
1

SlimBox: Lightweight Packet Inspection over
Encrypted Traffic

Qin Liu, Member, IEEE, Yu Peng, Graduate Student Member, IEEE, Hongbo Jiang, Senior Member, IEEE,
Jie Wu, Fellow, IEEE, Tian Wang, Member, IEEE, Tao Peng, Member, IEEE,

and Guojun Wang, Member, IEEE

Abstract—Due to the explosive increase of enterprise network traffic, middleboxes that inspect packets through customized rules have
been widely outsourced for cost-saving. Despite promising, redirecting enterprise traffic to remote middleboxes raises privacy concerns
about the exposure of corporate secrets. To address this, existing solutions mainly apply searchable encryption (SE) to encrypt traffic
and rules, enabling middlebox to perform pattern matching over ciphertexts without learning any sensitive information. However, SE is
designed for searching pre-chosen keywords, and may cause extensive costs when applied directly to inspecting traffic in which the
keywords cannot be determined in advance. The inefficiency of existing SE-based approaches motivates us to investigate a
privacy-preserving and lightweight middlebox. To this end, this paper designs SlimBox, which rapidly screens out potentially malicious
packets in constant time while incurring only moderate communication overhead. Our main idea is to fragment a traffic/rule string into
sub-patterns to achieve conjunctive sub-pattern matching over ciphertexts, while incorporating the position information into the secure
matching process to avoid false positives. Experiment results on real datasets show that SlimBox can achieve a good tradeoff between
matching latency and communication cost compared to prior work.

Index Terms—Outsourced middlebox, privacy preserving, lightweight, pattern matching, searchable encryption.

F

1 INTRODUCTION

Middleboxes have been widely deployed as a vital compo-
nent of modern networks, performing deep packet inspec-
tion (DPI) to monitor abnormal network traffic. For exam-
ple, intrusion detection systems (e.g., Snort [1] or Bro [2]) are
extensively used to detect if packets contain known attack
patterns. Due to the increasing volume of network traffic,
maintaining in-house middlebox infrastructure may incur
expensive overheads. For cost effectiveness, it is a prevailing
trend for enterprises to outsource middleboxes [3].

Despite promising, cloud-based middlebox services also
face new security challenges [4], [5]. To illustrate, let us
consider the following application scenario. Enterprise A is
cooperating with enterprise B on a major project. To protect
confidential corporate data from eavesdroppers, all enter-
prise network traffic on the web is encrypted by SSL/TLS.

• Qin Liu, Yu Peng and Hongbo Jiang are with the College of Computer
Science and Electronic Engineering, Hunan University, Changsha,
Hunan Province, P.R. China, 410082. E-mail: gracelq628@hnu.edu.cn;
pengyu411@hnu.edu.cn; hongbojiang2004@gmail.com

• Jie Wu is with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122, USA. E-mail:
jiewu@temple.edu

• Tian Wang is with the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University & UIC, Zhuhai, Guangdong
Province, P. R. China, 519000. E-mail: cs tianwang@163.com

• Tao Peng and Guojun Wang are with the School of Computer
Science and Cyber Engineering, Guangzhou University, Guangzhou,
Guangdong Province, P.R. China, 510006. E-mail: pengtao@gzhu.edu.cn;
csgjwang@gzhu.edu.cn

Corresponding author: Guojun Wang

Meanwhile, enterprise A subscribes outsourced middlebox
services for exfiltration prevention. The middlebox needs to
thoroughly inspect the packets out of the enterprise network
to block accidental leakage of private data. In this scenario,
the traffic redirected to the middlebox is encrypted, limiting
the processing capabilities of exfiltration prevention. The
simple approach that intercepts and decrypts the encrypted
traffic would easily trigger potential man-in-the-middle
attacks [6]. Furthermore, the packet inspection rules are
the intellectual property of the security organizations (e.g.,
McAfee [7]) and should be protected against the external
middlebox.

To address the above privacy concerns, existing work
mainly applied searchable encryption (SE) [8]–[10] to en-
crypt traffic and rules, such that middleboxes can perform
pattern matching over ciphertexts without decryption [11]–
[19]. The main problem is that SE is designed for searching
pre-chosen keywords, and may incur large communication
and computational costs when supporting pattern matching
over a traffic string that cannot be expressed as a sequence
of pre-defined keywords. For example, BlindBox [11] frag-
mented the traffic string into different lengths for encryp-
tion, resulting in nearly 400× the cost than the original
packet size. S4E [19] required heavy pairing operations
to support shiftable encrypted patterns, consuming almost
1300s to inspect a packet over 3099 patterns. Recently, Lai
et al. [20] exploited symmetric hidden vector encryption
to design a bandwidth-efficient pattern matching scheme
with the cost of disclosing the rule pattern length. Moreover,
the deterministic cryptographic primitive used in the traffic
encryption may make their scheme suffer frequency analysis
attacks [21].

The insufficiencies or privacy problems of existing ap-

2

proaches motivate us to develop lightweight middleboxes
for secure outsourcing. In this paper, we design SlimBox to
efficiently offer privacy-preserving DPI services. Our main
idea is to fragment a traffic/rule string into sub-patterns of
fixed length and adapt the OXT scheme [22] to efficiently
achieve conjunctive sub-pattern searching. The main trick
is that the position information is subtly integrated into
the secure matching process while ensuring traffic/rule
privacy. Specifically, we first provide a basic construction,
SlimBox0, which achieves constant-time filtering by using
the cross searching technique of OXT, but incurs fair-sized
bandwidth and extra leakage about the partial matching re-
sults. Based on carefully tailored techniques, our advanced
design, SlimBox∗, achieves better privacy protection and
reduced bandwidth, at the cost of almost the same compu-
tational complexity. Our contributions can be summarised
as follows:

• We design SlimBox, a privacy-preserving and light-
weight middlebox, which supports pattern match-
ing over encrypted traffic while incurring moderate
overheads under well-defined leakage.

• We construct SlimBox under different trade-off be-
tween security and efficiency. Compared with exist-
ing SE-based solutions, SlimBox can rapidly screen
out malicious packets.

• We design a randomization method in the pretreat-
ment phase to further hide offsets between sub-
patterns while avoiding leaking the rule pattern
length.

• We formally analyze the security of SlimBox and
evaluate the performance on real-world datasets.
Experimental results demonstrate that SlimBox is
extremely efficient for secure pattern matching.

Paper Organization. We introduce the related work in
Section 2 and formulate the problem in Section 3. After
overviewing this work in Section 4, we construct SlimBox0

and SlimBox∗ in Section 5 and Section 6, respectively. We
analyze the security in Section 7 before evaluating per-
formance in Section 8. Finally, we conclude the paper in
Section 9.

2 RELATED WORK

With the increasing demand for outsourced DPI services,
secure middleboxes have attracted widespread attention.
Existing research in this field can mainly be classified
into SE-based solutions [11]–[19] and hardware-based so-
lutions [23]–[27]. The hardware-based solutions lean upon
hardware enclave (i.e., Intel SGX), guaranteeing that the
middlebox functions are executed in a trusted environment
by feeding the traffic into the enclave. The main problem
with these kinds of solutions is that the cloud servers are
required to be equipped with SGX, which is vulnerable to
various side-channel attacks [28], [29].

The SE-based solutions rely on searchable encryption,
which allows cloud servers to search specific keywords over
encrypted data. Blindbox [11] is the first secure middlebox
that tokenizes the payloads into fragments, each represent-
ing a keyword and is encrypted using SE. It allows the mid-
dlebox to perform pattern matching in a privacy-preserving
way, but will incur a huge bandwidth for high matching

TABLE 1: SE-based middleboxes.

Scheme Matching
speed

Communication
overhead

Fast
filtering

BlindBox [11] Fast High ×
PrivDP [16] Fast High ×
SEST [18] Slow High ×
S4E [19] Slow High ×
SlimBox0 Fast High X
SlimBox∗ Fast Moderate X

SlimBox∗ (two-round) Fast Small X

accuracy. Since then, a few works have been conducted to
improve the design of Blindbox in terms of performance
and security. For instance, Embark [12] enhances the token
matching technique to realize prefix matching; BilndIDS [13]
improves the performance of BlindBox in terms of con-
nection setup time; Yuan et al. [14] build some encrypted
rule indexes based on cuckoo hashing to broad support
of inspection rules; SPABox [15] tokenizes the keywords
and builds a Trie-like structure to accelerate the matching
process; PrivDPI [16] reduces the setup delay by reusing in-
termediate results generated in previous sessions; Pine [17]
further simplifies the preprocessing step of PrivDPI while
protecting the rule privacy. These solutions are based on
the tokenization technique proposed in [11], and thus have
shortcomings of high communication overhead.

