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Bilateral Privacy-Preserving Worker Selection in
Spatial Crowdsourcing

Hengzhi Wang1, Yongjian Yang1, En Wang∗1, Xiulong Liu2, Jingxiao Wei1, Jie Wu3, Fellow, IEEE

Abstract—Spatial Crowdsourcing (SC) has been adopted in various applications such as Gigwalk and Uber, where a platform takes
location-based tasks (e.g., picking up passengers) from a requester and selects suitable workers to perform them. In most existing
works, the platform selects workers based on the requester and worker information, which suffers from serious privacy issues. Some
works have considered privacy issues, but they still suffer from either of two limitations: (i) Privacy of the requester and worker cannot
be protected simultaneously; (ii) Third-party trusted entities are usually required. Motivated by this, we focus on protecting the privacy
of both the requester and the worker without third-party entities while selecting workers. We use randomized response, a widely
recognized and prevalent privacy model achieving Local Differential Privacy (LDP), to jointly protect the privacy of workers’ locations
and charges based on the location-charge correlation. For the requester, we present a novel mechanism called randomized matrix
multiplication to hide the real task locations. More importantly, we prove that the worker selection based on the protected information is
non-submodular and NP-hard, which cannot be addressed in polynomial time. To this end, we present an approximate algorithm to
solve the problem efficiently, of which the effectiveness is measured by the approximation ratio, i.e., the ratio of the optimal solution to
the approximate solution. Finally, simulations based on real-world datasets illustrate that our worker selection outperforms the
state-of-the-art method on both privacy protection and worker selection.

Index Terms—Spatial crowdsourcing, bilateral privacy-preserving, worker selection, local differential privacy.

F

1 INTRODUCTION

W ITH the rapid development of mobile Internet and
devices, spatial crowdsourcing, a novel paradigm of

exploring the power of crowd to collect and share data,
has emerged in recent years [1]–[3]. In typical scenarios,
e.g., worker selection [4], [5] and task allocation [6], [7],
requesters and workers need to report their real information
to the spatial crowdsourcing platform. For example, some
Gigwalk requesters have to upload their task locations to
the platform, and Gigwalk workers need to upload their
physical locations and charges for each task as well. Since
the spatial crowdsourcing platform may not be trustworthy,
several privacy concerns have arisen [8], e.g., the informa-
tion of tasks and workers is leaked or used illegally by
the platform, which violates the General Data Protection
Regulation (GDPR) [9].

To this end, many privacy-preserving worker selection
strategies [10]–[15] are proposed to address the privacy
issues by adding noise (e.g., Laplace mechanism [10], [11])
to the item or obfuscating the item to another one (e.g.,
obfuscation function [12]). We argue that these strategies
only focus on protecting the privacy of workers’ locations
[10], [12], or the privacy of workers’ charges [13] while
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Fig. 1: The bilateral privacy-preserving worker selection
framework without relying on third-party trusted entities.

ignoring the privacy of tasks’ locations. Actually, workers’
locations, charges, and tasks’ locations are also critical parts
of the sensitive information that should be protected as
well, and the leakages on them to the untrusted platform
would discourage participation in spatial crowdsourcing
activities. Several works [14], [15] aim to protect the privacy
of both tasks and workers, which unfortunately have to rely
on third-party trusted entities, resulting in non-negligible
service cost and communication overhead.

Motivated by these privacy issues, this paper focuses
on designing a bilateral privacy-preserving worker selection
strategy that could select suitable workers as well as protect
the privacy of both requesters and workers without third-
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party trusted entities. A specific example is shown in Fig. 1.
The platform receives the obfuscated information reported
from the requester and workers, and selects appropriate
workers under the budget constraint to maximize the to-
tal task completion effect. Specifically, the spatial area is
divided into multiple subareas. For the requester (the upper
part of Fig. 1), it publishes a set of tasks in different subareas,
i.e., each task contains a specific location. Thus, the privacy
of the requester refers to the privacy of the tasks’ locations.
Then, the requester hides tasks’ real locations and provides
the obfuscated locations and a total payment budget for
these tasks to the platform. For workers (the lower part
of Fig. 1), each one contains the following information:
(i) future locations that workers will cover before the task
deadline; (ii) the corresponding charges of performing tasks
at particular locations. Then, the requester and the workers
obfuscate their original information and report the obfus-
cated one to the platform. Based on this, the platform selects
workers under the payment budget constraint. The idea of
this paper is that we not only obfuscate the sensitive infor-
mation against the platform, but also achieve a good worker
selection performance based on the obfuscated information.

Selecting workers with sanitized information from the
workers and the requester is more difficult. Moreover,
the third-party involvement is not allowed as well. Thus,
the first challenge is how to construct a bilateral privacy-
preserving framework to protect the privacy of the requester
and the workers. To address the challenge, two privacy
models and methods are adopted respectively taking into
account the characterizations of large-scale workers and a
single requestor. More precisely, following Local Differential
Privacy (LDP) [16], a widely recognized privacy model
with distributed architecture requiring a large number of
individuals, we advise an Extended Randomized Response
(ERR) based on [17], [18] for workers to obfuscate their
real locations and corresponding charges. This ensures that
each individual worker’s sensitive information is protected
from privacy leakage on the untrusted platform while the
statistics of the large-scale workers can be well estimated
and used. For the requester, since there is only a single
requester in the system, LDP and ERR, unfortunately, cannot
be adopted to deal with the requester’s privacy. To this end,
we present a Randomized Matrix Multiplication (RMM)
based on [14] to obfuscate the requestor’s task locations and
use ε-Privacy following the location privacy model [19] to
measure the requestor’s privacy. Both ERR and RMM pro-
tect privacy locally and do not rely on third-party trusted.

Furthermore, when protecting workers’ privacy, we con-
sider protecting both the locations (categorical value) and
charges (numerical value) of workers. An easy solution is
to protect them separately. However, this solution could be
improved because it fails to utilize the potential correlation
between the location and the charge. In other words, the
location confusion result could be regarded as the prior
knowledge, with the help of which, workers could achieve
more efficient charge confusion and the platform can also
recover the information of a worker set accurately. Hence,
how to utilize workers’ location-charge correlation to achieve
more efficient privacy protection of workers is the second
challenge. To address the second challenge, we first use RR
to obfuscate workers’ locations, and then conditional RR is

used to achieve a more efficient charge confusion based on
the confusion results of workers’ locations. In this way, the
possible passing locations and the estimated total charge
for the selected workers could be more accurately recov-
ered. Moreover, under such a bilateral privacy-preserving
framework, all the collected information from the requester
and worker is obfuscated. In this case, the worker selec-
tion problem is proven to be non-submodular and non-
monotone. Thus, how to select suitable workers based on the ob-
fuscated information is the third challenge. To handle the third
challenge, we prove that the privacy-preserving worker
selection problem is NP-hard and present an approxi-
mate algorithm inspired by the constrained non-monotone
non-submodular maximization problem. Through rigorous
proof, we verify that the algorithm achieves a lower bound.
Then, our main contributions are summarized as follows:

• We present a bilateral privacy-preserving framework
to select suitable workers under the budget con-
straint while protecting the privacy of both the re-
quester and the worker, without relying on third-
party trusted entities.

• To protect the privacy of workers, we propose a local
confusion strategy based on extended randomized
response to achieve local differential privacy, which
utilizes the location-charge correlation to protect
both workers’ locations and charges.

• We prove that the bilateral privacy-preserving
worker selection problem is NP-hard, non-
submodular and non-monotone, and propose
an approximate algorithm based on the greedy
method to achieve a lower bound γ·(1−1/e) of the
worker selection performance.

• We conduct extensive simulations based on three
real-world datasets to evaluate the performance of
the proposed algorithm, and the results show that
our algorithm always outperforms the state-of-the-
art strategy.

The remainder of the paper is organized as follows. We
review the related works in Section II. The system model
and the formulated problem are described in Section III.
The bilateral privacy-preserving framework is proposed in
Section IV. In Section V, we analyze the performance of
the proposed algorithm. Finally, we conduct simulations in
Section VI and conclude the paper in Section VII.

