0 indicates mismatching
2: if ST does not contain wildcard ′∗′ and |ST | > |Sx| then
3: if Nx is a non-leaf node then
4: l← |Sx|+ 1;MR← 1−min{1,∆(Sx||Cx,ST [l])}
5: if Nx is a leaf node then
6: MR← 1−min{1,∆(Sx||Cx,ST)}
7: if ST contains wildcard ′∗′ at position L then
8: if Nx is a non-leaf node then
9: l← min{L, |Sx|+ 1}; ST ← ST [l]

10: k ← max{0, |Sx| − |ST |+ 2}
11: Replace wildcard ′∗′ in ST with k wildcards ′?′

12: MR← 1−min{1,∆(Sx||Cx,ST)}

VTrie tree structure, the children nodes are sorted by the
lexicographic order of the contained characters.

The search process is a recursive procedure upon the
VTrie tree. Given a search term, the SP performs a detection
starting from the root node: If a non-leaf node matches the
search term, the SP checks all its children nodes; otherwise,
the SP stops traversing the subtree rooted at this node.
When the traversal reaches a leaf node, the corresponding
keyword is considered equal/similar if this node matches
the search term. Alg. 3 shows the matching process between
a Vtrie tree node and a search term. As searching exact terms
is actually a special case of searching a fuzzy term, we focus
on verifiable latest-K fuzzy queries in following sections.

5.3 The Verifiable Solution for Latest-K Fuzzy Queries

Alg. 4 shows the details of the basic solution that works
under Assumption 1. Our main idea is constructing a VTrie
tree from the keywords updated so far and uses the root
hash as the ADS embedded in the new block header, so that
the user can further verify result completeness by validating
the VTrie tree reconstructed from the VO. Besides, the full
node may locally keep the inverted index as the veffChain
framework to speed up the construction of sorted object sets.

ADS Generation. As shown in Fig. 3, the ADS em-
bedded in a block header is composed of the root hash
H(VT .root) of a VTrie tree. Upon arrival of a new block Bt,
the miner updates the VTrie tree VT in the following way:
For each keyword wj ∈ Wt, it searches the VTrie tree to find
corresponding leaf node Nu, s.t. Su||Cu = wj , updates au to
acc(SO[t].j), and nu to the latest object number of keyword
wj , i.e, nu = |SO[t].j|. If there is no matched leaf node,
this means that keyword wj appears for the first time. The
miner constructs a new leaf node corresponding to keyword
wj with Eq. 1. and updates the VTrie tree to incorporate
this new node. After updating the leaf nodes, the miner
re-constructs all the relevant ancestor nodes until reaching
the root by using Eq. 2. Under Assumption 1, we have
SO[t−1].j ⊆ SO[t].j, and thus acc(SO[t].j) can be calculated

by acc(SO[t−1].j)
∏

x∈SO[t].j−SO[t−1].j
P(H(x))

, i.e., au can be
incrementally updated from its previous value.

VO Construction. Given a fuzzy query Q̃ = (T̃ ,K),
the SP traverses the VTrie tree VT from the top to bottom
by running Alg. 5, and outputs a set of matched nodes
MN and a set of unmatched nodes UN. Note that each
leaf node in set MN corresponds to a keyword similar

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

7

Algorithm 4 Basic Solution in veffChain++
ADS Generation (by the miner)
Input: Blockchain B[t], a VTrie tree VT ′

Output: The latest ADS Bt.ADS, an updated VTrie tree VT
1: for each keyword wj ∈ Wt do
2: Construct a sorted object subset SO[t].j using Def. 2
3: if ∃ a leaf node Nu ∈ VT ′ s.t. Su||Cu = wj then
4: Construct a sorted object subset SO[t−1].j using Def. 2

5: au ← (au)
∏

x∈SO[t].j−SO[t−1].j
P(H(x))

; nu ← |SO[t].j|
6: else
7: Construct a new leaf node Nu for keyword wj with

Eq. 1 and update tree VT ′ to incorporate node Nu

8: Update the ancestor nodes from the bottom up with Eq. 2
to form VT ; Bt.ADS ← H(VT .root)

VO Construction (by the SP)
Input: Query Q̃ = (T̃ ,K), blockchain B[t], a VTrie tree VT
Output: Search result Q̃.SR, the VO of query Q̃.VO

1: Run Search(VT .root, Q̃) to generate sets MN and UN
2: for each leaf node Nu ∈ MN do
3: Locate wj ∈ W[t] s.t. Su||Cu = wj

4: Construct a sorted object subset SO[t].j using Def. 2
5: SRj ← {(wj , idk, k)}

lnj

k=lnj−K+1; πj ← GenWit(SRj ,SO[t].j)

6: Put objects with identifiers in SRj into Q̃.SR
7: Q̃.VO ← {MN,UN, {(SRj , πj)}wj≈T̃ }

Verification (by the user)
Input: The VO of query Q̃.VO, the latest ADS Bt.ADS
Output: Verification report Q.VR

1: Q.VR ← 0 ◃ 0 indicates verification fails
2: Reconstruct the VTrie tree VT ′ from set MN∪UN with Eq. 2
3: if H(VT ′.root) = Bt.ADS then
4: for each leaf node Nu ∈ MN do
5: wj ← Su||Cu
6: Locate SRj s.t. the keyword in SRj equals wj

7: ln′
j ← the highest sequence number in SRj

8: if VeriWit(SRj , πj , au) = 0 ∨ ln′
j ̸= nu then

9: return Q.VR
10: Q.VR ← 1

to fuzzy search term T̃ , and the total number of similar
keywords is |MN|. For each similar keyword wj , the SP
puts the latest K keyword/object/sequence-number tuples
{(wj , idk, k)}

lnj

k=lnj−K+1 into set SRj and generates the wit-
ness as πj = acc(SO[t].j − SRj). The VO returned is in the
form of {MN,UN, {(SRj , πj)}wj≈T̃ }.

Verification. The user first examines if Q̃.VO meets the
following requirements or not: (1) For each similar keyword
wj , there are K tuples in set SRj and their sequence
numbers are consecutive; (2) For each similar keyword
wj , there exists a leaf node Nu ∈ MN s.t. Su||Cu = wj ;
(3) All nodes in set UN (resp. set MN) indeed mismatch
(resp. match) the fuzzy term. If so, the user reconstructs the
VTrie tree VT ′ with nodes in set MN ∪ UN, and tests if
H(VT ′.root) = Bt.ADS or not. If it is true, this means that
all nodes in set MN∪UN are authentic. That is, all the similar
keywords are found and result completeness is confirmed.
Next, for the similar keyword wj ∈ SRj that corresponds to
leaf node Nu = (Cu,Su, au, nu) in set MN, the user verifies
result integrity by running VeriWit(SRj , πj , au) and verifies
result freshness by testing if the highest sequence number
ln′

j in set SRj equals nu or not. It is worth noticing that
au = acc(SO[t].j) and nu = lnj , which can be authen-
ticated through the root hash. Therefore, algorithm VeriWit

Algorithm 5 Search

Input: A VTrie tree VT .root, a fuzzy query Q̃ = (T̃ ,K)
Output: Matched nodes MN, unmatched nodes UN

1: Q← empty queue; (MN,UN)← empty set
2: Push VT .root into queue Q
3: while Q is non-empty do
4: Nx ← the head of queue Q
5: if Nx is a non-leaf node then
6: if Match(Nx, T̃) then
7: Push all the children nodes of Nx into queue Q
8: else
9: Put Nx into UN

10: else
11: if Match(Nx, T̃) then
12: Put Nx into MN
13: else
14: Put Nx into UN

outputting 1 means that SRj ⊆ SO[t].j, and ln′
j = nu means

that ln′
j is the latest object number of keyword wj .