Recently, another line of work employed bilinear pair-
ings to support pattern matching against the encrypted
data. SEST [18] allows for pattern matching with keywords
of arbitrary length by using shiftable encrypted patterns.
S4E/AS3E [19] utilizes the fragmentation approach to im-
prove the matching performance of SEST. Although the
pairing-based solutions consume less bandwidth than the
tokenisation-based solution, they require a lot of expensive
pairing operations during matching process, and thus con-
sume too much matching time to be deployed in practice.
To further reduce the communication cost, Lai et al. [20]
employed symmetric hidden vector encryption to realize
encrypted traffic pattern matching. However, the inherent
deterministic cryptographic primitive used in the traffic
encryption make the scheme easily suffer frequency analysis
attacks [21]. Our SlimBox is built based on OXT, a sublinear
SE scheme supporting conjunctive keyword search. Unlike
the prior solutions that linearly scan the ruleset for each
packet, our SlimBox allows the middlebox to screen out ma-
licious packets in constant time. In best cases, the middlebox
is not required to perform any expensive operation at all.
The comparison between our work and previous work is
shown in Table 1.

3 PROBLEM FORMULATION

3.1 System Architecture
As shown in Fig. 1, the system consists of four entities:
the rule generator (RG) managed by the organization (e.g.,
McAfee), the gateway inside the enterprise network (IGW),
the gateway in the external network (EGW), and the mid-
dlebox (MB) deployed in the cloud. The same architecture
can be found in [4], [12], [20], [30].

The RG possesses a set of rules that formulate potential
attacks and can be used to detect malicious traffic. For cost
efficiency, the RG outsources the ruleset and delegates the
cloud-based MB to perform traffic inspection. For anomaly

3

EGW

MB

IGW

Traffic

RG

ERS

Encrypted traffic

Enterprise

Fig. 1: System architecture. The communication channels be-
tween gateways are assumed to be secured under SSL/TLS.

detection, the IGW first sends the packets to the MB before
interacting with the EGW. The rule/payload normally con-
tains sensitive information like trade secrets and intellectual
property, and will be encrypted before being passed through
the MB. The MB that centralizes abundant resources is em-
ployed to perform pattern-matching-based inspection over
the encrypted traffic (ET) and encrypted rules (ERS). Once
the matching succeeds, the MB determines the packet is
abnormal and returns matching results MR to IGW that
will take further action according toMR.

3.2 Threat Model
Our threat model assumes that the RG and IGW are trust-
worthy. This assumption is consistent with the threat model
in existing work [11], [12], where at least one gateway
is honest. The MB is assumed to be a honest-but-curious
attacker. That is to say, the MB will faithfully execute the
protocol given by the system, but may try to exploit sensi-
tive information about the ruleset/traffic. Our design aims
to preserve the following security properties:
• Traffic/Rule confidentiality: The MB cannot learn the

sensitive contents from the encrypted traffic and rules.
• Traffic indistinguishability: Given the encrypted traf-

fic mismatching all encrypted rules, the MB cannot decide
the frequency of occurrence for any pattern appearing in it.

3.3 Notations and Cryptographic Preliminaries
Notation. For integer n, notation [n] represents a set of
integers {1, . . . , n}. We use notation {0, 1}n (resp. {0, 1}∗)
to denote the set of binary strings of length n (resp. arbitrary
length). For a bit string B, its length is denoted by |B|
and the i-th element by B[i] for i ∈ [|B|]. A bit string
of x-bit ones is denoted by ⟨1 · · · 1⟩x, and a bit string that
starts/ends with 0 and contains successive x ones in the
middle is denoted by 0⟨1 · · · 1⟩x0. A character string S is
defined on an universe character set Σ (e.g., ASCII character
set), with |S| denoting the number of characters contained
in S . The concatenation of two strings S1 and S2 is denoted
by S1||S2. For a finite set X , its cardinality is denoted by
|X|, and (x1, . . . , xn)

$← X denotes uniformly sampling xi

from X , for i ∈ [n]. Notation λ ∈ N denotes the security
parameter throughout this paper.

DDH Assumption. Let G be a prime order cyclic
group of order p generated by g. The DDH assumption
holds in G, if AdvddhA (λ) = Pr[A(g, ga, gb, gab) = 1] −
Pr[A(g, ga, gb, gc) = 1] is negligible for any probabilistic
polynomial-time (PPT) adversary A and any a, b, c ran-
domly chosen from Z∗

p.

Lemma 1 [22]. For any integers α, β, and any PPT
adversary A, the probability of Pr[A(g, ga, gb, gabT

) =
1] − Pr[A(g, ga, gb,M) = 1] is negligible, where vector
a ∈ (Z∗

p)
α, vector b ∈ (Z∗

p)
β , gab

T ∈ Gα×β , and M is
uniform over Gα×β .

Symmetric Key Encryption (SKE). It consists of two
polynomial-time algorithms SKE = (Enc,Dec). The en-
cryption algorithm Enc takes a secret key ke ∈ {0, 1}λ and
a plaintext m ∈ {0, 1}∗ as its inputs and returns a ciphertext
c. The decryption algorithm Dec takes the secret key ke and
a ciphertext c as its inputs, and returns m. Let AdvskeA (λ)
denote the advantage for an adversary A to distinguish the
ciphertexts of two equal-length plaintexts. SKE is IND-CPA
secure if for any PPT adversary A, AdvskeA (λ) is negligible.

Pseudo-Random Function (PRF). Let AdvprfA (λ) denote
the advantage for an adversary A to distinguish a PRF
function from a true random function. A PRF is secure if
AdvprfA (λ) is negligible for any PPT adversary A.

The OXT scheme. The basic idea is to integrate the
following cross searching process into SE. Given a conjunc-
tion of query keywords (w1, w2, . . . , wt), the server first
performs inverted searching to find out the files containing
keyword w1, denoted by DB(w1), and then for each file
f ∈ DB(w1), the server performs forward checking to test
whether f contains all the remaining keywords w2, . . . , wt.
As for security, the outsourced database consists of an
oblivious index built for keywords, and a set of oblivious
cross tags built for keyword/file pairs. The main trick is
that by using customized blinding factors, the server can
perform secure inverted searching on the oblivious index
and calculate oblivious cross tags to support secure forward
checking, without learning either keywords or files.

The reason of choosing OXT as the basic primitive is that
the cross searching process allows the MB to quickly filter
out all the benign packets. According to the observation
from [31], only a fringe of the traffic is malicious (less
than 0.01%). After inverted searching, the MB only needs to
perform forward checking on a small fraction of potentially
malicious traffic, thus affording improved performance.

4 TECHNICAL OVERVIEW

4.1 Pretreatment Phase
The original payloads and rule contents are in the form
of character strings. To support secure pattern matching, a
naive solution is to express each payload/rule content as a
set of k-grams (i.e., a string of characters with length k), and
directly apply OXT to support conjunctive k-gram search.
However, this simple solution without considering k-gram
positions will cause a high false positive rate. For example,
when k = 2, the payload string “ABBC” (expressed as
{“AB”, “BB”, “BC”}) will be mistakenly considered to match
rule string “ABC” (expressed as {“AB”, “BC”}).