2 RELATED WORK

In this section, we introduce the existing works on privacy-
preserving worker selection, privacy-preserving crowd-
sourced data analysis, and local differential privacy.

Privacy-preserving Worker Selection: Wang et al. [13]
considered that workers’ bids (i.e., utilities) submitted to the
platform were the sensitive information of workers. To this
end, they proposed a bid obfuscation function against the
untrusted platform based on the exponentiation mechanism.
Prorok et al. [20] presented privacy-preserving worker selec-
tion strategies based on the Hungarian algorithm by adding
random noise drawn from a two-dimensional Laplace dis-
tribution. Xiao et al. [21] considered the privacy of the
worker information against the platform, and proposed a
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secure worker selection protocol based on the semi-honest
model. However, all of them [13], [20], [21] ignored the
privacy of the requester. Furthermore, Shahabi et al. [10]
and Zhao et al. [15] considered the privacy of both re-
questers and workers, then proposed the bilateral privacy-
preserving task allocation strategy by adding random noise
[10] or Paillier cryptosystem [15], respectively. But both
of them only considered workers’ locations and ignored
workers’ charges/costs. In addition, Paillier cryptosystem
also needed a third-part trusted entity to distribute the
public key. Hence, the existing privacy-preserving strategies
cannot be directly used to address the problem in this paper.

Privacy-preserving Data Analysis: There have been
many works focusing on privacy-preserving data analysis.
Taking privacy concerns in crowdsourcing data publication
into consideration, Ren et al. [22] designed a data publication
method using estimation maximization for achieving locally
differential privacy. In their design, data correlations are
identified to promote data utility. A similar problem was
studied by Wang et al. [23], in which high-dimensional
crowdsourcing data is synthesized via attribute dependence
and is released in a randomized response way. Conse-
quently, the trade-off between privacy-preserving data re-
leasing and data utility is balanced. Apart from data releas-
ing, the privacy-preserving statistic estimation was stud-
ied in [24] using spatial-temporal correlations in real-time
crowdsourcing data, and the privacy-preserving truthful
reference was investigated in [25] given sparse worker an-
swers. Yet, the aforementioned privacy-preserving strategies
are designated for data analysis that, unfortunately, cannot
be employed for worker selection in this paper.

Local Differential Privacy: Differential privacy was first
proposed by Dwork [26], which mainly includes centralized
differential privacy [27], [28] and local differential privacy
[16], [29]. Centralized differential privacy assumes a trusted
central data collector to possess data, which brings the
non-negligible service charge. Thus, many existing works
focused on Local Differential Privacy (LDP). In LDP, Er-
lingsson et al. [30] first considered the frequency estimation
over categorical data based on randomized response (RR).
Then, Fanti et al. [31] extended [30] to a more practical
scenario, which could estimate unknown strings to learn
without explicit knowledge. However, [30] and [31] only
applied LDP for categorical data. To this end, Ye et al.
[16] considered the estimations over both categorical and
numerical data, and proposed PrivKV based on LDP. Yet,
PrivKV only focused on a fixed worker set. In this paper,
the worker set is dynamically changing depending on the
worker selection method.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and pri-
vacy models and formulate the bilateral privacy-preserving
worker selection problem to be addressed.

3.1 System Model
The entire area is divided into k × k grids [32], which is
denoted as a location matrix L = {`xy = (x, y)|1 ≤ x ≤
k, 1 ≤y≤ k}, where the location `xy refers to the grid (x, y).
In the following, we simplify `xy as `, and the same simplifi-
cation is applied for other notations. The requester publishes

TABLE 1: List of key notations

Notation Description

L, U The sets of locations and total workers
Lj , L∗j The task location matrix, the obfuscated task location

matrix
Li, Ci The location matrix and charge matrix of the worker ui
L∗i , C∗i The obfuscated location matrix and charge matrix of the

worker ui
S, B The set of selected workers from U , the budget of the

total charge
ε1, ε2 The privacy budgets for the worker location privacy and

worker charge privacy
p1, p2 The confusion probabilities for the worker location and

worker charge
cmin,cmax The minimum and maximum charge among all workers
f`(S, ε1) The number of times workers in S cover the location `

based on the obfuscated locations
f∗` (S, ε1) The estimated number of times workers in S cover the

location ` based on the real locations
f`, f

∗
` The simplifications of f`(S, ε1) and f∗` (S, ε1)

C(S, ε2) The estimated total charge of all workers in S
C(S) The simplification of C(S, ε2)

F (S, ε1) The utility of all workers in S
R The invertible matrix generated by the requester
L(S) The location matrix of S, where each item denotes the

estimated number of S covers each location in L
Ut, St The total worker set and selected worker set in the t-

iteration when selecting workers
c(S), c∗(S)The real total charge and estimated total charge of

workers in S for the specific location `
γ The ratio measuring the submodularity of a non-

submodular set function

a set of tasks distributed in different subareas. Without loss
of generality, we assume that each task corresponds to a
location [5], [6], multiple tasks in a location can be treated
as a complex task. In addition, we also assume that all
tasks with the same deadline only need to be completed
once. Next, the published task set can be denoted by a task
location matrix Lj ={`jxy|1 ≤x≤ k, 1 ≤y≤k}. We simplify
`jxy as `j , and for each item `j ∈Lj , if there is a task in the
location `, then `j=1, otherwise `j=0.

The set of total workers is denoted as U =
{u1, u2, · · · , un}, where each worker ui has a location ma-
trix Li = {`ixy|1 ≤ x ≤ k, 1 ≤ y ≤ k} indicating that the
locations ui will cover before the task deadline. We simplify
`ixy as `i. For `i ∈ Li, if ui will cover the location `, then
`i = 1, otherwise `i = 0. As long as the worker covers
the location of a task, the task could be completed [21],
[33]. In addition, each worker ui also has a charge matrix
Ci = {cixy|1 ≤x≤ k, 1 ≤ y≤ k}, which denotes the charges
of ui performing tasks in the corresponding locations in Li.
Hence, each worker ui has two attribute matrices (Li, Ci).
Intuitively, the charge matrix Ci is related to the location
matrix Li, e.g., if a worker will not cover a location, its
charge of that location is 0. That is, for ci∈Ci, if `i=1, then
ci > 0, otherwise ci = 0. The description of key notations is
presented in Table 1.

3.2 Privacy Model
In this paper, we assume that the platform is honest-but-
curious [34], [35], which means that the platform will hon-
estly carry out the task publishment and worker selection
processes, but will also be curious about the sensitive in-
formation of the requester and worker. In addition, there
are some differences between the requester and worker: (i)
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There is only one requester, but there are multiple workers
when reporting information; (ii) The requester only has
one task location matrix, but each worker has a worker
location matrix and a charge matrix. Therefore, we should
construct the privacy models for the requester and workers
respectively.

1) The requester privacy: Since the requester publishes
a set of tasks represented by the task location matrix Lj ,
the requester privacy is actually the task location privacy,
i.e., the task location matrix Lj should be obfuscated to
L∗j to prevent the platform from violating the task location
information.

2) The worker privacy: Since each worker in the worker
set U not only has a location matrix Li but also has a charge
matrix Ci, the worker privacy consists of two aspects: (i) the
worker location privacy, i.e., the location matrix Li should
be obfuscated to L∗i ; (ii) the worker charge privacy, i.e., the
charge matrix Ci should be obfuscated to C∗i to prevent the
platform from violating the task location information.

To measure the privacy protection level, we define pri-
vacy budget in Definition 1.

Definition 1 (Privacy budget). The privacy budget ε ≥ 0
represents the privacy level that the mechanism provides. A
smaller ε guarantees a stronger privacy level.

Taking into account the characterizations of large-scale
workers and a single requester, we define different privacy
models for them. First, given a privacy budget ε, Local
Differential Privacy (ε-LDP), a prevalent privacy model
with distributed architecture, is offered in Definition 2 as
in previous studies [16] to measure the workers’ privacy.
Second, following the location privacy model [19], we define
ε-Privacy in Definition 3 to measure the requester’s privacy.