Illustrative Example. Given a serial of blocks B[2], the
set of objects packed in each block and the updated process
of the VTrie tree are as shown in Fig. 3. When block B1 is
generated, we have SO[1].1 = {(“big”, o1, 1), (“big”, o2, 2)}
and SO[1].2 = {(“bit”, o1, 1)}; When block B2 is gen-
erated, we have SO[2].1 = SO[1].1 ∪ {(“big”, o4, 3)},
SO[2].2 = SO[1].2 ∪ {(“bit”, o3, 2)}, and SO[2].3 =
{(“boy”, o3, 1), (“boy”, o4, 2)}. The ADS in each block
header is set as the root hash of the relevant VTrie tree.

Given a query Q = (“bi ∗ ”, 2), the search process upon
the VTrie tree is marked by the blue thick lines, while the
unmatched nodes MN and the matched nodes UN are filled
with green and red, respectively. In VO construction, the
SP constructs set SR1 = {(“big”, o2, 2), (“big”, o4, 3)} and
witness π1 = acc(SO[2].1− SR1) for similar keyword “big”
while generating set SR2 = {(“bit”, o1, 1), (“bit”, o3, 2)}
and witness π2 = acc(SO[2].2 − SR2) for similar keyword
“bit”. Given Q̃.VO = {MN,UN, {(SRj, πj)}2j=1}, the user
reconstructs the VTrie tree with the nodes in set MN ∪ UN.
If the root hash equals current ADS, result completeness is
verified. The user then verifies result integrity by testing if
VeriWit(SR1, π1, a8) and VeriWit(SR2, π2, a9) output 1, and
verifies result freshness by testing if the highest sequence
number in sets SR1 and SR2 equal n8 and n9, respectively.

6 AKS: ADAPTIVE KEYWORD SPLITTING

The basic solutions in veffChain and veffChain++ assume
that the timestamps of objects in block Bi are larger than
those of objects in block Bi−1. This assumption is reasonable
if the speed of block generation is fast enough that all
the new objects can be packed into a new block at once.
However, when the number of new objects exceeds block
capacity, the miner will randomly pack a subset of objects.
In this case, the packed objects may be fresher than the
unpacked ones, and the assumption is no longer valid. To
achieve improved scalability without any assumption, our
main idea is to adaptively split a keyword into multiple
branches so that Condition 1 is satisfied while constructing
sorted object sets from blocks B[i] for i ∈ [t] using Def. 6.
Condition 1. For each keyword branch, the timestamps of objects
in a new block are larger than those of objects in previous blocks.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

8

Body:

Block B2

Object Timestamp Keywords

O1 t1 {big, bit}

O2 t2 {big}

Block B1

Keyword Objects Number

1 big O1,O2 2

2 bit O1 1

Update

Body:
Object Timestamp Keywords

O3 t3 {boy, bit}

O4 t4 {boy, big}

Keyword Objects Number

1 big O1,O2,O4 3

2 bit O1,O3 2

3 boy O3,O4 2

1()H N

Regular header & ADS
$

b "$" h

i "$b" h

g "$bi" h t "$bi" h

$big a n # $bit a n

N1

N2

N4 N5

N6 N7

Regular header & ADS
1()H N

N3

N11

$ h

b "$" h

o "$b" h

$boy a n# $bit a n# $big a n

t "$bi" h y "$bo" h

i "$b" h

g "$bi" h

1

a SO .1

a SO .2

a SO .

n

n

n

N2

N3 N4

N5 N6 N7

N8 N9 N10

Object
a SO .1

a SO .2

Fig. 3: Illustrative example for veffChain++. The timestamp of object oi is assumed to be smaller than that of object oi+1.

Definition 6 (Sorted Object Set*). Let bj denote the branch
amount of keyword wj , let wj ||v denote the v-th branch of
keyword wj for v ∈ [bj], and let nj,v denote the number of objects
in keyword branch wj ||v. Each keyword wj ∈ W[i] is associ-
ated with a set of keyword-branch/object/sequence-number tuples
SO[i].j = {(wj ||v, idk, k)}v∈[bj],k∈[nj,v], where (wj ||v, idk, k)
means that the object with identifier idk is the k-th latest object
regarding keyword branch wj ||v. The sorted object set constructed
from blocks B[i] is denoted by SO[i] =

∪
wj∈[W[i]]

SO[i].j.

Specifically, the branch amount of each keyword is ini-
tialized to 1. When a new block is appended, the miner
assigns the newly packed objects to appropriate keyword
branches according to Condition 1. For a keyword updated
in the new block, if multiple branches meet the condition,
the branch with a smaller serial number is granted with
the higher priority; If there is no suitable branch, the miner
splits this keyword and assigns the relevant objects into
the new branch. Under Condition 1, the sorted object set
constructed according to Def. 6 guarantees that the object
newly join in a keyword branch is assigned with a larger
sequence number than existing objects. Therefore, we have
SO[i−1] ⊂ SO[i] and Bi.ΦI can be incrementally updated.

6.1 The Improved Solution in veffChain
Based on the AKS solution, the improved solution achieves
verifiable exact-K query processing as follows:

ADS Construction. The ADS in block Bt is in the form of
(ΦI ,ΦU ,ΦH) where ΦU and ΦH are calculated as the basic
solution, but ΦI = acc(SO[t]) with SO[t] being constructed
according to Def. 6. Since SO[t−1] ⊆ SO[t], Bt.ΦI can be

rapidly calculated as (Bt−1.ΦI)
∏

x∈SO[t]−SO[t−1]
P(H(x))

.
VO Construction. Given a query Q = (T = ws,K), the

SP constructs Q.VO = (SRF , πF , {SRv}v∈[bs], πI), where
SRF and πF are calculated as the basic solution, but
SRv = {(ws||v, idk, k)}

ns,v

k=ns,v−K+1 contains the latest K
keyword-branch/object/sequence-number tuples regarding
branch ws||v, and πI = acc(SO[t] −

∪
v∈[bs]

SRv) is the
witness of

∪
v∈[bs]

SRv ⊆ SO[t]. Note that the SP can locally
keep φj as the basic solution to accelerate the computation
of witness πI , where φj can be incrementally calculated
from the previous value under Condition 1.