To eliminate false positives, our main idea is incorpo-
rating the information about k-grams and their positions
into the cross searching process. Given a large prime p, let
Fp : {0, 1}λ × {0, 1}∗ → Z∗

p be a PRF with secret key K .
Alg. 1 is run to preprocess payloads/rules. Specifically, the
pretreatment phase mainly consists of the following steps:

Transformation. The sliding window algorithm is
adopted to transform a payload string P into a set of

4

Algorithm 1 Pretreatment Phase
Preprocessing Traffic (PT)
Input: Payload string P , length k, secret key K
Output: Payload pairs {(kgs, xps)}ns=1

1: Transform P into {(kgs,poss)}
|P|−k+1
s=1

2: xp0
$← Z∗

p; n← |P| − k + 1
3: for s ∈ [n] do
4: xps ← (xps−1 + Fp(K, kgs)) mod p

Preprocessing Rules (PR)
Input: Rule string Ri, length k, secret key K
Output: Rule patterns Ri = (lkgi, {(okgj ,∆j)}hj=1)

1: Transform Ri into (lkgi, {(okgj , ofsj)}hj=1)
2: Ri ← (lkgi, {(okgj , ofsj)}hj=1); (∆1, . . . ,∆h)← 0
3: for j ∈ [h] do
4: for x = 1 to |ofsj | do
5: if ofsj > 0 then
6: Obtain the k-gram okg with offset x from lkgi
7: ∆j ← (∆j + Fp(K, okg)) mod p
8: else
9: Obtain the k-gram okg with offset −x+1 from

lkgi ◃ okg = lkgi if offset equals 0
10: ∆j ← (∆j − Fp(K, okg)) mod p

11: Replace ofsj ∈ Ri with ∆j

payload pairs {(kgs,poss)}
|P|−k+1
s=1 (line 1 of algorithm

PT), where the s-th pair (kgs, poss) denotes the k-gram
kgs located at position poss of P . A rule string Ri is
transformed into a set of offset k-grams with relative off-
sets regarding a baseline k-gram (line 1 of algorithm PR),
(lkgi, {(okgj , ofsj)}hj=1), where lkgi is the baseline k-gram,
and (okgj , ofsj) denotes the offset k-gram okgj and its rela-
tive offset ofsj from lkgi. In the choice of baseline k-grams,
we require that each of them is distinct and can be used as
a label denoting the rule1. To make the transformation step
easily be understood, we give an example in Fig. 2-(a).

Randomization. For the payload pair (kgs, poss), the
position value poss is replaced by xps =

∑s
i=1 Fp(K, kgi)+

xp0, where xp0 is a random value from Z∗
p (line 2-4 of

algorithm PT). In practice, we can use the current time t
along with traffic id id as the input of Fp to generate xp0
(i.e., xp0 = Fp(K, t||id)). Let okgx denote the offset k-gram
with offset x from the baseline k-gram lkgi. As shown in
the line 3-11 of algorithm PR, for the pair (okgj , ofsj) ∈ Ri,
the offset value ofsj is replaced by ∆j =

∑ofsj
x=1 Fp(K, okgx)

mod p if ofsj > 0, and by ∆j = −
∑ofsj+1

x=0 Fp(K, okgx)
mod p if ofsj < 0 (okg0 = lkgi). The corresponding
example of the randomization step is shown in Fig. 2-
(b). The randomization step aims to provide better privacy
protection for position/offset values. The original domain
of position/offset values is related small and can be easily
doped out. After randomization, the real position/offset
value is replaced by the sum of appropriate random values
related to k-grams. It is worth noticing that this step will
not change the matching results, since (xpt = xps +∆j)⇔
(post = poss + ofsj).

1. In our experiments, when k ≥ 4, more than 99% of rules in datasets
Snort and ETOpen can be uniquely denoted by a baseline k-gram.

Rule string: security Traffic string: fog security

uri, (sec,-3),

(ity, 2)

(fog, 1), (og , 2), (g s, 3)

(sec, 4), (ecu, 5), (cur, 6)

(uri, 7), (rit, 8), (ity, 9)

(a) Transformation step.

Fp K,og =20 Fp K,g s =18 Fp K,sec =90 Fp K,ecu =94

Fp K,uri =36 Fp K,rit =42

Fp K,fog =55

Fp K,ity =60

Traffic string: fog security

uri, (sec, -211), (ity, 102)

(fog,155),(og ,175),(g s,193)

(sec,283),(ecu,377),(cur,458)

(uri,494),(rit,536),(ity,596)

(b) Randomization step.

xp0=100Fp K,cur =81

= xp0 +Fp K,fog

= 155

=536+Fp K,ity

=596

Rule string: security

= 0−Fp K,uri −Fp K,cur −Fp K,ecu

= −211

= 0+Fp K,rit +Fp K,ity

=102

Fig. 2: A sample preprocessed rule/traffic (k = 3).

With the pretreatment step, the cross searching pro-
cess can be performed as follows: For each payload pair
(kgs, xps), the MB first checks whether there exists a rule
(lkgi, {(okgj ,∆j)}hj=1), such that lkgi = kgs (inverted
searching). If so, this means that the baseline k-gram lkgi
appears at position xps of the payload, and the MB further
tests whether the j-th offset k-gram okgj appears at position
xps+∆j for j ∈ [h] (forward checking). If all the h pairs can
be found, the rule is regarded fully matching the payload.
As the example shown in Fig. 2, during matching, the MB
first locates the 7-th pair (“uri”,494) of the traffic, and then
calculates the relative positions 283 (=494-211) and 596
(=494+102) for offset k-grams “sec” and “ity”, respec-
tively. Since pairs (“sec”,283) and (“ity”,596) coexist in
the traffic, the MB determines that the rule fully matches the
traffic.

4.2 Syntax and Definitions
After pretreatment, the traffic is in the form of T =
(id, (P1, . . . , Pn)), where id ∈ {0, 1}λ is the traffic iden-
tifier, n = |P| − k + 1 and the s-th payload pair Ps =
(kgs, xps) for s ∈ [n]. The ruleset consists of a set of pat-
tern/action pairs RS = {(R1, A1), . . . , (Rm, Am)}, where
Ri = (lkgi, {(okgj ,∆j)}hj=1)

2, and Ai is the corresponding
action (e.g., alert and activate) for i ∈ [m]. The matching
result between the traffic and the rule is defined as follow:
Definition 1 (Matching result). The rule Ri fully matches the

s-th pair of the traffic T iff lkgi = kgs and (okgj , xps +
∆j) exists in T for j ∈ [h]. The rule Ri partially matches
the s-th pair of the traffic T iff lkgi = kgs and there exists
j ∈ [h] s.t. (okgj , xps + ∆j) ̸∈ T . The rule Ri does not
match the traffic T at all iff lkgi ̸= kgs for all s ∈ [n].

SlimBox consists of the following algorithms: (1)
(ERS) ← RuleEnc(RS, SK): The RG takes the secret keys
SK and the ruleset RS as input and outputs the encrypted

2. Note that the number of k-gram/offset pairs varies by rules. For
ease of illustration, we use notation h for the unified representation.

5

TABLE 2: Summary of Notations
k The length of k-gram
Ri A rule string
lkgi The baseline k-gram of Ri

(okgj , ofsj) The j-th offset k-gram okgj of a rule and its
relative offset ofsj from the baseline k-gram

(okgj ,∆j) The j-th offset k-gram okgj of a rule and its
random offset ∆j

ltrapi The label trapdoor of Ri

(xtrapj , xofsj) The j-th cross trapdoor pair of a rule
P A payload string
(kgs, poss) The k-gram kgs and its position poss located at P
(kgs, xps) The k-gram kgs and its random position xps
(ltags, xtags) The label tag and cross tag of k-gram kgs
(αs, βs) The auxiliary tags of k-gram kgs

ruleset ERS. (2) (ET) ← TrafEnc(T, LM, SK): The IGW
takes the traffic T , the map LM, and the keys SK as
input, and outputs the encrypted traffic ET. (3) (MR) ←
Match(ERS,ET): The MB takes the encrypted ruleset ERS
and the encrypted traffic ET as input and outputs the
matching result MR. (4) (AS) ← Action(MR, SK): The
IGW takes the result MR and the keys SK as input and
recovers the actions AS.

Specifically, given a set of rule patterns
(lkgi, {(okgj ,∆j)}hj=1) of the rule string Ri, the RuleEnc
algorithm will encrypt the baseline k-gram lkgi into label
trapdoor ltrapi. The offset k-gram okgj and its random
offset ∆j will be encrypted into cross trapdoor pair
(xtrapj , xofsj). Given a payload pair (kgs, xps) of the
payload string P , the TrafEnc algorithm will encrypt kgs
into label tag ltags along with generating the cross tag
xtags and the auxiliary tags (αs, βs). For quick reference,
the most relevant notations are shown in Table 2.