Definition 2 (ε-LDP). A confusion strategyM satisfies ε-LDP
when the probabilities of getting the same output for two inputs
always meet the following inequality:

Pr[M(d1)=d∗]≤eε ·Pr[M(d2)=d∗], (1)

where d1, d2, d∗ are the numerical values or matrices.

Definition 3 (ε-Privacy). A confusion strategy M satisfies ε-
Privacy when the probabilities of the platform inferring a task’s
real data meet the following inequality:

Pr[d|d∗]≤eε ·Pr[d], (2)

where Pr[d] denotes the probability of inferring the real data
d without any information, Pr[d|d∗] denotes the probability of
inferring the real data given the obfuscated data d∗.

For the requester, since the item in the task location ma-
trix of the requester is the categorical value, the traditional
Laplace noise mechanism cannot be adopted to protect
the requester privacy. In addition, there is only a single
requester in this paper, so neither the obfuscation function
[12] nor RR [17] can be applied since the statistic cannot
be estimated accurately with small sample size. Thus, we
present a novel strategy RMM in Section IV to obfuscate Lj
to L∗j while satisfying ε-Privacy.

For the worker, RR is a well-known technique to sat-
isfy ε-LDP and suitable for multiple workers. However, in
this paper, the worker retains both locations (categorical
value) and charges (numerical value), thus we extend the

traditional RR to obfuscate multiple information of workers.
For worker locations, RR enables each worker to give a
random answer to a boolean question, e.g., whether the
worker will cover location `. More precisely, for each ques-
tion, the worker will tell a truth with probability p1 or a
lie with probability 1 − p1. This way a real answer `i is
transformed into an obfuscated answer `∗i . To satisfy ε-LDP,
we set p1 = eε1/(1 + eε1). After the platform obtains the
obfuscated answers to the question from a set of workers S,
i.e., the subset of U , let f`(S, ε1) denote the count of “Yes”
in all obfuscated answers and N the count of all obfuscated
answers. The platform estimates the count of “Yes” in real
answers f∗` (S, ε1) based on the count of “Yes” in f`(S, ε1):

f∗` (S, ε1)=(p1−1)·N/(2p1−1)+f`(S, ε1)/(2p1−1), (3)

where N= |S|. In the following sections, we will prove that
f∗` (S, ε1) is an unbiased estimation of f`(S, ε1). Accordingly,
in our problem, `∗i = 1 means that ui gives answer “Yes”
to the question whether the worker will cover location `.
Hence, the estimated number of times workers in S cover
location ` can be denoted byf∗` (S, ε1) in Eq. 3.

Similarly, for worker charges, different from the loca-
tion `i, the worker’s charge ci is not a discrete categorical
value, but a continuous numerical value ci ∈ [cmin, cmax],
where cmin and cmax are the minimum and maximum
charges among all worker charges. Considering that, we
first discretize the charge of each worker ci into cmin or
cmax locally. Furthermore, based on RR and the location-
charge correlation, each worker gives an obfuscated answer
to the question whether the worker’s charge is cmax for
covering the location `. In our problem, c∗i = cmax means
that ui gives answer “Yes”, and c∗i = cmin for “No”. Let
n1(S, ε2), n2(S, ε2) denote the counts of cmax and cmin in
all obfuscated answers of S, respectively. Based on these,
the platform estimates the counts of cmax and cmin in real
answers n∗1(S, ε2), n∗2(S, ε2) similar to f∗` (S, ε1) in Eq. 3.
Note that N = n1(S, ε2) + n2(S, ε2). Then, the estimated
total charge C(S, ε2) of S is denoted as follows:

C(S, ε2)=
∑

`∈L
[n∗1(S, ε2) · cmax+n∗2(S, ε2) · cmin]. (4)

Based on Eqs. 3-4, even if a set of workers S upload the
obfuscated locations and charges, the platform can still esti-
mate the useful information of S, i.e., f∗` (S, ε1) and C(S, ε2).
Then, the platform measures the utility of a set of workers
based on f∗` (S, ε1) and L∗j as shown in Definition 4.

Definition 4 (The worker’s utility). The utility of a set of
workers S is defined as the expected number of tasks covered by
the workers in S,

F (S, ε1)=
∑

`∈L
min{f∗` (S, ε1), 1} · x`, (5)

where 1 indicates that each task only needs to be completed once,
x` ∈ {0, 1} denotes whether there is a task in location ` and is
calculated based on f∗` (S, ε1) and L∗j .

3.3 Problem Formulation
Our problem has emerged as follows:

Problem [Bilateral privacy-preserving worker selection
under the budget constraint]: In the area L, given the task
set Lj and worker set U , the honest-but-curious platform se-
lects a set of workers S based on the obfuscated information
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Algorithm 1 Task Location Confusion (TLC)
Input: Task location matrix Lj
Output: Collection of obfuscated task location matrices Γ

1: Γ← ∅
2: Generate a k × k invertible real number matrix R
3: for each `j ∈ Lj and `j = 1 do
4: L′j ← {0, · · · , 0, `j , 0, · · · , 0}
5: L∗j ← (L′j)T ×RT ×R
6: Γ← Γ ∪ {L∗j}
7: return Γ

of tasks and workers under the payment budget constraint.
The objective is to maximize the expected number of com-
pleted tasks:

Maximize F (S, ε1)=
∑

`∈L
min{f∗` (S, ε1), 1} · x`, (6)

Subject to S⊆U, C(S, ε2)≤B.

The first constraint indicates that workers in S are selected
from the whole worker set U , and the second constraint
indicates that we cannot select workers limitlessly, i.e., the
expected total charge C(S, ε2) of S should be limited by B.
B is the budget of the total charge.

4 BILATERAL PRIVACY-PRESERVING STRATEGY
DESIGN

4.1 The Confusion Strategy for The Requester
Considering the requester privacy, the requester should
obfuscate the task location matrix Lj to L∗j before uploading
it to the platform. To this end, we extend the matrix mul-
tiplication [14] and present a novel strategy RMM. Based
on RMM, we propose a Task Location Confusion strategy
(TLC) in Algorithm 1 to hide the real information, which is
performed by the requester locally.

The requester randomly generates a k× k invertible real
number matrix R (line 2). For each task satisfying `j ∈ Lj
and `j = 1, we reconstruct a task location matrix L′j , where
all items are equal to 0 apart from `j (line 4). We calculate
the obfuscated task location matrix L∗j and add it to the
collection of matrices Γ (line 5), where (L′j)T , RT represent
the transposes of L′j , R. An example is shown in Fig. 2, and
we discover that the task location matrix Lj is decomposed
into multiple sparse matrices. Then, each sparse matrix is
obfuscated before uploading to the platform. Based on the
obfuscated matrices, the platform can only know which
column the task is in rather than its specific location, thus
the privacy of tasks’ locations is protected. In fact, the
platform matches the obfuscated task location matrix with
the estimated worker location matrix without knowing the
real task location to identify whether a task can be covered,
thereby determining the utility of a set of workers. Next, we
prove that TLC satisfies ε-Privacy in Theorem 1.

Theorem 1. TLC achieves ε-Privacy, where ε = ln k.

Proof. Given a reconstructed matrix L′j and an obfuscated
matrix L∗j as shown in lines 4-5 of Algorithm 1, let Pr[L′j ]
denote the probability of the platform inferring the real
matrix L′j without any extra information and Pr[L′j |L∗j ] de-
note the probability of inferring L′j with knowing L∗j . Thus,
we have Pr[L′j ] = 1/k2 and Pr[L′j |L∗j ] = 1/k. According

Task location matrix Confusion

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 * 0 0

0 * 0 0

0 * 0 0
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1 0 0 0

0 0 1 0
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Fig. 2: An example for TLC.