Verification. The user first validates the VO by testing:
(1) For v ∈ [bs], there are K tuples in set SRv and their
sequence numbers are consecutive. (2)

∑
v∈[bs]

ns,v = lns,
where ns,v is the highest sequence number in set SRv and
lns is the latest object number in set SRF . If so, the user
checks if VeriWit(

∪
v∈[bs]

SRv, πI ,ΦI) outputs 1 for integrity
validation, and verifies result freshness as the basic solution.

6.2 The Improved Solution in veffChain++
The main differences from the basic solution are as follows:

ADS Generation. Upon the arrival of a new block Bt,
the miner updates the VTrie tree as before, except that
it sets au in leaf node Nu to the accumulative value of
keyword-branch/object/sequence-number tuples of associ-
ated keyword. Specifically, for each keyword wj ∈ Wt, the
miner adaptively splits the keyword under Condition 1, and
constructs a sorted object subset SO[t].j according to Def. 6.
Since SO[t−1].j ⊆ SO[t].j, au = acc(SO[t].j) can be rapidly
calculated from the previous value as the basic solution.

VO Construction. Given a query Q̃ = (T̃ ,K), the SP
runs algorithm Search to obtain sets MN and UN as before.
For each similar keyword wj , it constructs a sorted object
subset SO[t].j according to Def. 6, puts the latest K objects
regarding keyword branch wj ||v into SRj,v , and calculates
the witness as πj ← GenWit(

∪
v∈[bj]

SRj,v,SO[t].j). The VO
is set to Q̃.VO = {MN,UN, {{SRj,v}v∈[bj], πj}wj≈T̃ }.

Verification. On receiving the VO, the user first checks
if the VO meets the following requirements or not: (1)
For each similar keyword wj , there are K tuples in set
SRj,v and their sequence numbers are consecutive, where
v ∈ [bj]. (2) For each similar keyword wj , there exists a
leaf node Nu ∈ MN s.t. Su||Cu = wj ; (3) All nodes in set
UN (resp. set MN) indeed mismatch (resp. match) the fuzzy
term. If so, the user verifies result completeness as the basic
solution. Next, for the similar keyword wj that corresponds
to the leaf node Nu = (Cu,Su, au, nu) in set MN, the
user verifies result integrity and freshness by testing if
VeriWit(

∪
v∈[bj]

SRj,v, πj , au) = 1 and
∑

v∈[bj]
nj,v = nu,

where nj,v is the highest sequence number in set SRj,v .
Merging Branches. In the AKS solution, there is no limit

on the splitting operation, rendering the amount of keyword
branches to increase linear with the number of relevant
objects in the worst case. As analyzed in Section 7.1, the
verification cost grows linearly with the amount of keyword
branches. To avoid the continued decline of user-side perfor-
mance, we set a threshold value θj for each keyword wj , so
that a miner can merge the keyword branches on demand.
Specifically, when a new block Bt is appended, the miner
splits each keyword wj ∈ Wj according to Condition 1,
and merges all branches of keyword wj into one branch
if current amount of branches bj reaches the predefined
threshold θj . After merging branches of keyword wj , the
orders of existing objects may be changed, resulting in
SO[t−1].j ̸⊆ SO[t].j and SO[t−1] ̸⊆ SO[t]. Hence, the miner
needs to recalculate the accumulative values for set SO[t].j
and set SO[t] from the scratch in ADS generation. As for vef-
fChain, the miner may locally keep φj , the exponential value
of acc(SO[t].j) for each keyword wj , so that acc(SO[t]) can

be rapidly calculated by g
∏

wj∈W[t]
φj . Let MB denote the set

of keywords being merged in current block. For keyword

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

9

TABLE 2: Comparison of computation costs
Miner SP User

Strawman O(N +m) O(N +m−K) O(K)
Basic O(Nt + 2 ·mt) O(N +m−K) O(K)
Basic∗ O(Nt + 2 ·mt) O(N +m− b ·K) O(b ·K)
Advance O(Nt) O(NS − S ·K) O(S ·K)
Advance∗ O(Nt) O(NS −B ·K) O(B ·K)

Nt = |SO[t] − SO[t−1]| and N = |SO[t]| are the numbers of
keyword (branch)/object/serial tuples in block Bt and blocks B[t],
respectively; mt = |Wt| and m = |W[t]| are the number of keywords
in block Bt and blocks B[t], respectively; b is the number of branches
for the search term, NS =

∑
wj=T̃ |SO[t].j| is the number of objects

for all similar keywords, B =
∑

wj=T̃ bj is the number of branches
for all similar keywords, and S is the number of similar keywords.

wj ∈ W[t] −Wt, φj equals its previous value, for keyword
wj ∈ Wt −MB, φj can be incrementally updated from its
previous value, and for keyword wj ∈ MB, φj needs to be
recalculated. veffChain++ follows the same rule to update
the accumulative value in the corresponding leaf node. As
for how to determine the threshold value, we first analyze
which factors affect the decision. From the previous analy-
ses, we know that the threshold value is positively affected
by the ratio of data generation rate GR to block capacity
BC . When GR ≤ BC , all new objects can be packed in
one block, and the threshold value can be set to 1. Under
other circumstances, we can simply set it to ⌈α ∗GR/BC⌉,
where α is a predefined constant. Next, we will analyze
the impact of threshold value on the performance of our
solutions. Obviously, a large threshold value helps to reduce
the frequency of merge operations on the miner side, but a
larger number of branches causes higher verification costs
on the user side. Therefore, a feasible way is to set an initial
threshold value according to the value of GR/BC in the
first place, and then dynamically adjust the value to offer a
good tradeoff between the user-side and miner-side costs.
Appendix B provides examples to illustrate the working
process of the AKS solution and the merging operation.

7 ANALYSIS

Let Strawman, Basic, and Basic∗ denote the strawman,
basic, and improved solutions in veffChain, and let Advance
and Advance∗ denote the basic and improved solutions in
veffChain++, respectively. This section analyzes the perfor-
mance and security of the proposed solutions.

7.1 Performance Analysis
The performance is analyzed in the aspects of computa-
tional, communication, and storage complexities. As for
computation costs, we only consider the expensive group
operations related to RSA accumulator. Given a sequence of
blocks B[t], an exact query Q = (T ,K), and a fuzzy query
Q̃ = (T̃ ,K), the comparison result is shown in Table 2.

As for communication costs, the witnesses in VOs are of
size O(1) and O(S) in veffChain and veffChain++, respec-
tively. The size of sorted objects is O(K) in Strawman and
Basic, O(b·K) in Basic∗, O(S ·K) in Advance, and O(B ·K)
in Advance∗. Furthermore, veffChain++ requires the VO to
incorporate critical nodes to reconstruct the VTrie tree. In
terms of storages costs, the ADS in each block is of constant
size for all the above solutions. The main differences lie in
the following aspects: (1) veffChain allows the SP to locally
maintain φj for each keyword wj , so that the computational
cost of VO construction in Basic and Basic∗ can be reduced

to O(2 ·m+C −K) and O(2 ·m+C − b ·K), respectively,
where C is the number of objects associated with the search
term. (2) veffChain++ requires the full node to maintain the
VTrie tree in addition to verifying result completeness.