5 THE DESIGN OF SLIMBOX0

5.1 Rationale
After pretreatment, the matching result between the traffic
T and the rule Ri can be easily determined according the
Definition 1. However, both T and Ri will be encrypted
before going through the MB for security reasons. Therefore,
our goal is to allow the MB to securely perform pattern
matching based on ciphertexts. By using PRFs, it is easy
for the MB to determine whether two k-grams are identical
without learning their contents. The challenge is how to
enable the MB to securely compute ∆j + xps for j ∈ [h].

Our main idea is to incorporate the position infor-
mation into the oblivious cross tags proposed in OXT.
Let F and Fp denote the keyed PRF with range {0, 1}∗
and Z∗

p, respectively. For ease of illustration, we omit the
PRF keys and consider a basic extension: For each pat-
tern Ri = (lkgi, {(okgj ,∆j)}hj=1), the RG generates a la-
bel trapdoor ltrapi = F (lkgi), and a set of cross trap-
doors {(xtrapj , xofsj)}hj=1, where xtrapj = gFp(okgj)×v and
xofsj = gFp(okgj)×∆j×z−1

. For each pair (kgs, xps) ∈ T ,
the IGW generates a label tag ltags = F (kgs), a cross
tag xtags = gFp(kg)×Fp(id)×xps , and two auxiliary tags
αs = Fp(id) × z and βs = Fp(id) × xps × v−1. As OXT,
z and v are two blinding factors which can be cancelled
during matching only when kgs = lkgi. If there is a
match, the MB further calculates xtrapβs

j × xofsαs
j to obtain

gFp(okgj)×Fp(id)×(xps+∆j), and tests if the computed result
exists in the cross tag set.

The above construction allows the MB to output correct
matching results, but will cause two security problems.
First, the label tag will expose the frequency of each k-gram
in the traffic, due to the deterministic property of PRFs. To
solve this problem, the IGW associates each k-gram with
an incremental counter and generates the label tag for the
k-gram/counter pair. Therefore, the label tags are distinct,
achieving traffic indistinguishability. Second, the MB is able
to calculate extra information from the matching process. To
illustrate, we assume that two rules Ri = (lkgi, okgi,∆i)
and Rj = (lkgj , okgj ,∆j) match the s-th pair and the t-th
pair of the traffic T , respectively. In this case, the MB can
obtain four intermediate values V1 = gFp(okgi)×Fp(id)×xps ,
V2 = gFp(okgi)×Fp(id)×∆i , V3 = gFp(okgj)×Fp(id)×xpt and
V4 = gFp(okgj)×Fp(id)×∆j . If okgi = okgj , the MB can obtain
the cross tags for pairs (okgi, xps+∆j) and (okgi, xpt+∆i),
by calculating V1×V4 and V2×V3, respectively. To avoid the
extra leakage, the position/offset value is associated with a
new blinding factor, which can be cancelled only when the
forward checking is correctly performed.

5.2 Basic Construction
Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ and Fp : {0, 1}λ ×
{0, 1}∗ → Z∗

p be PRFs, and let SKE = (Enc,Dec) be a
SKE scheme. We assume that the IGW maintains a local
map LM that records the number of appearances of each
k-gram in all traffic flows. The maximum appearances of
k-grams in all traffic flows is denoted by MAX. Given
SK = (Ke,KI ,KS ,KZ ,KV ,KL,KX) randomly chosen
from {0, 1}λ, the basic SlimBox construction is provided in
Alg. 2, where the mod p operation is omitted for brevity.

Correctness. In algorithm RuleEnc0, each rule/action
pair (Ri, Ai) is encrypted for MAX times. In the c-th en-
cryption, a label trapdoor ltrapi, h cross trapdoor pairs
{(xtrapj , xofsj)}hj=1, and an encrypted action cpi are gener-
ated, where ltrapi and the blinding factors hiding cross trap-
doors are calculated based on lkgi||c. In algorithm TrafEnc0,
the s-th pair (kgs, xps) is encrypted into a label tag ltags, a
cross tag xtags, and two auxiliary tags (αs, βs). For traffic
indistinguishability, ltags and the blinding factors hiding
auxiliary tags are calculated based on the k-gram/counter
pair. Note that xtags is calculated from (id, kgs, xps), and
will not repeat itself in the traffic. Therefore, there is no need
to associate cross tags with counter information.

In algorithm Match0, the MB first checks whether
ERS[ltags] = ⊥ or not, for (ltags, αs, βs) in the encrypted
traffic. If so, this means that there is no rule that matches the
s-th pair (kgs, xps) of the traffic and the MB continues to
check the next pair. Otherwise, this means that there exists
a rule Ri = (lkgi, {(okgj ,∆j)}hj=1) such that lkgi = kgs.
Then, the MB further calculates the cross tags xtrapβs

j ×
xofsαs

j for k-gram/position pairs {(okgj , xps + ∆j)}hj=1.
Note that when ERS[ltags] ̸= ⊥, the blinding factors z, v, l
used in auxiliary tags and cross trapdoors are the same.
Therefore, we have:

xtrapαs
j × xofsβs

j

= gxokgj×v×xid×(xps+l)×v−1

× gxokgj×(∆j−l)×z−1×xid×z

= gxokgj×xid×(xps+l) × gxokgj×xid×(∆j−l) (1)

= gxokgj×xid×(xps+∆j),

6

Algorithm 2 Basic SlimBox Construction

RuleEnc0

Input: Ruleset RS, secret keys SK
Output: Encrypted ruleset ERS

1: Parse SK as (Ke,KI ,KS ,KZ ,KV ,KL,KX)
2: ERS← empty map
3: for each (Ri, Ai) ∈ RS do
4: Parse Ri as (lkgi, (okg1,∆1), . . . , (okgh,∆h))
5: for c = 1 to MAX do
6: ltrapi ← F (KS , lkgi||c)
7: cpi ← SKE.Enc(Ke, Ai); z ← Fp(KZ , lkgi||c)
8: v ← Fp(KV , lkgi||c); l← Fp(KL, lkgi||c)
9: for j = 1 to h do

10: xtrapj ← gFp(KX ,okgj)×v

11: xofsj ← gFp(KX ,okgj)×(∆j−l)×z−1

12: ERS[ltrapi]← ({(xtrapj , xofsj)}hj=1, cpi)

TrafEnc0

Input: Traffic T , local map LM, secret keys SK
Output: Encrypted traffic ET

1: Parse SK as (Ke,KI ,KS ,KZ ,KV ,KL,KX)
2: Parse T as (id, {(kgs, xps)}ns=1)
3: (LT,XT,ET)← ∅; xid← Fp(KI , id)
4: for the s-th pair (kgs, xps) ∈ T do
5: if LM[kgs] = ⊥ then

6: c← 1
7: else
8: c← LM[kgs]

9: LM[kgs]← c+ 1
10: xtags ← gFp(KX ,kgs)×xps×xid; z ← Fp(KZ , kgs||c)
11: v ← Fp(KV , kgs||c); l← Fp(KL, kgs||c)
12: αs ← xid× z; βs ← xid× (xps + l)× v−1

13: ltags ← F (KS , kgs||c)
14: LT← LT ∪ (ltags, αs, βs); XT← XT ∪ xtags
15: ET← (LT,XT)

Match0

Input: Encrypted ruleset ERS, encrypted traffic ET
Output: Matching resultsMR

1: MR← ∅; parse ET as (LT,XT)
2: for each (ltag, α, β) ∈ LT do
3: if ERS[ltag] ̸= ⊥ then
4: obtain ({(xtrapj , xofsj)}hj=1, cp) from ERS[ltag]
5: for j = 1 to h do
6: xj ← xtrapβj × xofsαj

7: if x1, . . . , xh ∈ XT then
8: MR←MR∪ (ltag, cp)

Action0

1: The IGW runs SKE.Dec to recover actions inMR

where xokgj = Fp(KX , okgj).
From Eq. (1), the MB can check whether (okgj , xps+∆j)

exists in the traffic for j ∈ [h] and output correct matching
results.