Algorithm 2 Worker Charge Confusion (WCC)
Input: Charge c, privacy budget ε
Output: Obfuscated charge c∗

1: Discretize c based on Eq. 7
2: c∗ ← c
3: Generate a probability p ∈ [0, 1] randomly
4: If p ≤ 1

1+eε , then c∗ ← cmax + cmin − c
5: return c∗

to Definition 3, we obtain Pr[L′j |L∗j ]/Pr[L′j ] = k ≤ eln k,
which means the knowledge brought by the obfuscated
information L∗j is limited and bounded. Therefore, TLC
achieves ε-Privacy, where ε = ln k.

4.2 The Confusion Strategy for Workers

Based on RR, we propose the obfuscated strategy for work-
ers. As mentioned above, each worker ui has a location
matrix Li and a charge matrix Ci. For a specific location
`, the worker ui actually holds a location-charge pair [`i, ci],
where `i is a categorical value (1 or 0), and ci ∈ [cmin, cmax]
is a continuous value. Hence, to obfuscate the location and
charge together, we first discretize each worker’s charge:

ci ←
{
cmax, w.p. ci−cmin

cmax−cmin .

cmin, w.p. cmax−ci
cmax−cmin .

(7)

Then, we propose the Worker Charge Confusion strategy
(WCC) depicted in Algorithm 2. We input a charge c and
the privacy budget ε. Then, c is unchanged with probability
eε/(1+eε) or obfuscated with probability 1/(1+eε) (line 4).

After the charge discretization, we obfuscate the
worker’s location `i by applying RR. Note that there is a
correlation between the worker’s location and charge for
each location. Specifically, for a location-charge pair [`i, ci],
if `i = 0, the corresponding charge should also be 0 because
the charge cannot be greater than 0 when the worker does
not cover `i. With these in mind, let 1→1 denote that `i=1
is obfuscated to `∗i =1, then we obtain four cases:

1) 1 → 1: In this case, since the location has not
changed, the location-charge pair can remain un-
changed after confusion, i.e., [1, ci]→ [1, ci];

2) 1 → 0: In this case, since the location has changed,
the charge should be 0 to protect the worker’s real
location, i.e., [1, ci]→ [0, 0];

3) 0 → 1: Since the location has changed, a new
location-charge pair needs to be generated. Consid-
ering the location-charge correlation, we assign the
mean of charges to the new pair because the real
charge should be greater than 0 when the worker’s
location `i=1, i.e., [0, 0]→ [1, (cmax + cmin)/2];

4) 0 → 0: In this case, the location has not changed,
and the worker does not cover `, so the charge
should be 0, i.e., [0, 0]→ [0, 0].
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Algorithm 3 Worker Location Confusion (WLC)
Input: A location-charge pair [`i, ci], privacy budgets ε1, ε2
Output: Obfuscated location-charge pair [`∗i , c

∗
i ]

1: if `i = 1 then
2: c∗i = WCC(ci, ε2)
3: Generate a probability p ∈ [0, 1] randomly
4: if p ≤ 1/(1 + eε1), then [`∗i , c

∗
i ]← [0, 0]

5: if p > 1/(1 + eε1), then [`∗i , c
∗
i ]← [1, c∗i ]

6: else
7: c∗i = WCC((cmax + cmin)/2, ε2)
8: Generate a probability p ∈ [0, 1] randomly
9: if p ≤ 1/(1 + eε1), then [`∗i , c

∗
i ]← [1, c∗i ]

10: if p > 1/(1 + eε1), then [`∗i , c
∗
i ]← [0, 0]

11: return [`∗i , c
∗
i ]

Location matrix

Charge matrix

Location matrix

Charge matrix
Confusion

Location

Worker

Platform

0 0 0 0
0 1 1 0
0 1 0 0
1 1 0 0

0 0 0 0
0 5 6 0
0 2 0 0
6 3 0 0

0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 1

0 2 0 0
0 0 6 0
2 0 0 0
0 6 0 2

Fig. 3: Worker location confusion.

We then present the Worker Location Confusion (WLC)
strategy in Algorithm 3 to obfuscate the location-charge pair
according to [16]. The inputs are a location-charge pair and
privacy budgets, where the privacy budget ε1 is used for
confusing the location and ε2 is used for the charge. Con-
sidering the four cases, WLC first determines whether the
worker’s real location `i is 1 (lines 1 and 6), then obfuscates
the worker’s charge based on WCC, and gets an obfuscated
charge c∗i (lines 2 and 7) . Then, the location-charge pair is
obfuscated according to the four cases (lines 4-5 and 9-10).
An example of WLC is shown in Fig. 3. Specifically, accord-
ing to the real trajectory, each worker generates the location
matrix and charge matrix for each location ` ∈ L. Then,
for privacy protection, each worker obfuscates the matrices
locally in the form of location-charge pairs based on the
worker location confusion strategy proposed in Algorithm
3 and uploads them to the platform. Next, we prove that
WLC satisfies ε-LDP in Theorem 2.

Theorem 2. WLC achieves ε-LDP, where ε = ε1+ε2, ε1 and ε2
are the privacy budgets for locations and charges.

Proof. Given the worker ui and location `, let [`∗i , c
∗
i ] be the

obfuscated location-charge pair output by WLC (Algorithm
3). First, we focus on the location confusion. For the case of
the obfuscated location `∗i = 1, assuming that there are two
distinct real locations `1i and `2i , according to WLC, we have

Pr[`∗i |`1i ]
Pr[`∗i |`2i ]

≤ Pr[`∗i =1|`i=1]

Pr[`∗i =1|`i=0]
=(

eε1

1+eε1
)/(

1

1+eε1
)=eε1 , (8)

where Pr[`∗i |`1i ] indicates the probability of `1i being obfus-
cated to `∗i . The case of `∗i = 0 can be analyzed in the
similar manner. Thus, the confusion on locations in WLC
satisfies ε1-LDP according to Definition 2. Next, for the
charge confusion, considering the location-charge correla-

Algorithm 4 Platform Calibration Process (PCP)
Input: For each worker ui ∈ S, obfuscated location matrix
L∗i , obfuscated charge matrix C∗i , privacy budgets ε1 and ε2
Output: Location matrix L(S), total charge C(S)

1: L(S)← ∅, C(S)← 0
2: p1 ← eε1/(eε1 + 1), p2 ← eε2/(eε2 + 1)
3: for each ` ∈ L do
4: f` ← Count(`∗i = 1), ∀ui ∈ S
5: n1 ← Count(c∗i = cmax), ∀ui ∈ S
6: n2 ← Count(c∗i = cmin), ∀ui ∈ S
7: N = n1 + n2
8: Calibrate f∗` as: f∗` ←

(p1−1)·|S|
2p1−1 + f`

2p1−1
9: Calibrate n∗1, n

∗
2 as:

10: n∗1 ←
p2−1
2p2−1 ·N + n1

2p2−1 , n∗2 ←
p2−1
2p2−1 ·N + n2

2p2−1
11: Calculate the total charge c∗(S)← n∗1cmax + n∗2cmin
12: L(S)← L(S) ∪ {f∗` }, C(S)← C(S) + c∗(S)

13: return L(S), C(S)

tion, we investigate two cases: [`∗i , c
∗
i ] = [0, 0] or [1, c∗i ].

When [`∗i , c
∗
i ] = [0, 0], assuming that there are two distinct

real charges c1i and c2i , we have
Pr[c∗i |c1i ]
Pr[c∗i |c2i ]

≤ Pr[c∗i = 0|c1i = cmax] · Pr[`∗i = 0]

Pr[c∗i = 0|c2i = cmin] · Pr[`∗i = 0]

= (
eε2

1 + eε2
)/(

1

1 + eε2
) = eε2 . (9)

When [`∗i , c
∗
i ]=[1, c∗i ], we focus on the case c∗i=cmax and get

Pr[c∗i |c1i ]
Pr[c∗i |c2i ]

=
c1i · eε2

1+eε2
+ (cmax + cmin − c1i ) · 1

1+eε2

c2i · eε2
1+eε2

+ (cmax + cmin − c2i ) · 1
1+eε2

=
(eε2 − 1) · c1i + cmax + cmin
(eε2 − 1) · c2i + cmax + cmin

≤e
ε2 · cmax + cmin
eε2 · cmin + cmax

≤ eε2 . (10)

The first equality holds because cmin ≤ c1i , c
2
i ≤ cmax.