7.2 Security Analysis
Theorem 1. The verifiable query solutions in veffChain achieve
result integrity and freshness, if the hash function is collision
resistant, and the RSA accumulator is secure.
Theorem 2. The verifiable query solutions in veffChain++
achieve result integrity, freshness, and completeness, if the hash
function is collision resistant, and the RSA accumulator is secure.

The proofs of Theorem 1 and Theorem 2 can be found in
Appendix C and Appendix D, respectively.

8 DISCUSSION

In this section, we will focus on improving query perfor-
mance and search functionality of veffChain, while leaving
the extensions of veffChain++ to our future work. For ease of
illustration, the following discussion are based on the basic
solution without keyword splitting. The extensions can be
applied to the improved solution with minor modification.

8.1 Acceleration by Sliding Time Window
For the veffChain framework, the VO construction time has
a worst case complexity in linear with the blockchain length,
even when an inverted index is used to speed up queries.
Specifically, the SP needs to calculate the accumulative
values for sets SO[t] − SRI and LN[t] − SRF to generate
the witnesses πI and πF , result in the computational costs
O(|SO[t]| −K) and O(|W[t]|), respectively. Compared with
the number of keywords |W[t]|, the block length t has a
greater impact on the size of sorted object set |SO[t]|. For
example, in dataset 4SQ, when t increases from 20 to 300,
|W[t]| increases from 120 to 236, but |SO[t]| increases from
1,108 to 16,823. Hence, the key to performance improvement
lies in accelerating the computation of witness πI .

To this end, our original idea is letting the SP locally
maintain φj for each keyword wj , so that the cost of com-
puting witness πI is reduced to O(|W[t]| + |SO[t].j| − K).
However, the latest K objects matching a query normally
involve only a small number of blocks, and thus there is
no need to construct sorted object sets from the whole
blockchain. Inspired by previous work [9], we associate each
new block with a sliding time window of size τ , so that
the ADS and VO can be quickly generated over a small-
sized sorted object set constructed from the most recent τ
blocks. Let B[x,y] be a sequence of blocks (Bx, . . . ,By), and
let W[x,y] and SO[x,y] be the set of keywords and the sorted
object set for blocks B[x,y], respectively. Assume that sorted
object sets are constructed by Def. 2 under Assumption 1.
We have SO[i−τ+1,i] = SO[i] − SO[i−τ] for i ∈ [τ, t]. The
basic solution with window size τ works as follows:

ADS Generation. For a new block Bt, the miner gen-
erates the ADS as (ΦI ,ΦU ,ΦH) where ΦU and ΦH are
calculated with Alg. 2, but ΦI = acc(SO[t−τ+1,t]).

VO Construction. Given a query Q = (T = ws,K),
the SP sets Q.VO = (SRI , SRF , πI , πF), where (SRF , πF)
are constructed by Alg. 2, but (SRI , πI) are calculated in
the following way: The SP first transforms Q into a key-
word/range query Q′ = (ws, [b, t]), where Bt is the recent

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

10

block and block Bb contains the K-th latest object of key-
word ws. The SP then performs according to the following
cases: (1) If t − b < τ , it constructs set SRI as before and
calculates the witness as πI ← GenWit(SRI ,SO[t−τ+1,t]).
(2) If t−b+1 = α ·τ+β, it divides the range [b, t] into α sub-
ranges {[bk, tk]}α−1

k=0 of length τ and a sub-range [b, b+β−1]
of length β, where bk = t− (k+1) · τ +1 and tk = t− k · τ .
For each sub-range [bk, tk] of length τ , it traverses blocks
B[bk,tk] and puts the keyword/object/serial tuples of key-
word ws into set SRk, while calculating the witness as πk ←
GenWit(SRk,SO[bk,tk]). For the last sub-range [b, b+β−1], it
constructs set SRα from blocks B[b,b+β−1], and calculates the
witness as πα ← GenWit(SRα,SO[b+β−τ,b+β−1]). Finally, it
sets SRI = {SRk}αk=0 and πI = {πk}αk=0.

Verification. The user validates the VO and verifies re-
sult freshness as the basic solution. To verify result integrity,
the user performs as follows: (1) If t − b < τ , the user
runs VeriWit(SRI , πI ,Bt.ΦI). (2) If t − b + 1 = α · τ + β,
the user runs VeriWit(SRk, πk,Btk .ΦI) for k ∈ [0, α − 1],
and VeriWit(SRα, πα,Bb+β−1.ΦI). Due to the security of
RSA accumulator, algorithm VeriWit outputs 1 only when
∪αk=0SRk ⊆ SO[b+β−τ,t], validating result integrity.

By using sliding time windows, the VO construction
cost is mainly affected by the number of blocks covering
the search results. This is a great outcome for latest-K
queries, which usually involve only a fraction of blocks. For
example, a latest-1 query incurs only costs O(|SO[i,i]|) when
the latest object locates in block Bi and the window size
is set to 1. However, it should be noted that in the above
extension, the VO size and user-side verification costs grow
linearly with the ratio of the number of covered blocks to
the window size. Although the optimization technique of
multiple sliding time windows [9] can be applied to alleviate
this problem, the latest-K results may cover the whole
blockchain in the worst case. Hence, our original solution
is more suitable for the case in which users with resource-
limited devices wish to retrieve sparsely distributed data.

8.2 Extension to Boolean Range Queries

In many cases, the user may want to retrieve the latest
objects satisfying a query criteria like (Blood Pressure ≥
120) ∧ Influenza. In this section, we will discuss how to
extend veffChain to support Boolean range queries on nu-
merical attributes and keywords. We express an object ox as
(x, tx,Wx, Vx), where Vx is a vector of numerical attributes,
and the rest are defined in the same way as Section 3.1.

How to Support Boolean Queries. A Boolean query Q
that include at least one AND clause and n search terms can
be transformed into the form of Q′ = T1 ∧ Ω(T2, . . . , Tn),
where Ω is an arbitrary Boolean formula. For simplicity, we
assume Tj ∈ Q′ equals keyword wj . After transformation,
the search results are a subset of set SO[t].1. Before going
deep into details, we provide the following definitions:
Definition 7 (Mismatched Object Set). Each keyword wj ∈
W[i] is associated with a set of mismatched objects MO[i].j =
{(wj , x)}wj ̸∈Wx , where (wj , x) means that object ox does not
contain keyword wj . The mismatched object union constructed
from blocks B[i] is denoted by MO[i] =

∪
wj∈W[i]

MO[i].j.