Complexity. In terms of computation costs, we only
consider the operations related to group G. For a rule
Ri = (lkgi, {(okgj ,∆j)}hj=1), algorithm RuleEnc0 requires
2h × MAX exponentiations in G for generating cross trap-
doors. For a traffic T = (id, (P1, . . . , Pn)), algorithm
TrafEnc0 requires n exponentiations in G for generating
cross tags. If Ri fully/partially matches the s-pair of traffic
T , algorithm Match0 requires 2h exponentiations and h mul-
tiplication in G. Otherwise, no group-related operation is
required. As for communication costs, the encrypted ruleset
contains m × MAX entries, where each entry contains two
λ-bit strings and 2h elements in G. The encrypted traffic
consists of two sets LT and XT, where LT contains n λ-bit
strings and 2n elements in Z∗

p, and XT contains n elements
in G. The matching resultsMR contains two λ-bit strings.

6 THE DESIGN OF SLIMBOX∗

6.1 General Ideas

SlimBox0 allows the MB to securely inspect traffic, but still
has the following insufficiency: (1) The size of the encrypted
ruleset is related to MAX, the maximum appearances of k-
grams in history, and thus is extensively large. (2) During
forward checking, the partial matching result, i.e., the j-th
pattern matches/mismatches the traffic for j ∈ [h], is leaked
to the MB. (3) The encrypted traffic consumes considerable
costs, due to the large size of group elements.

For the first problem, our solution is resetting the coun-
ters for each packet to reduce the value of MAX. There-
fore, there is no need for the IGW to locally maintain the
counter information. However, this will enable the k-gram
appearing in different packets to have the same label tag.
For traffic indistinguishability, our main idea is to introduce
a random salt s in the calculation of label tags and label
trapdoors. Intuitively, the IGW applies PRFs to uniquely
generate s for each (kg, c) pair and use s to keep track of the
occurrence of the pair appearing in the traffic. To support
pattern matching, the MB keeps the initial random salt for
each (lkg, c) pair, and updates the random salt to generate a
new label trapdoor if a match happens.

For the second problem, a simple solution is to let the
IGW withhold the cross tag set XT and let the MB return
back the action ciphertext as well as the calculated cross
tags, enabling the IGW to perform forward checking on
behalf of the MB. The main problem is that the MB needs
to return h group elements for each matched rule, resulting
in large communication costs. To solve this problem, our
solution is letting the MB return the XOR result of the action
ciphertext and the hash values of h cross tags, together
with an encrypted bit string, both of which are of constant
lengths. As shown in Alg. 4, the offset information is en-
coded into the bit string, from which the IGW can correctly
locate cross tags in XT to recover the action ciphertext.

The solution to the second problem actually can help
cut the traffic size in half. To further reduce the cost, a
two-round interaction can be performed as follows: In the
first round, the IGW only sends the label tags to the MB
for inverted searching, and receives the matched label tags
from the MB. In the second round, the IGW sends the

7

Algorithm 3 Advanced SlimBox Construction

RuleEnc∗

Input: Ruleset RS, secret keys SK
Output: Encrypted ruleset ERS

1: Parse SK as (Ke,KI ,KS ,KZ ,KV ,KL,KX)
2: ERS← empty map
3: for each (Ri, Ai) ∈ RS do
4: Parse Ri as (lkgi, (okg1,∆1), . . . , (okgh,∆h))
5: Run Alg. 4 to generate a bit string Bi

6: for c = 1 to MAX∗ do
7: Execute lines 7-11 in the basic RuleEnc algorithm

and obtain ({(xtrapj , xofsj)}hj=1, cpi)
8: cbi ← SKE.Enc(Ke,Bi); si ← F (KS , lkgi||c||0)
9: lti ← F (KS , lkgi||c||1); ltrapi ← H(si||lti)

10: ERS[ltrapi]← ({(xtrapj , xofsj)}hj=1, lti, si, cpi, cbi)

TrafEnc∗

Input: Traffic T , local map LM, secret keys SK
Output: Encrypted traffic ET, cross tag map XT

1: Parse SK as (Ke,KI ,KS ,KZ ,KV ,KL,KX)
2: Parse T as (id, {(kgs, xps)}ns=1)
3: ET← ∅; (XT,EM)← empty map; xid← Fp(KI , id)
4: for the s-th pair (kgs, xps) ∈ T do
5: if EM[kgs] = ⊥ then
6: c← 1
7: else
8: c← EM[kgs]

9: EM[kgs]← c+ 1
10: Execute lines 10-12 to obtain xtags, αs, βs

11: if LM[kgs||c] = ⊥ then

12: s← F (KS , kgs||c||0)
13: else
14: s← LM[kgs||c]
15: LM[kgs||c]← s+ 1; ltags ← H(s||F (KS , kgs||c||1))
16: ET← ET ∪ (ltags, αs, βs); XT[s]← (ltags, xtags)

Match∗

Input: Encrypted ruleset ERS, encrypted traffic ET
Output: Matching resultsMR

1: MR← ∅
2: for each (ltag, α, β) ∈ ET do
3: if ERS[ltag] ̸= ⊥ then
4: ((xtrapj , xofsj)

h
j=1, lt, s, cp, cb)← ERS[ltag]

5: ERS[ltag]← ⊥; s← s+ 1; ltrap← H(s||lt)
6: ERS[ltrap]← ((xtrapj , xofsj)

h
j=1, lt, s, cp, cb)

7: c̃p← cp⊕h
j=1 H(xtrapβj × xofsαj)

8: MR←MR∪ (ltag, c̃p, cb)

Action∗

Input: Matching resultsMR, secret keys SK
Output: Action set AS

1: AS← ∅
2: for each (ltag, c̃p, cb) ∈MR do
3: Locates XT[s] s.t ltag ∈ XT[s]
4: Run SKE.Dec(Ke, cb) to recover the bit string B
5: for each offset o obtained from B do
6: Obtain xtag from XT[s+ o]; c̃p← c̃p⊕ xtag

7: Run SKE.Dec(Ke, c̃p) to recover the action A
8: AS← AS ∪A

corresponding auxiliary tags to the MB, and receives the
matching results from the MB. Since only a fraction of
auxiliary tags needs to be transmitted, the traffic size is
greatly decreased.

6.2 Advanced Construction

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ and Fp : {0, 1}λ ×
{0, 1}∗ → Z∗

p be PRFs, and let SKE = (Enc,Dec) be a
SKE scheme. Let H : {0, 1}∗ → {0, 1}λ be a collision-
free hash function, and let MAX∗ denote the maximum
appearances of k-grams in a payload. We assume that
the IGW maintains a local map LM to record the num-
ber of appearances of each k-gram/counter pair. Given
SK = (Ke,KI ,KS ,KZ ,KV ,KL,KX) defined as the basic
construction, the detailed construction of SlimBox∗ is shown
in Alg. 3, where the mod p operation is omitted, and
the pattern matching process is implemented in a single
roundtrip. The cost savings brought by the two-round in-
teraction will be demonstrated by experiments.

Correctness. For each rule/action pair (Ri, Ai) ∈ RS,
algorithm RuleEnc∗ first runs Alg. 4 to construct a bit string
Bi, and then encrypts (Ri, Ai,Bi) for MAX∗ times. In the
c-th encryption, a label trapdoor ltrapi, h cross trapdoor
pairs {(xtrapj , xofsj)}hj=1, an auxiliary trapdoor lti, a ran-
dom salt si, an encrypted action cpi, and an encrypted bit
string cbi are generated. The main difference from algo-
rithm RuleEnc0 is that the label trapdoor is computed by

Algorithm 4 Encoding Bit String

Input: Rule string R, security parameter λ, preprocessed
rule pattern (lkg, {(okgj ,∆j)}hj=1)

Output: Bit string B of length λ
1: Initialize B with λ zeros
2: Find the position θ of lkg in the rule string R
3: Set the θ-th, . . ., (θ + h + 2)-th bits of B with pattern

0||⟨1 · · · 1⟩h+1||0
4: for j ∈ [h] do
5: obtain the offset oj of okgj from lkg in R
6: if oj < 0 then
7: Set the (θ + oj)-th bit of B with 1
8: else
9: Set the (θ + h+ 2 + oj)-th bit of B with 1

ltrapi ← H(si||lti), where the random salt si is initialized
by F (KS , lkgi||c||0) and will be incremented by 1 once a
packet matches the rule, and lti = F (KS , lkgi||c||1).