Then, the case c∗i = cmin can be analyzed in the similar
manner. Thus, the confusion on charges in WLC satisfies ε2-
LDP according to Definition 2. Moreover, according to the
sequential composition [16], WLC satisfies (ε1+ε2)-LDP.

4.3 Privacy-preserving Worker Selection in Platform

After getting the obfuscated information from the requester
and worker, the platform needs to perform three steps:
information discovery, worker-task matching and worker
selection. Information Discovery: First, the platform cali-
brates the obfuscated locations and charges from workers to
estimate the number of times workers cover the location
`, i.e., f∗` (S, ε1) in Eq. 3 and the expected total charge
C(S, ε2) in Eq. 4. In the following, we omit the privacy
budget ε in notations for simplicity. Then, we propose the
Platform Calibration Process (PCP) in Algorithm 4. For a set
of workers S, we input the obfuscated location and charge
matrices of each worker in S, and get a location matrix
L(S), where each item represents the estimated number of
all workers in S cover each location ` inL, and the estimated
total charge C(S). Note that C(S) is a value, not a matrix.

First, we initialize the location matrix L(S), the charge
value C(S) of S and the probabilities p1, p2 (lines 1-2). Then,
we count the number of `∗i = 1, c∗i = cmax and c∗i = cmin
among all obfuscated locations and charges of S (lines 4-
6). Then, we calibrate them to estimate their real values
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based on Eq. 3 (lines 8-10). Note that in line 12, we add
f∗` for each location ` to the estimated location matrix L(S),
and c∗(S) indicates the expected charge of S covering `.
According to RR, f∗` is the unbiased estimate of the real
value f`. However, due to the location-charge correlation,
the charge confusion is different from the traditional RR.
Thus, we prove that the estimated charge c∗(S) is also the
unbiased estimate of the real value in Theorem 3.

Theorem 3. For a specific location `, let c(S) denote the real
total charge of workers in S, and c∗(S) denote the estimated total
charge by PCP. Then, we have E[c∗(S)] = c(S), where E[c∗(S)]
is the expected value of c∗(S).

Proof. As mentioned above, there are two steps that affect
the estimation of c(S) for the specific location `.

Location confusion: Due to the location-charge correla-
tion, the location confusion will affect the estimation of
c(S). According to the four cases mentioned above, we
assume that there are n1 workers changing from [1, ci] to
[1, ci], and n2 workers changing from [0, 0] to [1, c∗i ], where
c∗i = WCC((cmax+cmin)/2, ε2) according to WLC. Let c̄(S)
denote the mean of all real charges, and c′(S) denote the
total charge after the location confusion. Due to the charge
discretization in Eq. 7, we have

E[c′(S)] = E[
∑n1

i=1
ci +

∑n2

i=1
c∗i ]

= n1c̄(S) + n2[cmax ·(
c̄(S)−cmin
cmax−cmin

) + cmin ·(
cmax−c̄(S)

cmax−cmin
)]

= n1c̄(S) + n2 · c̄(S) = c(S). (11)

Note that E[
∑n1

i=1 ci]=n1 · c̄(S) and c̄(S)=(cmax+cmin)/2
due to charges that are drawn from the Gaussian distribu-
tion. The last equality holds because the probability of [1, ci]
to [0, 0] is equal to the probability of [0, 0] to [1, c∗i ].

Charge confusion: After the charge discretization in Eq. 7,
let n′1, n

′
2 denote the counts of cmax, cmin in the real charges.

After the charge confusion (lines 2 and 7 in WLC), let n̂1, n̂2
denote the counts of cmax, cmin in the obfuscated charges,

E(n̂1) = n′1p2 + n′2(1− p2),E(n̂2) = n′2p2 + n′1(1− p2). (12)

According to PCP (line 10), the counts n̂1 and n̂2 are
calibrated based on RR as follows:

n∗1 =
(p2−1)(n̂1+n̂2)+n̂1

2p2 − 1
, n∗2 =

(p2−1)(n̂1+n̂2)+n̂2

2p2 − 1
. (13)

Based on Eqs. 11-13, we get

E[c∗(S)] = E[cmaxn
∗
1 + cminn

∗
2]

= E[
(cmax + cmin)(p2 − 1)(n̂1 + n̂2) + cmaxn̂1 + cminn̂2

2p2 − 1
]

= [(2p2 − 1)cmaxn
′
1 + (2p2 − 1)cminn

′
2]/(2p2 − 1)

= cmaxn
′
1 + cminn

′
2 = E[c′(S)] = c(S). (14)

Thus, the estimated charge c∗(S) is the unbiased estimate.

As we emphasized in Section 4.2, we consider the corre-
lation between location and charge when confusing worker
information. Next, we evaluate the benefits of consider-
ing the location-charge correlation in Fig. 4. If we obfus-
cate worker information with location-charge correlation by
WLC, the platform calibrates the obfuscated locations and
charges from workers in PCP, and the calibration results are
shown in Fig. 4a. Specifically, 4a illustrates the estimated

(a) With location-charge correlation
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(b) Without location-charge correla-
tion

Fig. 4: Location-charge correlation evaluation.

Algorithm 5 Worker-Task Matching (WTM)
Input: Estimated worker location matrix L(S), collection of
obfuscated task location matrices Γ
Output: Utility F (S, ε1)

1: F (S, ε1)← 0
2: for each f∗` ∈ L(S) and f∗` > 0 do
3: L∗(S)← {0, · · · , 0, f∗` , 0, · · · , 0}
4: for each L∗j ∈ Γ do
5: ψ ← L∗j × L∗(S)
6: if ψ is a non-zero symmetric matrix then
7: x` ← 1
8: else x` ← 0

9: F (S, ε1)← F (S, ε1) + min{f∗` (S, ε1), 1} · x`
10: return F (S, ε1)

charges across locations under different values of the pri-
vacy budget. According to [16], we assume that the real
charges of workers follow the Gaussian distribution with
respect to the locations. Note that other distributions also
have similar results. Then, the No-privacy strategy (i.e., the
ground truth) shows the Gaussian distribution in Fig. 4a
because it has no loss of the correlation due to privacy
protection. When the privacy budget ε changes, the esti-
mated charges obtained by PCP follow a similar distribution
accompanied with slight fluctuations, which means that the
platform can recover the information of workers accurately
so that workers can be selected reasonably. As a contrast,
Fig. 4b shows the calibration results when we obfuscate
the worker location and charge without the correlation. We
discover that the distribution of estimated charges in Fig. 4b
deviates from the real distribution, which means the strat-
egy cannot remain the location-charge correlation and the
platform cannot recover the information accurately. Thus,
taking the location-charge correlation into account makes
the confusion result more reasonable and helps the platform
recover the information of workers more accurately as well.
This provides support for the following worker-task match-
ing and worker selection.