Definition 8 (Matching). The matching between an object ox
and a search term T is denoted by ox ◃▹ T . If T ∈ Wx,

we have ox ◃▹ T . The matching between an object ox and the
Boolean formula Ω is denoted by ox ◃▹ Ω. We have ox ◃▹ Ω
if Ω(T2, . . . , Tn) evaluates to true when each term Tj ∈ Ω is
replaced with true or false depending on if ox ◃▹ Tj or not.

The algorithm details are described in Appendix E. Our
main idea is to associate each keyword with a mismatched
object set enabling the user to verify that the unreturned
object matching the search term T1 belongs to mismatched
object sets of keywords {w2, . . . , wn} and thus mismatches
the Boolean formula Ω. Specifically, Bt.ADS is in the form
of (ΦI ,ΦU ,ΦH ,ΦM), where (ΦI ,ΦU ,ΦH) are calculated by
Alg. 2, but ΦM = acc(MO[t]) with MO[t] being constructed
using Def. 7. The blockchain is an append-only structure,
and thus MO[t−1] ⊂ MO[t] and ΦM can be dynamically

generated by acc(MO[t−1])
∏

x∈MO[t]−MO[t−1]
P(H(x))

. Given the
query Q′ = T1 ∧ Ω(T2, . . . , Tn), the SP constructs Q′.VO =

(SRI , S̃RI , SRM , SRF , πI , πF , πM), where SRF and πF are
calculated by Alg. 2 and the remaining components are
calculated as follows: The SP scans the sorted object set
SO[t].1, puts the latest K objects matching the Boolean
formula Ω into set SRI , and puts the objects mismatching
Ω and having sequence number larger than x into set S̃RI ,
where x is lowest sequence number in set SRI . For each
element (w1, idk, k) ∈ S̃RI , the SP locates the term Tj ∈ Ω,
s.t. object oidk

does not contain keyword wj , and puts the
element (wj , idk) into set SRM . The witnesses are generated
as πI = acc(SO[t] − SRI) and πM = acc(MO[t] − SRM).

In verification, the user first checks if the VO abides
by the following requirements: (1) There are K tuples in
set SRI , and the sequence numbers in set SRI ∪ S̃RI

are consecutive; (2) The highest sequence number in set
SRI ∪ S̃RI equals ln1, the latest object number in set SRF .
If so, it verifies the search results by examining if the
following equations hold: (1) VeriWit(SRI , πI ,ΦI) = 1; (2)

ΦU = Φ
πF ·

∏
x∈SRF

P(H(x))

H ; (3) VeriWit(SRM , πM ,ΦM) = 1.
Note that equation (1) is related to result integrity, and
equations (2) and (3) are used to verify result freshness.
In particular, VeriWit(SRM , πM ,ΦM) outputs 1 only when
SRM ⊆ MO[t] verifying the authenticity of set SRM . In other
words, the objects in set SO[t].1 that are fresher than the
search results indeed mismatch the Boolean formula Ω.

How to Support Range Queries. Inspired by previous
work [3], a numerical value can be transformed into a set
of binary prefix strings by using prefix encoding [25] and
represented as a set of distinct keywords by using collision-
free hashes. Specifically, we first express the numerical value
v of attribute a in the binary format v̂, and then construct
a prefix set Prefix(v) by replacing the last k bits of v̂
with symbol ′∗′, for k ∈ [0, |v̂| − 1]. For each element
x ∈ Prefix(v), the keyword is calculated as H(a||x). Given
a binary tree built over the entire binary space, a range
query is transformed into OR clauses over the keywords
corresponding to maximal covering nodes. For example,
for attribute a with value range [0, 7], the binary format
of value 6 is 110 with Prefix(6) = {110, 11∗, 1∗}, and
the keywords are {H(a||110),H(a||11∗),H(a||1∗)}. Given
a binary tree built cover space {000, . . . , 111}, the maximal
covering nodes for query ranges [0, 3] and [0, 2] are {0∗} and
{00∗, 010}, and the queries are transformed into H(a||0∗)

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

11

and H(a||00∗) ∨ H(a||010), respectively. An illustrative ex-
ample and relevant experiment results for Boolean range
queries are provided in appendixes F and G, respectively.

9 EVALUATION

In this section, we will evaluate the performance of the
proposed blockchain frameworks, and compare them with
the seminal frameworks, vChain [3] and vChain+ [9]. Due
to space limitation, we only show the performance of basic
solutions without keyword splitting in the evaluation, while
implementing the AKS solution in Appendix H.

9.1 Parameter Settings
In our evaluations, the miner and the SP are set up on
a server with Intel Xeon Gold 2.30GHz CPU and 64GB
RAM, running Ubuntu 20.04 LTS. And the hyperledger [26]
(Version 2.2) is deployed on the server to simulate the real
blockchain environment. The user is set up on a portable
laptop with Intel Core i7 2.30GHz CPU and 8GB RAM,
running Windows 10 system. The experiments (including
chaincode) are implemented in Java language. We choose
two real datasets for performance evaluation:
• Foursquare (4SQ) [27]. This dataset contains 1 million

data records of user check-in information. Each object is rep-
resented as (id, timestamp, [longitude, latitude], check-in place),
where the check-in place contains two keywords on average.
• Weather (WEA)2. This dataset contains 1.5 million

data records that hold hourly weather data for 36
cities from 2012 to 2017. Each object is represented as
(id, timestamp, city, temperature,weather description), where the
weather description contains two keywords on average.

According to the data generation rate, the experiments
pack data records in 4SQ and WEA within 30s and 1
hour intervals into a block, respectively, so that each block
contains a moderate amount of objects. In the experiment,
the dataset size N and the parameter K are set to [104, 105]
and [20, 450], respectively. As for fuzzy queries, the number
of similar keywords is set to S = {2, 4, 6, 8, 10}. Meanwhile,
we mainly use the following six metrics to evaluate the
solutions: (1) The setup time. (2) The size of ADSs. (3)
The query time. (4) The VO construction time. (5) The size
of VOs. (6) The verification time. The first 2 metrics are
executed on the miner side, the last two are executed on
the user side, and the rest are executed on the SP side. To
better show the impact of parameters N and K on query
performance, we fix the number of similar keywords to 1 in
Fig. 5-Fig. 8. To minimize deviation, each simulation is run
at least 100 times to get the average value.

9.2 Experimental Results
Setup. From Fig. 4, we can see that both the setup time
and ADS size of all solutions grow with the increase of N .
This is because a larger N means a larger number of blocks,
resulting in more costs for calculating ADSs embedded in
block headers. In terms of the setup time, Basic performs
best, and Advance performs worst. The reason is that Ad-
vance needs to create a VTrie tree in addition, although
both Basic and Advance allows for incremental updates.
In terms of the ADS size, Basic and Advance generate the

2. https://www.kaggle.com/selfishgene/historical-hourly-weather-
data

most and the least size, respectively. This is because a single
ADS in Strawman, Basic, and Advance holds two accu-
mulative values, three accumulative values, and one hash
value, respectively. In addition, the setup time of Advance
evaluated on WEA is smaller than 4SQ. The main reason is
that compared with 4SQ, WEA has less number of distinct
keywords, requiring less time to construct the VTrie tree.