Like algorithm TrafEnc0, the TrafEnc∗ algorithm also
encrypts the s-th pair (kgs, xps) into a label tag ltags, a
cross tag xtags, and two auxiliary tags (αs, βs). The main
difference is that the label tag is computed by ltags ←
H(s||F (KS , kgs||c||1), where s is a random salt initialized
by F (KS , kgs||c||0) and will be incremented by 1 once the
(kg, c) pair appears in the traffic. Furthermore, the cross tags
are put into the map XT and will not be sent to the MB.

8

Specifically, XT[s] keeps tags (ltags, xtags) for the s-th pair.
Thus, if a rule Ri = (lkgi, {(okgj ,∆j)}hj=1) fully matches
the s-th pair, then for each offset k-gram okgj with offset
o from the baseline k-gram lkgi, the calculated cross tag
xtrapβs

j × xofsαs
j should be equal to that stored at XS[s+ o].

The Match∗ algorithm performs inverted searching as
before. If a match succeeds, the MB updates the random
salt and calculates a new label trapdoor. According to
the construction of algorithms RuleEnc∗ and TrafEnc∗, the
inverted searching can be performed correctly. However,
unlike algorithm Match0 directly returning the action ci-
phertexts of fully matched rules, Match∗ returns the en-
crypted bit string cb and the processed ciphertext c̃p =
cp ⊕h

j=1 H(xtrapβj × xofsαj) for each rule passing inverted
searching. In forward checking, the IGW first decrypts cb
to obtain offset information and then recovers cp if all the
calculated cross tags can be found in the map XT. Since
the cross tags are computed in the same way as before, the
matching results are correct as long as the IGW can correctly
locate the cross tags in XT based on the bit string.

Now, we will analyze the correctness of the encoding
algorithm. Assume that λ ≥ h + max |R| + 3, and that the
baseline k-gram is located at position θ of the rule string.
Intuitively, the pattern 0⟨1 · · · 1⟩h+10 is used to denote the
position of the baseline k-gram. Note that the number of
offset k-grams is h, which means that there exists at most
one pattern consisting of successive (h+1) ones. Therefore,
the IGW can correctly find the pattern 0⟨1 · · · 1⟩h+10 and
obtain their positions θ, . . . , (θ + h + 2) in B. For i < θ,
B[i] = 1 denotes the offset from the label k-gram is−(θ−i),
and for i > θ+h+2, B[i] = 1 denotes the offset is i−θ−h−2.
For example, for the rule string “security” and pattern
(“uri”, (“sec”,-3), (“ity”,2)), the first ten bits of B is in
the form of 1000111001. Therefore, the encoding algorithm
and the matching process are correct.

Complexity. In terms of computation costs, we only
consider operations related to group G. The advanced al-
gorithms consume the same complexity as the basic algo-
rithms. As for communication costs, the encrypted ruleset
contains m×MAX∗ entries, where each entry contains four
λ-bit strings and 2h elements in G. The encrypted traffic
only consists of a set ET, which contains n λ-bit strings and
2n elements in Z∗

p, where each label tag can be further com-
pressed as prior work [11], and the number of transmitted
auxiliary tags can be reduced through a two-round interac-
tion. The matching resultsMR contains three λ-bit strings.
The latency of traffic processing is sensitive to bandwidth.
Since the size of encrypted packets is significantly declined,
SlimBox∗ offers better user experience than SlimBox0.

7 SECURITY ANALYSIS

We will analyze the security of SlimBox from the aspects
of traffic and rule confidentiality. Since SlimBox∗ with en-
hanced privacy is constructed based on SlimBox0, we will
focus on the security of SlimBox0. To simplify presentation,
we consider a simple scenario, where each rule Ri consists
of two k-grams only, and is expressed as (lkgi, okgi,∆i).
Furthermore, the adoption of counters is to realize traffic
indistinguishability. We assume each k-gram appears in the
traffic only once to avoid the usage of counters. Thus, the

local map LM is omitted and the ruleset size will not be
expanded by MAX times.

7.1 Traffic Confidentiality
We follow the simulation-based security and define a leak-
age function to capture what can be learned by an adversary.
Let A1 be an adversary attempting to learn the sensitive
data in the traffic, and let S1 be a simulator parameterized
by a leakage function L1 = (n,MR, IR) defined as below:

• n is the number of payload pairs in the traffic T .
• MR is the matching result of rules. (1) MR[i] = 0 if Ri

does not match any pair in T at all. (2) MR[i] = (1, s)
if Ri fully matches the s-th pair of T . (3) MR[i] =
(2, s) if Ri partially matches the s-th pair of T .

• IR is the intersection result of rules. IR[i, j] = 1 if
∃Ps = (kgs, xps) and Pt = (kgt, xpt) s.t. lkgi = kgs∧
lkgj = kgt ∧ okgi = okgj ∧ xps + ∆i = xpt + ∆j .
Otherwise, IR[i, j] = 0.

SlimBox0 achieves traffic confidentiality if A1 cannot
distinguish the following experiments:

• RealA1(λ): On input the traffic T , the experiment
runs algorithm TrafEnc and gives ET to A1. For a
ruleset RS adaptively chosen by A1, the experiment
runs algorithm RuleEnc and gives ERS to A1. Fi-
nally, A1 outputs a bit b ∈ {0, 1}.

• IdealS1

A1
(λ): On input the traffic T , S1 generates

ET with the given leakage L1 for A1. For a ruleset
RS adaptively chosen by A1, S generates ERS with
leakage L1. Finally, A1 outputs a bit b ∈ {0, 1}.

Theorem 1. If F, Fp are secure PRFs, SKE is CPA secure, and
the DDH assumption holds in group G, then SlimBox0 is
L1-secure against adversary A1.

Proof sketch. Given the leakage L1, the simulator S1
first calculates the partition index for each rule. Let î denote
the partition index of rule Ri. First, it computes a relation
≡ on rules by defining î ≡ ĵ iff IR[i, j] ̸= 0, and makes
≡ an equivalence relation by using transitive closure. Then,
it assigns each partition of an equivalence relation with a
distinct index. Note that for all rules falling in one partition,
their partition indexes are identical.

On input a packet T consisting of n pairs provided
by A1, S1 computes tags by setting ltags

$← {0, 1}λ,
xtags

$← G, and (αs, βs)
$← Z∗

p for s ∈ [n]. To simulate ERS
for an adaptively chosen ruleset RS, S1 needs to maintain a
map X to record the calculated cross tag for each partition.
For rule Ri ∈ RS, S1 generates trapdoors according to
the following cases: (1) MR[i] = 0, S1 generates trapdoors
by setting ltrapi

$← {0, 1}λ, and (xtrapi, xofsi)
$← G. (2)

MR[i] = (1, s) ∨ MR[i] = (2, s), S1 first checks whether
X[̂i] = ⊥ or not. If so, for the case of MR[i] = (1, s), S1
sets X[̂i] ← xtags, and for the case of MR[i] = (2, s), S1
sets X[̂i] $← G. Then, S1 chooses two random elements
r1, r2 ∈ G, s.t. r1 × r2 = X[̂i], and calculates the trapdoors
by setting ltrapi ← ltags, xtrapi ← r

β−1
s

1 and xofsi ← r
α−1

s
2 .

In both cases, the action ciphertext is set to cpi
$← {0, 1}λ.

Due to the security of PRFs and SKE, the simulated
trapdoors and tags are indistinguishable from the real game

9
TABLE 3: The rule encryption time(s) under different rulesets and parameters.

MAX
SlimBox0 SlimBox∗

Snort ETOpen Snort ETOpen
k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=7

6 510 402 336 281 6033 4661 3879 3183 516 416 339 282 6045 4755 3911 3195
7 607 474 389 329 6973 5416 4468 3797 611 477 394 331 7063 5600 4500 3807
8 679 535 447 372 7955 6276 5217 4367 688 540 450 378 8035 6328 5256 4388
9 774 608 500 417 8733 6895 5677 4918 794 617 508 420 8950 6994 5819 4919

10 855 672 563 466 9923 7606 6302 5460 866 683 566 467 10011 7770 6443 5404

TABLE 4: The size(MB) of ERS under different rulesets and parameters.