Worker-task Matching: After the information discovery,
the platform has obtained the estimated worker location
matrix L(S) ← PCP(L∗i , C∗i , ε1, ε2) of a set of workers S
and the collection of obfuscated task location matrices Γ ←
TLC(Lj). Based on these, the platform conducts the Worker-
Task Matching (WTM) process depicted in Algorithm 5 to
measure the utility of S. First, we decompose L(S) into
multiple sub-matrices similar to TLC (lines 4-5). Specifically,
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Algorithm 6 Worker Selection (WS)
Input: Total worker set U , budget B
Output: Selected worker set S

1: Search all worker sets S with size |S| ≤ 3 and get a
collection I = {S ⊆ U, |S| ≤ 3}

2: for each S′ ⊆ {S|S ⊆ I, |S| = 3, c(S) ≤ B} do
3: t← 0, St ← S′, Ut ← U
4: while Ut \ St 6= ∅ do
5: t← t+ 1, ck ← C(St−1 ∪ {uk})− C(St−1)

6: δt←maxuk∈Ut−1\St−1

F (St−1∪{uk})−F (St−1)
ck

7: ut←argmaxuk∈Ut−1\St−1

F (St−1∪{uk})−F (St−1)
ck

8: if δt ≤ 0 then Terminate the while loop
9: if c(St−1 ∪ {ut}) ≤ B then

10: St ← St−1 ∪ {ui}, Ut ← Ut−1

11: else St ← St−1, Ut ← Ut−1 \ {ut}
12: I ← I ∪ St
13: S ← argmaxSj∈IF (Sj)
14: return S

for each item f∗` ∈ L(S) and f∗` > 0, we construct a new
worker location matrix L∗(S) ← {0, · · · , 0, f∗` , 0, · · · , 0},
where all items are 0 except the item f∗` (line 3). Then, for
each item in Γ, if there is a validation matrix ψ = L∗j×L∗(S)
that is a non-zero symmetric matrix, it means that workers
in S will perform the task in ` according to the properties of
symmetric matrix. More precisely, if (L′j)T×RT×R×L′(S)
is non-zero symmetric matrix, we obtain L′j = L′(S). Thus,
we set x` = 1, otherwise x` = 0. Next, according to Eq. 5,
the platform can measure the utility F (S, ε1) of S.

Although we have effectively protected the privacy of
both the requester and worker, our framework inevitably
produces some overhead [36] including three parts: (i) the
communication overhead on the requester. As shown in
TLC, to obfuscate the locations of tasks, the requester needs
to upload nj+1 matrices to the platform, where nj denotes
the count of `j=1 in Lj ; (ii) the computation overhead on
workers. As shown in WLC, each worker will obfuscate
his/her locations and charges, whose computation overhead
is O(k2·|U |); (iii) the computation overhead on the platform.
The platform first calibrates the obfuscated information
based on PCP, whose computation overhead is O(k2). Then,
the platform conducts the worker-task matching to calculate
the utility of a set of workers in WTM with the computation
overhead O(k2 ·nj). Thus, the total computation overhead
on the platform is O(k2 ·nj).

Worker Selection: After the above information discov-
ery and worker-task matching, the platform starts to select
workers under the budget constraint. First, we prove that
the worker selection problem under the bilateral privacy-
preserving framework is NP-hard in Theorem 4 and is non-
monotone and non-submodular in Theorem 5.

Theorem 4. The bilateral privacy-preserving worker selection
problem in Eq. 6 is NP-hard.

Proof. Obviously, when we do not consider the privacy
issues of the requester and workers, the problem can be
equivalently seen as the problem of maximizing a submodu-
lar set function subject to a knapsack constraint [37], which
is a well-known NP-hard problem. Hence, the problem in
Eq. 6 is NP-hard.

Theorem 5. The utility function of a set of workers S is a non-
monotone non-submodular function.

Proof. For simplicity, we only consider the coverage to a
location ` by a set of workers. Suppose two worker sets
S1 = {0, 1} with 2 workers, and S2 = {0, 1, 0} with 3
workers, where 1 means that the worker covers `, and 0
means no coverage. According to the utility function in Eq.
5, let p1 = 0.8, then we have F (S1) = 1 ≤ F (S2) = 2/3.
Thus, the utility function is non-monotone. Next, we add
a new worker uo = 1 to S1 and S2 , and calculate the
increment respectively. Then, we get F (S1∪{uo})−F (S1) =
0<F (S1∪{uo})−F (S1) = 1/3 and S1⊆S2. According to
the submodular property [38], the utility function is non-
submodular.

The worker selection problem proved NP-hard, non-
monotone, and non-submodular in Theorems 4-5 is hard to
address by existing methods. To this end, we extend the
classic non-monotone submodular maximization problem
[29] to a non-submodular scenario and design a polynomial-
time algorithm referred to as Worker Selection (WS) strategy
as in Algorithm 6, which returns an approximate worker set
achieving a close performance to the optimal one.

More precisely, given total worker set U and budget B,
we search all worker sets with size |S| ≤ 3 and get an initial
collection of worker sets, i.e., I (line 1). For each set S′

in collection {S|S ⊆ I, |S| = 3, c(S) ≤ B}, we greedily
extend it by adding appropriate workers until budget B is
exhausted (lines 3-11) and get an extended worker set St
with size |St| > 3. Let St = S′, Ut = U . In each step t,
we find a worker ut with the maximum marginal utility δt
based on the estimated values from PCP. If δt ≤ 0, the loop
part terminates and the current worker set St is dropped
in order to achieve a lower bound (lines 8). Otherwise, WS
adds worker ut to St while satisfying the budget constraint
(lines 9-10). Finally, WS returns a worker set S with the
maximum utility from collection I (line 13).

5 PERFORMANCE ANALYSIS

To analyze the performance of WS, we first introduce Def-
inition 4 [39], [40] to relax the submodularity of the utility
function of a set of workers in Eq. 5.

Definition 5. The γ-submodularity of a non-submodular set
function F () is defined as γ = minS1⊆S2,u/∈S2

Fu(S1)/Fu(S2),
where Fu(S1) = F (S1 ∪ {u})− F (S1).

Lemma 1. Given the γ-submodularity of F (), we have∑
ui∈S2\S1

Fui(S1) ≥ γ · FS2(S1), where S1 ⊆ S2.

Proof. For arbitrary two worker sets S1 and S2 with S1 ⊆ S2

and S2 \ S1 = {u1, · · · , ur}, we have

FS2(S1) = F (S1 ∪ S2)− F (S1) (15)

=
∑r

t=1
[F (S1 ∪ {u1, · · · , ut})− F (S1 ∪ {u1, · · · , ut−1})]

=
∑r

t=1
Fut(S1∪{u1, · · · , ut−1}) (16)

≤(1/γ)·
∑

ui∈S2\S1

Fui(S1),

where the last inequality holds due to Definition 4.
Afterward, based on [38], let S∗ denote the optimal

worker set of the problem. If |S∗| ≤ 3, the optimal set will
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(a) Brightkite (b) Gowalla (c) Foursquare

Fig. 5: The check-in distribution of three datasets.

TABLE 2: Simulation Parameters

Parameters Value
Number of grids k 10 ∼ 20

Privacy budget ε1 0.1 ∼ 0.9

Privacy budget ε2 0.5

Budget constraint B 100 ∼ 600

Number of workers |U | 50 ∼ 150

Number of tasks 50

Each worker’s total charge 10 ∼ 90

Charge ratio cmax/cmin 1 ∼ 6

be found by WS (line 1). Therefore, we assume that |S∗| > 3,
and order S∗ as {u1, u2, · · · , ut}, where

uj = maxu∈S∗\{u1,u2,··· ,uj−1} F{u1,u2,··· ,uj−1}({u}). (17)

The workers are ordered by maximum marginal value
without considering their charges. Let O = {u1, u2, u3}
denote the worker set containing the first three items in S∗.
Then, for any worker uj ∈ S∗, j ≥ 4 and any worker set
T ⊆ U \ {u1, u2, u3, uj}, according to Definition 4, we have

FO∪T ({uj}) ≤ (1/γ) · F ({uk}) ≤ (1/γ) · F ({u1}), (18)
FO∪T ({uj}) ≤ (1/γ) · [F ({u1, u2})− F ({u1})], (19)
FO∪T ({uj}) ≤ (1/γ) · [F ({u1, u2, u3})− F ({u1, u2})]. (20)

According to Eqs. 18-20, we can get

3FO∪T ({uj}) ≤ (1/γ) · F ({u1, u2, u3}) = (1/γ) · F (O). (21)

For the set function FO(), we obtain Lemma 2.

Lemma 2. For the function g() = FO(), given any worker set
S1, S2 ⊆ U , it holds that

g(S1∪S2)≤g(S1)+(1/γ)
∑

ui∈S1\S2

[g(S1∪{ui})−g(S1)]. (22)

Proof. According to Lemma 1, we have g(S1∪S2) = g(S1)+
g(S1 ∪ S2) − g(S1) ≤ g(S1) + 1/γ

∑
ui∈S1\S2

gui(S1) =
g(S1) + 1/γ

∑
ui∈S1\S2

(g(S1 ∪ {ui})− g(S1)).