Query Time. From Fig. 5-(a),(c), we can see the data
size has a minor influence on our solutions. This is because
the most time-consuming operation is getting data from the
ledger. As an inverted index is kept to speed up the query
process, the query time is reduced to O(K). From Fig. 5-
(b),(d), we know that the larger K , the more query time. The
reason is intuitive, i.e., as K increases, more objects need to
be accessed from the ledger, resulting in longer query time.

VO Construction Time. After getting the search results,
the SP will build the VO accordingly. As shown in Fig. 6,
under different conditions Basic and Advance consume
less execution time compared with Strawman. The main
reason is that Strawman requires the recalculation of the
accumulative values for all mismatched keywords, without
locally saving relevant knowledge. For the same reason,
we observe from Fig. 6-(a),(c) that the parameter N has
a positive impact on the execution time of Strawman, but
has relatively minor impact on both Basic and Advance.
From Fig. 6-(b),(d), we can see that the execution time of all
solutions is negatively correlated with K . This is because as
K increases, the number of mismatched objects decreases,
rendering the time for calculating the witness decrease.

VO Size. From Fig. 7, we can see that the VO sizes in
Strawman and Basic are less than that in Advance under
different parameters. This is because the VOs in Strawman
and Basic include only constant-size witnesses, but the VO
in Advance contains sufficient nodes to reconstruct the VTrie
tree. From Fig. 7-(a),(c) we can see that the VO size in
Advance increases, but the VO sizes in Strawman and Basic
are constant as N increases. The reason is intuitive, i.e., the
larger N , the higher the tree, requiring more nodes for tree
reconstruction. In terms of the influence of parameter K , we
can see from Fig. 7-(b),(d) that the VO sizes in all solutions
grow with the increase of K. This is because a larger K will
result in more number of sorted objects to be returned.

Verification Time. From Fig. 8-(a),(c), we can observe
that the time of both Strawman and Basic is independent
of the data size N , while the time of Advance has an
upward trend as N grows. The reason is that as N increases,
Strawman and Basic require only constant group-related
operations in verification, but Advance needs more time to
reconstruct the VTrie tree in addition. From Fig. 8-(b),(d), we
know the time of all solutions grows as K increases. Com-
pared with Strawman and Basic, Advance consumes slightly
less time under a moderate N . This is because Advance
requires fewer group-related operations than Strawman and
Basic. When N is not too large, the tree reconstruction time
does not take a leading position. From Fig. 4-Fig. 8, we
can observe that veffChain++ generates smaller ADSs, but
requires full nodes to maintain a VTrie tree (about 3MB
and 2.1MB for 4SQ and WEA, respectively), incurs more
CPU time on the miner and the SP, and generates larger
VOs, compared with veffChain. As for the user-side CPU
time, veffChain++ performs better than veffChain only when

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

12

2 4 6 8 10
0

100

200

300

400

500

T
im

e(
s)

Strawman Basic Advance

(a) Setup Time (4SQ)

2 4 6 8 10
0

100

200

300

400

S
iz

e(
K

B
)

Strawman Basic Advance

(b) The Size of ADSs (4SQ)

1 2 3 4 5
0

50

100

150

200

T
im

e(
s)

Strawman Basic Advance

(c) Setup Time (WEA)

1 2 3 4 5
0

50

100

150

200

S
iz

e(
K

B
)

Strawman Basic Advance

(d) The Size of ADSs (WEA)

Fig. 4: The setup costs on the miner side.

2 4 6 8 10
0

10

20

30

T
im

e(
m

s)

Strawman Basic Advance

(a) K = 20, 4SQ

50 150 250 350 450
0

50

100

150

200

250

T
im

e(
m

s)

Strawman Basic Advance

(b) N = 2 × 104, 4SQ

1 2 3 4 5
0

10

20

30

T
im

e(
m

s)

Strawman Basic Advance

(c) K = 20, WEA

50 150 250 350 450
0

50

100

150

200

250

T
im

e(
m

s)

Strawman Basic Advance

(d) N = 2 × 104,WEA

Fig. 5: The query processing time on the SP side.

2 4 6 8 10
0

2

4

6

8

10

12

T
im

e(
s)

Strawman Basic Advance

(a) K = 20, 4SQ

50 150 250 350 450
0

1

2

3

4

5

T
im

e(
s)

Strawman Basic Advance

(b) N = 2 × 104, 4SQ

1 2 3 4 5
0

2

4

6

8

10

12

T
im

e(
s)

Strawman Basic Advance

(c) K = 20, WEA

50 150 250 350 450
0

2

4

6

8

T
im

e(
s)

Strawman Basic Advance

(d) N = 2 × 104, WEA

Fig. 6: The time of building VOs on the SP side.

2 4 6 8 10
0

20

40

60

S
iz

e(
K

B
)

Strawman Basic Advance

(a) K = 20, 4SQ

50 150 250 350 450
0

10

20

30

40

S
iz

e(
K

B
)

Strawman Basic Advance

(b) N = 2 × 104, 4SQ

1 2 3 4 5
0

5

10

15

20

25

S
iz

e(
K

B
)

Strawman Basic Advance

(c) K = 20, WEA

50 150 250 350 450
0

10

20

30

40

S
iz

e(
K

B
)

Strawman Basic Advance

(d) N = 2 × 104, WEA

Fig. 7: The size of VOs transmitted from the SP to the user.

the scale of datasets is moderate. Therefore, veffChain is
preferable to veffChain++ if a user wants to quickly retrieve
data from a large-scale blockchain database by using exact
search terms, and veffChain++ is the optimal choice if a user
wants to query the blockchain database with fuzzy terms.

Fuzzy Queries. As for veffChain++, we further test the
query performance while varying the number of similar
keywords S. The fuzzy term is generated by replacing
either the first few characters or the last few characters of
a specific keyword with wildcard ′∗′ so that the number of
similar keywords in the dataset is S. In reality, the former
case that uses wildcard ′∗′ as the prefix of a search term
requires accessing a large number of nodes in the VTrie
tree, and thus it exhibits the worse performance and can
be treated as a baseline. From Fig. 9, we can find that both
the computational and communication costs increase as S
grows. The main reason is that a larger S means more data
satisfies the query criteria, resulting in larger querying time
to access data from the ledger, more time to construct a
larger VO, and more time to verify the larger VO. Compared
with 4SQ, the average length of keywords is longer and the
average number of sorted objects associated with a keyword
is larger in WEA. Therefore, WEA needs to spend longer
query time and VO construction time. In contrast, the VTrie
tree in 4SQ contains more leaf nodes, hence generating a
bigger VO and requiring longer verification time.