MAX
SlimBox0 SlimBox∗

Snort ETOpen Snort ETOpen
k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=7 k=4 k=5 k=6 k=7

6 9.94 7.93 6.61 5.60 114.32 91.45 76.19 64.36 11.09 9.08 7.76 6.75 125.99 103.23 87.99 76.18
7 11.60 9.25 7.71 6.53 133.37 106.69 88.88 75.09 12.94 10.59 9.05 7.88 146.98 120.43 102.66 88.88
8 13.26 10.57 8.81 7.47 152.42 121.93 101.58 85.82 14.79 12.11 10.34 9.00 167.98 137.63 117.32 101.57
9 14.91 11.90 9.91 8.40 171.48 137.17 114.28 96.55 16.64 13.62 11.63 10.13 188.98 154.84 131.99 114.27
10 16.57 13.22 11.01 9.34 190.53 152.41 126.98 107.27 18.49 15.13 12.93 11.25 209.98 172.04 146.66 126.97

when the DDH assumption holds in group G. Thus, we
conclude that for every adversary A1, it has a negligible
probability to learn more information from the traffic than
the defined leakage function L1. The formal proof of Theo-
rem 1 could be found in Appendix A.

7.2 Rule Confidentiality
Let A2 be an adversary attempting to learn the sensitive
data from the ruleset RS, and let S2 be a simulator param-
eterized by a leakage function L2 = (m,n,MR, IR), where
(n, IR) are defined similarly as leakage function L1, m is the
number of rules in the ruleset, and MR is the matching result
of the s-th pair Ps: (1) MR[s] = 0 denotes Ps does not match
any rule at all. (2) MR[s] = (1, i) denotes Ps fully matches
Ri. (3) MR[s] = (2, i) denotes Ps partially matches Ri.

SlimBox0 achieves rule confidentiality if A2 cannot dis-
tinguish the following experiments:

• RealA2(λ): On input the ruleset RS, the experiment
runs algorithm RuleEnc and gives ERS to A2. For
the packet T adaptively chosen by A2, the experi-
ment runs algorithm TrafEnc and gives ET to A2.
Finally, A2 outputs a bit b ∈ {0, 1}.

• IdealS2

A2
(λ): On input the ruleset RS, S2 generates

ERS with the given leakage L2 forA2. For the packet
T adaptively chosen by A2, S generates ET with
leakage L2. Finally, A1 outputs a bit b ∈ {0, 1}.

Theorem 2. If F, Fp are secure PRFs, SKE is CPA secure, and
the DDH assumption holds in group G, then SlimBox0 is
L2-secure against adversary A2.

Proof sketch. As the simulator S1, S2 first calculates the
partition index î for each rule i based on the leakage IR.
Let p denote the set of partition indexes. S2 maintains a
map X to record the exponent of calculated cross tag for
each partition, and uses a map F to record whether the
entry of X has been used before. For each j ∈ p, S2 sets
X[j] $← Z∗

p, and F[j] ← 0. On input a rule Ri provided by

A2, S2 generates the trapdoors by setting ltrapi
$← {0, 1}λ

and xtrapi ← gxi and xofsi ← gyi , and sets the action
ciphertext as cpi

$← {0, 1}λ, where xi, yi are randomly
chosen from Z∗

p. To simulate ET for the adaptively chosen
traffic T , S2 generates tags for the s-th payload pair Ps

4 5 6 7
k

2500

2600

2700

2800

T
im

e
(m

s)

SlimBox0

SlimBox*

(a) TrafEnc Time

4 5 6 7

k

0

100

200

300

S
iz

e(
K

B
)

SlimBox0

SlimBox*

(b) TrafEnc Size

Fig. 3: The results of SlimBox0 and SlimBox∗ for encrypting
a payload with 1500 bytes with varied k.

according to the following cases: (1) MR[s] = 0, S2 sets
ltags

$← {0, 1}λ, (αs, βs)
$← Z∗

p, and xtags
$← G. (2)

MR[s] = (1, i) ∨ MR[s] = (2, i), S2 sets the label tag as
ltags ← ltrapi and sets the auxiliary tags as αs ← r1 × y−1

i

and βs ← r2 × x−1
i , where r1, r2 are random elements from

Z∗
p, s.t. r1+ r2 = X[̂i]. If MR[s] = (1, i)∧F[̂i] = 0, S2 sets the

cross tag as xtags ← gX[̂i], and updates the map as F[̂i]← 1;
Otherwise, S2 sets xtags

$← G.
Due to the security of PRFs and SKE, the simulated

trapdoors and tags are indistinguishable from the real game
when the DDH assumption holds in group G. Thus, we
conclude that for every adversary A2, it has a negligible
probability to learn more information from the rules than
the defined leakage function L2. The formal proof of Theo-
rem 2 could be found in Appendix B.

8 EVALUATION

We will analyze the performance of SlimBox from the as-
pects of computational and communication costs. To val-
idate the effectiveness, we conduct experiments on two
real datasets, and compare SlimBox to BlindBox [11] and
S4E [19], which are based on the SE.

8.1 Experiment Settings and Datasets
We deploy the MB on a server with Intel(R) Xeon(R) Gold
5218 CPU and 128GB RAM, and regard the PC with Intel
Core i5 3.2GHz CPU and 32GB RAM as the IGW. We
implement the experiments in Java, and set the security pa-
rameter λ to 256. For cryptographic algorithms, HMAC and
SHA-256 are utilized to implement PRFs and collision-free

10

6 7 8 9 10
MAX

30

60

90

120

150
T

im
e

(m
s)

SlimBox0

SlimBox*

(a) Match Latency(k = 6)

4 5 6 7
k

0

50

100

150

200

T
im

e
(m

s)

SlimBox0

SlimBox*

(b) Match Latency(MAX = 7)

4 5 6 7

k

0

200

400

600

800

S
iz

e(
by

te
)

SlimBox0

SlimBox*

(c) Match Results Size(MAX = 7)

4 5 6 7

k

0

0.5

1

1.5

2

2.5

T
im

e(
m

s)

SlimBox0

SlimBox*

(d) Action Recovery Time(MAX = 7)

Fig. 4: The results of match and action operations for SlimBox0 and SlimBox∗ on Snort ruleset.

6 7 8 9 10
MAX

30

60

90

120

150

T
im

e
(m

s)

SlimBox0

SlimBox*

(a) Match Latency(k = 6)

4 5 6 7
k

0

100

200

300

400

T
im

e
(m

s)
SlimBox0

SlimBox*

(b) Match Latency(MAX = 7)

4 5 6 7

k

0

300

600

900

1200

S
iz

e(
by

te
)

SlimBox0

SlimBox*

(c) Match Results Size(MAX = 7)

4 5 6 7

k

0

1

2

3

T
im

e(
m

s)

SlimBox0

SlimBox*

(d) Action Recovery Time(MAX = 7)

Fig. 5: The results of match and action operations for SlimBox0 and SlimBox∗ on ETOpen ruleset.

SlimBox0 SlimBox* S4E
0

10

20

30

40

T
im

e(
s)

0

100

200

300

400

S
iz

e(
K

B
)

Time Size

(a) TrafEnc
SlimBox0 SlimBox* S4E

0

200

400

600

800

T
im

e(
s)

0

20

40

60

80

S
iz

e(
M

B
)

Time Size

(b) RuleEnc (Snort)
SlimBox0 SlimBox* S4E

0

2000

4000

6000

8000

T
im

e(
s)

0

200

400

600

800

S
iz

e(
M

B
)

Time Size

(c) RuleEnc (ETOpen)
SlimBox0 SlimBox* S4E

101

102

103

104

105

106

107

T
im

e(
m

s)

Snort ETOpen

(d) Match Latency

Fig. 6: Performance comparison with S4E on two rulesets, where k = 4 and MAX = 6 for SlimBox.

hash functions, respectively. In addition, we use AES-256 to
implement SKE algorithms and use the jPBC [32] library for
group operations and bilinear pairing calculations.

We choose two real open-source rulesets, Snort3 (2502
rules, 3099 patterns) and ETOpen4 (22516 rules, 31829 pat-
terns) to generate the encrypted rules, and use the traffic
dump iCTF085 to evaluate the matching performance. Ac-
cording to the complexity analysis, the number of offset k-
grams (determined by k) and the maximum appearances
k-grams MAX/MAX∗ (uniformly expressed by notation
MAX) are two important parameters for the performance.
In our experiments, we set k to {4, 5, 6, 7}, and set MAX
to {6, 7, 8, 9, 10}. In addition, we choose the payloads with
1500-byte length from iCTF08 as our test traffic.