Next, we consider the iteration of WS (lines 2-12), where
St denotes the selected worker set in the t-iteration in
WS, and ut denotes the selected worker in the t-iteration.
Assume that (t′+ 1)-th iteration is the first step in WS when
either (i) WS stops (line 8) or (ii) ut′+1 ∈ S∗, but ut′+1 is
dropped by WS. Then, we get Lemma 3.

Lemma 3. FO(St′)/FO(St′ ∪ S∗) ≥ γ(1− 1/e).

Proof. Based on [38] and Lemma 2, we have

FO(St′)

FO(St′ ∪ S∗)
≥

∑B∗

j=1 ρj

mink∈[1,B∗](
∑k−1
i=1 +(1/γ)·B·ρk)

(23)

≥γ
∑B∗

j=1 ρj

mink∈[1,B∗](
∑k−1
i=1 +B·ρk)

≥γ(1− e−B
∗/B)≥γ(1− e−1),
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Fig. 6: Different distributions of worker charges.

where γ ∈ (0, 1), and B,B∗ are the temporary variables
satisfying B ≤ B ≤ B∗.

Lemma 4. The worker set St′ selected by WS satisfies F (St′ ∪
S∗)≥F (S∗), where S∗ is the optimal solution.

Proof. According to WS (line 8), F (St′) ≥ 0. For simplicity,
we ignore the min function in Eq. 5, and have F (St′ ∪S∗)−
F (S∗) =

∑
`∈L( (p1−1)|St′ |

2p1−1 + f(St′ )
2p1−1 ) ≥ 0. The case with the

min function can be analyzed in the similar manner.

Theorem 6. WS achieves the lower bound γ · (1− 1/e) with the
γ-submodular utility function, where γ ∈ [0.477, 1).

Proof. According to Definition 4 and Lemmas 1-4, we have

F (St′) = F (O) + FO(St′)

= F (O) + FO(St′ ∪ {ut′+1})− (F (St′ ∪ {ut′+1})− F (St′))

≥ F (O) + γ(1− 1/e)FO(St′ ∪ S∗)− F (O)/(3γ)

= γ(1− 1/e)F (St′ ∪ S∗) + (1− 1/(3γ)− γ(1− 1/e))F (O)

≥ γ(1− 1/e)F (St′ ∪ S∗) ≥ γ(1− 1/e)F (S∗), (24)

where the last inequality holds when 1−1/(3γ)≥γ(1−1/e),
i.e., γ ∈ [0.477, 1). Hence, WS achieves the lower bound γ ·
(1−1/e). In addition, we have proved that the estimates on
worker locations and charges are both unbiased estimates in
Theorem 3, thus the lower bound is still meaningful.

6 SIMULATIONS

6.1 Trace-based Dataset

In the simulations, we adopt three widely-used real-
world check-in datasets: Brightkite [41], Gowalla [41] and
Foursquare [42]. The datasets contain a large amount of
worker information and PoI information, e.g., the worker
id, worker location, venue location, and check-in time.
Thus, the datasets are suitable for our simulations, from
which we can extract the worker location and task location
(PoI) to construct matrices. As shown in Fig. 5, the blue
nodes denote the geographic distribution of the workers’
locations in three datasets. Specifically, Brightkite includes
58,228 workers and a total of 4,491,143 check-ins from Apr.
2008 to Oct. 2010. Similarly, Gowalla consists of 196,591
workers and 6,442,890 check-ins, and Foursquare contains
456,988 check-ins made by 10,162 workers. In addition, in
simulations, we select specific areas based on three datasets
and divide each area into k × k grids according to certain
parameters such as task and user density.
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Fig. 7: Completed tasks vs. Budget.
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Fig. 8: Completed tasks vs. Number of workers.

6.2 Setup and Metrics

The values of key simulation parameters are described in Ta-
ble 2. In simulations, we mainly need the worker’s location
and charge information. For workers’ locations, we directly
extract each worker’s real check-in locations to generate the
worker location matrix Li. For workers’ charges, we use a
specific distribution to generate each worker’s charge for
all grids over interval [10, 90]. We select the budget (i.e.,
B) over the interval [100,600] so as to clearly display the
effectiveness of proposed algorithms [43]. Also, we select
the privacy budget ε1 over [0.1, 0.9], and ε2 = 0.5 [16].
Based on the number of locations the worker will cover,
we get the average charge of going to each location. Using
the average charge as the mean of a new distribution, we
generate the charge for each location and get each worker’s
charge matrix Ci. Moreover, we adopt three distributions
to generate the worker charge: (1) Uniform distribution;
(2) Concave distribution as shown in Fig. 6a, i.e., Gaussian
distribution; and (3) Convex distribution as shown in Fig.
6b. Two metrics are used to verify our strategy: completed
tasks and privacy leakage.

(1) Completed tasks: the number of tasks completed by the
selected workers in simulations. Actually, completed tasks
refer to the covered tasks since a task is considered to be
executed when a mobile worker covers its location.

(2) Privacy leakage [13], [44]: the measure of how close the
worker’s real location matrix is to the obfuscated location
matrix following the Kullback-Leibler divergence, and the
privacy leakage (PL) in this paper is defined as:

PL = 1/(
∑
ui∈S

ln
1

Pr(Li = L∗i )
), (25)

where Pr(Li =L∗i ) means the probability that the worker’s
real location matrix Li is inferred by the platform. The
probability is large when workers are more likely to tell the
truth. Note that PL is different from the privacy budget (PB)
ε in Definition 1. Specifically, PB reflects the privacy level
that the mechanism can provide, i.e., how close the initial
value is to its obfuscated value. However, PL measures the
similarity between the worker’s real location matrix and
the obfuscated location matrix. Although the definitions of
PB and PL are different, they have the following inner-
relationship: the higher privacy level (less PB) the mech-
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Fig. 9: Completed tasks vs. Multiple variables.
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Fig. 10: Completed tasks vs. Privacy budget.

anism can provide, the less privacy will be leaked to the
platform (less PL).

In this paper, we compare our strategy with the follow-
ing benchmarks: (1) PRIM [13], the state-of-the-art strategy,
which exploits the exponentiation mechanism to construct
an obfuscation function to protect the worker utility (i.e., the
worker’s bid) while satisfying the differential privacy. Actu-
ally, the worker’s bid in PRIM corresponds to the worker’s
location in this paper, both of which represent the worker’s
utility. (2) No-privacy, the strategy which is the no-privacy-
version of our strategy without the confusion strategies.
(3) Random, the strategy which selects workers randomly
under the bilateral privacy-preserving framework. (4) No-
correlation, the strategy which obfuscates the worker’s lo-
cations and charges based on RR separately while ignoring
the location-charge correlation.

6.3 Evaluation Results

Evaluation of completed tasks: Based on the three datasets,
we change the budget from 100 to 600 and conduct simu-
lations in Fig. 7, which shows the results of three datasets:
Brightkite, Gowalla, and Foursquare. We observe that the
completed tasks of all strategies show an upward trend
as the budget grows. This is because, with more payment
budget, the platform can select more workers to perform the
tasks, then the number of completed tasks grows naturally.
We also observe that the No-privacy strategy outperforms
the others because No-privacy directly selects workers using
the real workers’ information and avoids performance loss
due to privacy protection. Thus, the selection results are
more accurate than using the obfuscated worker informa-
tion. Moreover, our strategy outperforms PRIM since we use
obfuscated information to estimate the real locations and
the real charges of a group of workers, instead of directly
using obfuscated information to select workers like PRIM.
Therefore, our strategy is better than PRIM. In addition,
Random strategy obtains the lowest result because of the
randomness of the worker selection.

As shown in Fig. 8, we then evaluate the completed
tasks with the change of the number of workers from 50
to 150 based on the three datasets. The completed tasks of
all strategies grow slightly with the increase of the number
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Fig. 11: Completed tasks vs. Charge distribution & Charge ratio.

of workers because the platform can select suitable workers
with high utility and low charge to perform tasks. Similarly,
our strategy outperforms others except No-privacy. Then,
Fig. 9 demonstrates the overall trend of completed tasks
with the changes of both the budget and number of workers.