Comparison with Prior Work. To validate our frame-
works in practice, we conduct comparisons with the seminal
frameworks, vChain and vChain+, on dataset 4SQ under
varying numbers of blocks. For fair comparisons, the ex-
perimental parameters are configured as follows: (1) As
veffChain supports only single keyword search, we set the
number of search terms in vChain/vChain+ and the number

of similar keywords in veffChain++ to 1. (2) We let the
SP of vChain and vChain+ return the latest K objects like
our frameworks by controlling the temporal ranges of time-
window queries. (3) To speed up the query process, we al-
low the SP to maintain an inverted index in our frameworks,
set the size of skiplists in vChain to 5, and set the sliding
window size in vChain+ to {2, 4, 8, 16, 32}. Let vChain1 and
vChain2 denote the basic and improved solutions in vChain,
respectively. The comparison results are shown in Fig. 10.

Fig. 10-(a) illustrates the setup costs for producing a
single block. As for the setup speed, Basic and vChain2
are fastest, while vChain1 is the slowest; As for the ADS
size, Advance incurs the minimal cost, while Basic costs a
little more than vChain and vChain+ (the ADS sizes of all
solutions are less than 0.2KB). From Fig. 10-(b), we can see
that as the number of blocks grows, the growth trend of
the SP-side CPU time in our solutions is more prominent
compared with vChain and vChain+. This is because the
more number of blocks means the more number of distinct
keywords, which plays a negative impact on the perfor-
mance of our solutions, but has only a marginal impact
on vChain and vChain+. Under the same settings, vChain+
and vChain1 performs best and worst in terms of SP-side
CPU time, respectively. Our solutions take more SP-side
CPU time than vChain+, but the time difference is within
0.5s. From Fig. 10-(c),(d), we can get that as the number of
blocks grows, Advance shows the most obvious increasing
tendency in terms of the VO size and user-side CPU time
among all solutions. The main reason is that the number
of matched/unmatched nodes in Advance gets more as the
number of blocks increases thereby generating a larger VO
and requiring the user to take more verification time. In
terms of the VO size, our Basic performs best, and vChain+

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

13

2 4 6 8 10
0

20

40

60

80

100

T
im

e(
m

s)

Strawman Basic Advance

(a) K = 20, 4SQ

50 150 250 350 450
0

20

40

60

80

100

120

T
im

e(
m

s)

Strawman Basic Advance

(b) N = 2 × 104, 4SQ

1 2 3 4 5
0

30

60

90

120

T
im

e(
m

s)

Strawman Basic Advance

(c) K = 20, WEA

50 150 250 350 450
0

20

40

60

80

100

T
im

e(
m

s)

Strawman Basic Advance

(d) N = 2 × 104, WEA

Fig. 8: The verification time on the user side.

2 4 6 8 10
0

30

60

90

120

T
im

e(
m

s)

Baseline 4SQ WEA

(a) Query Time

2 4 6 8 10
10-1

100

101

T
im

e(
s)

Baseline 4SQ WEA

(b) VO Construction Time

2 4 6 8 10
100

101

102

103

104

S
iz

e(
K

B
)

Baseline 4SQ WEA

(c) The Size of VOs

2 4 6 8 10
10-2

10-1

100

101

102

T
im

e(
s)

Baseline 4SQ WEA

(d) Verification Time

Fig. 9: The costs of fuzzy query process under different values of S (N = 2× 104, K = 20).

Basic Advance vChain1 vChain2 vChain+
0

5

10

15

20

T
im

e(
s)

0

0.1

0.2

0.3

0.4

S
iz

e(
K

B
)

Time Size

(a) Setup Costs

240 480 720 960 1200
Blocks

10-1

100

101

102

T
im

e(
s)

Basic
Advance

vChain1
vChain2

vChain+

(b) SP-side CPU Time

240 480 720 960 1200
Blocks

0

20

40

60

80

100

S
iz

e(
K

B
)

Basic
Advance

vChain1
vChain2

vChain+

(c) The Size of VOs

240 480 720 960 1200
Blocks

100

101

102

103

104

T
im

e(
m

s)

Basic
Advance

vChain1
vChain2

vChain+

(d) User-side CPU Time

Fig. 10: The comparison results among vChain, vChain+ and our solutions on 4SQ dataset (K = 20, S = 1).

performs the worst. As for the user-side CPU time, vChain2
performs the best, followed by Advance, vChain+, Basic,
and finally vChain1. Although slightly slower than vChain2,
our solutions allow the user to verify results within 50ms. To
better demonstrate the effectiveness of veffChain++, we fur-
ther conduct comparisons with vChain and vChain+ while
varying the number of similar keywords S in Appendix I.

10 CONCLUSION

In this paper, we propose two frameworks, veffChain and
veffChain++, to support latest-K rich queries over a veri-
fiable blockchain database. In veffChain, the accumulator-
based ADS embedded in each block header allows a user
to effectively verify result integrity and freshness. In vef-
fChain++, the root hash of a VTrie tree as the built-in ADS
allows the user to verify result completeness in addition. For
improved scalability, we propose the AKS solution to realize
the incremental updates of ADSs. The empirical study vali-
dates the practical of our frameworks. As part of our future
work, we will try to utilize the optimization techniques
described in the discussion to further improve the query
performance and search functionalities of veffChain++.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China under grant
2022YFE0201400; the NSFC grants 62272150, U20A20181,
62272162, 62172159, and 61872133; the Natural Science
Foundation of Guangdong Province of China under grant
2023A1515012358; and the Hunan Provincial Natural Sci-
ence Foundation of China under grants 2021JJ30294,
2023JJ30267, 2020JJ3015.

REFERENCES

[1] Z. Du, H. Qian, and X. Pang, “PartitionChain: A scal-
ablse and reliable data storage strategy for permis-
sioned blockchain,” IEEE Transactions on Knowledge and
Data Engineering, 2023.

[2] X. Qi, Z. Zhang, C. Jin, and A. Zhou, “A reliable
storage partition for permissioned blockchain,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[3] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifi-
able boolean range queries over blockchain databases,”
in Proc. of SIGMOD, 2019.

[4] J. Camenisch and A. Lysyanskaya, “Dynamic accumu-
lators and application to efficient revocation of anony-
mous credentials,” in Proc. of CRYPTO, 2002.

[5] D. Knuth, The Art of Computer Programming, Volume
3: (2nd ed.) Sorting and Searching. Reading, MA, USA:
Addison Wesley Longman Publishing Co., Inc., 1998.

[6] J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang,
“Verifiable auditing for outsourced database in cloud
computing,” IEEE Transactions on Computers, 2015.

[7] Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang, “Enabling
verifiable and dynamic ranked search over outsourced
data,” IEEE Transactions on Services Computing, 2022.

[8] X. Dai, J. Xiao, W. Yang, C. Wang, J. Chang, R. Han, and
H. Jin, “LVQ: A lightweight verifiable query approach
for transaction history in bitcoin,” in Proc. of ICDCS,
2020.

[9] H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei,
“vChain+: Optimizing verifiable blockchain boolean
range queries,” in Proc. of ICDE, 2022.