Next, we verify the effect of the privacy budget on
completed tasks. As shown in Fig. 10, we investigate the
effectiveness of Our, PRIM, No-privacy, and Random as
the privacy budget is increased from 0.1 to 0.9. Note that
there are two privacy budgets ε1 and ε2 in our strategy
(i.e., WLC) for the location confusion and charge confusion,
respectively. We focus on the privacy budget ε1 for the lo-
cation confusion since PRIM only protects workers’ utilities
(i.e., bid) to satisfy ε1-differential privacy. We observe that
as the privacy budget rises, the completed tasks of Our and
PRIM increase accordingly. This is because according to Eqs.
1-3, a larger privacy budget indicates a higher probability
that the workers tell the truth so that the platform could
estimate the statistic of workers more accurately, leading to
a better worker selection effect. The larger privacy budget,
however, will result in a lower level of privacy protection.
Our strategy still has a better performance than PRIM due to
the same reasons mentioned above. Note that the results of
No-privacy and Random are essentially unchanged as the
privacy budget is increased since any noise related to the
privacy budget is not considered in these two strategies.

In addition, since worker charge has a great influence on
completed tasks, we verify the effect of the charge distri-
bution and charge ratio on completed tasks. First, with the
change of the budget, we use three distributions to generate
the worker charge and conduct simulations. The results are
shown in the upper part of Fig. 11, where Uniform, Concave,
and Convex denote the strategies with the corresponding
distributions. We discover that all three strategies increase
with the growth of the budget. Note that Concave always
has the lowest values of completed tasks because concave
distribution produces a charge near the mean with a high
probability as shown in Fig. 6a. Workers always have a
relatively large charge, so the selection effect is not good
under the same budget constraint. In the convex distribution
as shown in Fig. 6b, the worker charge is either very high
or very low, thus it is likely to find the worker with the low
charge. Next, we change the value of cmax/cmin (the mean
is not changed) and the results are shown in the lower part
of Fig. 11. We can discover that when the difference between
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Fig. 12: Completed tasks & Bound vs. Budget.
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cmax and cmin is small, the values of the three strategies are
not much different. But when cmax/cmin becomes larger,
it can be seen that Convex>Uniform>Concave, which is in
line with our above statement. The simulations fully explain
the effect of charge distribution on worker selection.

Evaluation of Lower Bound: Fig. 12 shows the impact
of the budget on the lower bound, where Optimal strategy
uses the global search to find the optimal worker set under
the budget constraint without privacy protection. We dis-
cover that the completed tasks of our strategy are quite less
than that of Optimal, but as the budget grows, our strategy
gets closer to Optimal. This is because when the budget is
large enough and the total worker set is not infinite, our
strategy will always select enough workers to approach the
optimal solution. Moreover, the blue bars denote the values
of the lower bound, i.e., the ratio of completed tasks of
Our and Optimal. We discover that the values of the lower
bound are always greater than 0.5, which is greater than
γmin·(1−1/e) = 0.301. Therefore, the results are consistent
with Theorem 6. In addition, the results illustrate that in
practical applications, our algorithm is always better than
the theoretical lower bound.

Evaluation of Privacy Leakage: According to the defini-
tion of the privacy leakage in Eq. 25, we change the privacy
budget from 0.1 to 0.9, and the results are shown in Fig.
13, where LIN-M [44] is a privacy-preserving mechanism
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Fig. 14: Completed tasks & Privacy leakage vs. Grid size.

with the trusted platform, that is, all of the worker’ infor-
mation will be exposed to the platform in LIN-M. Fig. 13a
demonstrates the privacy leakage while protecting workers’
locations, and we discover that the privacy leakage rises
with the increase of the privacy budget. As mentioned
above, a larger privacy budget means that workers are more
likely to tell the truth, which makes the worker selection
performance better, but it also leads to more leakage of
the worker privacy. Compared with PRIM, our strategy
leaks less privacy because we directly protect the worker’s
location matrix instead of a single value in PRIM. Thus,
it is difficult for the platform to guess all the correct loca-
tions of a worker. Note that the privacy leakage of LIN-
M is positive infinity because workers’ real information is
exposed completely to the platform, which means that the
worker’s privacy has been leaked infinitely. Similarly, Fig.
13b shows the trend of the privacy leakage while protecting
the worker’s charges, where the values of PRIM and LIN-M
are both positive infinity because they ignore the privacy
protection of the worker’s charges. Hence, our strategy
achieves the best privacy protection performance.

Evaluation of Number of Grids: In simulations, we
select specific areas in cities based on three datasets and
divide each area into k × k grids according to task and user
density, where the number of grids is k, and grid size is the
real length of the grid (km). Next, we change the number
of grids from 10 to 20 and record the completed tasks and
privacy leakage as shown in Fig. 14. We discover that with
the increase of the number of grids, the completed tasks
gradually decline. This is because when we increase the grid
number while keeping the task number and worker number
unchanged, the locations of workers and tasks become more
dispersed so that the previously covered tasks may not be
covered now. In addition, with more grids, the accuracy
of the platform estimating the worker information in Al-
gorithm 4 has also decreased. More importantly, we find
that the privacy leakage also decreases because the worker’s
location real location matrix is hard to infer by the platform
with more grids according to Eq. 25. Actually, as proven in
Theorem 1, TLC achieves ln k-Privacy. When the number of
grids k increases, the knowledge upper bound brought by
the obfuscated information relatively increases, but it does
not mean the level of privacy protection is declining. In fact,
the level is increasing as shown in Fig. 14. In summary, the
privacy leakage is not only related to the privacy budget but
also related to the number of girds.

Evaluation of Location-Charge Correlation: In Fig. 4,
we have already verified part of the effect of considering
the location-charge correlation when confusing the worker
information, which can effectively preserve the distribution

TABLE 3: Location-charge correlation evaluation.

ε2 0.1 0.3 0.5 0.7 0.9

Our RE 0.281 0.215 0.166 0.116 0.075
log(MSE) 4.303 3.256 2.660 1.930 1.590

No-correlation RE 0.702 0.590 0.465 0.452 0.448
log(MSE) 5.722 5.380 5.263 5.259 5.282

of charges with respect to locations. Furthermore, we evalu-
ate the impact of considering the location-charge correlation
on the accuracy of estimated charges. Note that considering
the location-charge correlation or not has no effect on the
estimation of workers’ locations. We keep other conditions
unchanged and change the privacy budget from 0.1 to 0.9,
and the results are shown in Table 3, where RE and MSE [16]
denote the relative and absolute errors of estimated charges
with respect to real charges, respectively. We discover that
the values of RE and MSE both decrease with the increase
of the privacy budget, which illustrates that as the level of
privacy protection decreases, the platform estimates charges
more accurately. Moreover, the relative and absolute errors
of our strategy are always smaller than No-correlation’s,
which demonstrates that considering the location-charge
correlation while confusing workers’ information can ef-
fectively improve the platform’s estimation accuracy of
workers’ charges. The reason is that the location-charge
correlation is actually the prior knowledge for the charge
confusion, and the obfuscated charges could remain more
useful information than not considering the correlation.

7 CONCLUSION

In this paper, we focused on the privacy concerns in spatial
crowdsourcing and proposed a bilateral privacy-preserving
framework to select workers under the payment budget
constraint without relying on third-party trusted entities.
The framework protected the privacy of the requester based
on randomized matrix multiplication and also protected
the privacy of workers based on randomized response.
Specifically, when protecting workers, we proposed a local
confusion strategy to jointly protect each worker’s locations
and charges while utilizing the location-charge correlation,
which satisfied local privacy differential. Next, we presented
an approximation algorithm to select workers under the
bilateral privacy-preserving framework, which achieved a
lower bound. Finally, extensive simulations based on real-
world datasets verified the performance of our algorithm
compared with the state-of-the-art strategy in terms of pri-
vacy protection and worker selection.
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