[10] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “Fal-
condb: Blockchain-based collaborative database,” in
Proc. of SIGMOD, 2020.

[11] Y. Zhu, Z. Zhang, C. Jin, A. Zhou, and Y. Yan, “SEBDB:
Semantics empowered blockchain database,” in Proc. of
ICDE, 2019.

[12] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao, “An
efficient query scheme for hybrid storage blockchains
based on merkle semantic trie,” in Proc. of SRDS, 2020.

[13] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao,
“VQL: Efficient and verifiable cloud query services for
blockchain systems,” IEEE Transactions on Parallel and
Distributed Systems, 2021.

[14] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gemˆ
2-tree: A gas-efficient structure for authenticated range
queries in blockchain,” in Proc. of ICDE, 2019.

[15] C. Zhang, C. Xu, H. Wang, J. Xu, and B. Choi, “Au-
thenticated keyword search in scalable hybrid-storage

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

14

blockchains,” in Proc. of ICDE, 2021.
[16] X. Li, Q. Tong, J. Zhao, Y. Miao, S. Ma, J. Weng,

J. Ma, and K.-K. R. Choo, “VRFMS: Verifiable ranked
fuzzy multi-keyword search over encrypted data,”
IEEE Transactions on Services Computing, 2023.

[17] Q. Tong, Y. Miao, J. Weng, X. Liu, K. -K. R. Choo, and R.
Deng, “Verifiable fuzzy multi-keyword search over en-
crypted data with adaptive security,” IEEE Transactions
on Knowledge and Data Engineering, 2022.

[18] J. Shao, R. Lu, Y. Guan, and G. Wei, “Achieve efficient
and verifiable conjunctive and fuzzy queries over en-
crypted data in cloud,” IEEE Transactions on Services
Computing, 2022.

[19] Q. Liu, Y. Peng, H. Jiang, J. Wu, T. Wang, T. Peng,
and G.Wang, “Authorized keyword search on mobile
devices in secure data outsourcing,” IEEE Transactions
on Mobile Computing, 2023.

[20] H. Jin, K. Zhou, H. Jiang, D. Lei, R. Wei, and C. Li,
“Full integrity and freshness for cloud data,” Future
Generation Computer Systems, 2018.

[21] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang and K. Ren,
“Enabling generic, verifiable, and secure data search
in cloud services,” IEEE Transactions on Parallel and
Distributed Systems, 2018.

[22] Y. Hu, R. Zhang, and Y. Zhang, “KV-Fresh: Freshness
authentication for outsourced multi-version key-value
stores,” in Proc. of INFOCOM, 2020.

[23] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-
sign signatures without the random oracle,” in Proc. of
EUROCRYPT, 1999.

[24] Q. Liu, Y. Peng, H. Jiang, J. Wu, T. Wang, T. Peng, and
G.Wang, “SlimBox: Lightweight packet inspection over
encrypted traffic,” IEEE Transactions on Dependable and
Secure Computing, 2022.

[25] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,
“Fast and scalable layer four switching”, in Proc. of
SIGCOMM, 1998.

[26] IBM, “Enterprise blockchain solutions and services,”
2018, https://www.ibm.com/blockchain.

[27] D. Yang, D. Zhang, and B. Qu, “Participatory cultural
mapping based on collective behavior data in location-
based social networks,” ACM Transactions on Intelligent
Systems and Technology, 2016.

Qin Liu received her B.Sc. in Computer Sci-
ence in 2004 from Hunan Normal University,
China, received her M.Sc. in Computer Science
in 2007, and received her Ph.D. in Computer
Science in 2012 from Central South University,
China. She has been a Visiting Student at Tem-
ple University, USA. Her research interests in-
clude security and privacy issues in cloud com-
puting. Now, she is an Associate Professor in
the College of Computer Science and Electronic
Engineering at Hunan University, China.

Yu Peng is currently working toward the PhD
degree with the College of Computer Science
and Electronic Engineering, Hunan University,
China. His research interests include the secu-
rity and privacy issues in cloud computing, net-
worked applications, and blockchain.

Ziyi Tang received her B.Sc. in Computer Sci-
ence and Technology in 2020 from Sichuan
Agricultural University, China. Currently, She is
pursuing the Master degree in the College of
Computer Science and Electronic Engineering
at Hunan University, China. Her research inter-
ests include security issues in BlockChain.

Hongbo Jiang received the PhD degree from
Case Western Reserve University, in 2008. Af-
ter that, he joined the faculty of the Huazhong
University of Science and Technology as a full
professor. Now, he is a full professor with the
College of Computer Science and Electronic
Engineering, Hunan University. His research
concerns computer networking, especially algo-
rithms and protocols for wireless and mobile
networks. He is serving as an editor for the
IEEE/ACM Transactions on Networking, asso-

ciate editor for the IEEE Transactions on Mobile Computing, and as-
sociate technical editor for the IEEE Communications Magazine.

Jie Wu is the Chair and a Laura H. Carnell Pro-
fessor in the Department of Computer and Infor-
mation Sciences at Temple University, Philadel-
phia, PA, USA. Prior to joining Temple Univer-
sity, he was a Program Director at the National
Science Foundation and a Distinguished Pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, network trust and security,
and routing protocols. Dr. Wu has regularly pub-
lished in scholarly journals, conference proceed-

ings, and books. He serves on several editorial boards, including IEEE
Transactions on Services Computing, and Journal of Parallel and Dis-
tributed Computing. Dr. Wu is a CCF Distinguished Speaker and a
Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Tian Wang received his BSc and MSc degrees
in Computer Science from the Central South
University in 2004 and 2007, respectively. He
received his PhD degree in City University of
Hong Kong in 2011. Currently, he is a professor
at the Institute of Artificial Intelligence and Fu-
ture Networks, Beijing Normal University & UIC,
China. His research interests include internet of
things and edge computing.

Tao Peng received the B.Sc. in Computer Sci-
ence from Xiangtan University, China, in 2004,
the M.Sc. in Circuits and Systems from Hunan
Normal University, China, in 2007, and the Ph.D.
in Computer Science from Central South Uni-
versity, China, in 2017. Now, she is an Asso-
ciate Professor of School of Computer Science
and Cyber Engineering, Guangzhou University,
China. Her research interests include network
and information security issues.

Guojun Wang received his Ph.D. degree in
Computer Science, at Central South University,
China in 2002. He is a Pearl River Scholarship
Distinguished Professor of Higher Education in
Guangdong Province, and a Doctoral Supervisor
of School of Computer Science and Cyber Engi-
neering, Guangzhou University, China. He has
been listed in Chinese Most Cited Researchers
(Computer Science) by Elsevier in the past eight
consecutive years (2014-2021). His research in-
terests include artificial intelligence, big data,

cloud computing, Internet of Things (IoT), and blockchain. He is a
Distinguished Member of CCF, a Member of IEEE, ACM and IEICE.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3316127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 17,2023 at 00:42:02 UTC from IEEE Xplore. Restrictions apply.