8.2 Performance Evaluation
• TrafEnc. To evaluate the influence of parameter k, we
run algorithm TrafEnc0/TrafEnc∗ 100 times and obtain the
average results. From Fig. 3-(a), we can see that a larger
k will cause shorter execution time for both algorithms.
The reason is that for fixed-length payloads, a larger k will
result in fewer k-gram/position pairs. In addition, TrafEnc∗

requires extra hash calculations compared with TrafEnc0,
and thus consumes more execution time. From Fig. 3-(b), we
know that TrafEnc∗ saves nearly half of the communication
cost compared with TrafEnc0. The reason is that TrafEnc∗

does not need to forward cross tags to the MB.

3. https://www.snort.org/downloads/#rule-downloads
4. https://rules.emergingthreats.net
5. http://ictf.cs.ucsb.edu/pages/the-2008-ictf.html

• RuleEnc. Table 3 and Table 4 show the performance
of algorithm RuleEnc0/RuleEnc∗ under different rulesets
and parameter settings. Compared with Snort, ETOpen
contains a larger number of rules and consumes more time
to generate a larger-scale encrypted ruleset. As k grows,
the number of k-gram/offset pairs will decrease, rendering
the execution time and the size of ERS to reduce for both
algorithms. As MAX increases, the size of rulesets becomes
larger, and thus the execution time and the size of ERS will
increase for both algorithms. In the same settings, RuleEnc∗

needs to encode and encrypt bit strings, thus requiring more
execution time compared with RuleEnc0. Similarly, the size
of ERS in RuleEnc∗ is a larger size than RuleEnc0 because
the former needs to store extra information.

• Match and Action. We evaluate the performance of
Match and Action for SlimBox0 and SlimBox∗ under differ-
ent parameters and rulesets. We first evaluate the influence
of parameter MAX on the execution time of algorithm
Match0/Match∗. From Fig. 4-(a) and Fig. 5-(a), we can find
that MAX has little influence on the matching time. The
main reason is that SlimBox supports fast filtering, dispens-
ing with linearly scanning the ruleset. Furthermore, Match∗

requires more execution time compared with Match0. This
is because the former needs extra hash and XOR operations.
Fig. 4-(b)(c) and Fig. 5-(b)(c) show the influence of parameter
k on the performance of algorithm Match0/Match∗. From
these figures, we know that: (1) The inspection latency as
well as the size of matching results in ETOpen is larger
than Snort under the same settings. This is because the
larger the ruleset size, the more the number of rules passing

11

TABLE 5: Performance comparison between BlindBox, S4E,
and SlimBox.

Scheme TrafEnc
time (s)

Communication
cost (bytes)

Inspection
time

BlindBox 1.04 609630 24ms
S4E 31.94 376320 1300s

SlimBox0 2.58 199101 158ms
SlimBox∗ 2.65 103293 180ms

SlimBox∗ (two-round) 2.65 8382 180ms

inverted searching. (2) The inspection latency and the size of
matching results decreases as k increases. The main reason
is that the smaller k results in more number of rules passing
inverted searching. In terms of the action recovery time
illustrated in Fig. 4-(d) and Fig. 5-(d), SlimBox∗ requires the
additional operations (e.g., bit string decryption and hash)
and thus consumes more execution time than SlimBox0.

Comparison with prior work. We first provide the
performance comparisons between S4E [19] and our Slim-
Box. From Fig. 6-(a), we know that SlimBox consumes
less time/bandwidth in the process of traffic encryption
compared with S4E. The reason is that S4E utilizes the
fragmentation approach to speed up matching computa-
tion, rendering each byte in the traffic to be encrypted
multiple times. From Fig. 6-(b) and Fig. 6-(c), we can see
that our SlimBox consumes more rule encryption time than
S4E. This is because SlimBox needs to encrypt each rule
MAX times. However, S4E generates the bigger size of
encrypted rulesets since each byte of data is encrypted
to a group element. The rule encryption operations are
usually performed during initialization process and can be
done once for all. Therefore, the increased time overhead
is acceptable in real applications. From Fig. 6-(d), we can
see that SlimBox performs much better than S4E in terms
of matching latency. The huge difference between S4E and
SlimBox is because S4E needs to perform expensive bilinear
pairing calculations for each rule, but our SlimBox only
needs to perform group operations on a fraction of rules
passing inverted searching.

Then, we give comparisons between BlindBox, S4E, and
our SlimBox in terms of traffic encryption time, communi-
cation cost, and matching latency. The comparison results
are reported in Table 5. We encrypt a 1500-byte payload as
the encrypted traffic and test the inspection latency on Sonrt
ruleset, in which the size of distinct rule patterns is equal to
91. For SlimBox, we set k = 4 and MAX = 10 which is the
worst condition of our scheme from the above description.
From table 5, we can see BlindBox and S4E presented
the least and the most inspection time. The main reason
is that BlindBox leveraged the lightweight cryptographic
primitive and thus had the optimal inspection efficiency.
Our schemes are based on OXT and hence perform worse
than BlindBox. As for the traffic encryption time, we can
get the same comparison results as the inspection time.
The BlindBox performs best due to the fast SKE, and our
SlimBox also has acceptable performance. In terms of the
communication cost, we can see that BlindBox and SlimBox∗

will incur the most and the least traffic communication cost,
respectively. The reason is that BlindBox will consider all
distinct rule pattern size in the traffic encryption process.

While SlimBox∗ does not need to send cross tag set to MB
compared to SlimBox0 hence incurs the least bandwidth.
Especially, the two-round interaction SlimBox∗ only sends
the label tags and the auxiliary tags of the matched label tags
to MB in the first and second round, respectively. Thus it can
further save almost 90% bandwidth compared to SlimBox∗.

9 CONCLUSION

In this paper, we design SlimBox to achieve lightweight and
privacy-preserving middlebox services in cloud computing.
The proposed SlimBox supports fast filtering and rapidly
pattern matching by subtly incorporating the position infor-
mation into the conjunctive SE scheme. Experiment results
demonstrate that SlimBox is extremely efficient. As part
of our future work, we will try to improve the inspection
functionality of SlimBox to support enriched patterns, e.g.,
multi-keyword matching and regular expression evaluation,
over encrypted traffic.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Research and Development Program of China under
Grant 2022YFE0201400, and 2020YFB1005804; NSFC grants
62272150, 61872133, U20A20181, and 61802076; the Hunan
Provincial Natural Science Foundation of China (Grant No.
2020JJ3015); and the Postgraduate Scientific Research Inno-
vation Project of Hunan Province (No. QL20210095).

REFERENCES

[1] Snort, “An open source intrusion prevention system,” 2015. [On-
line]. Available: https://www.snort.org

[2] V. Paxson, “Bro: a system for detecting network intruders in real-
time,” Computer Networks, 1999.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network
processing as a cloud service,” in Proc. of SIGCOMM, 2012.

[4] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure outsourced
middlebox services: practices, challenges, and beyond,” IEEE Net-
work, 2018.

[5] G. S. Poh, D. M. Divakaran, H. W. Lim, J. Ning, and A. Desai,
“A survey of privacy-preserving techniques for encrypted traffic
inspection over network middleboxes,” arXiv preprint, 2021. [On-
line]. Available: https://arxiv.org/abs/2101.04338

[6] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing
forged SSL certificates in the wild,” in Proc. of S&P, 2014.

[7] McAfee virtual network security platform. [Online].
Available: https://mcafee-uat.mcafee.com/enterprise/en-
us/products/virtual-network-security-platform.html

[8] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Computing Surveys, 2014.

[9] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certifi-
cateless public key authenticated encryption with keyword search
for industrial internet of things,” IEEE Transactions on Industrial
Informatics, 2018.

[10] Q. Liu, Y. Peng, S. Pei, J. Wu, T. Peng, and G. Wang, “Prime in-
ner product encoding for effective wildcard-based multi-keyword
fuzzy search,” IEEE Transactions on Services Computing, 2022.

[11] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: deep
packet inspection over encrypted traffic,” in Proc. of SIGCOMM,
2015.

[12] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
securely outsourcing middleboxes to the cloud,” in Proc. of NSDI,
2016.

[13] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt, “Blin-
dIDS: market-compliant and privacy-friendly intrusion detection
system over encrypted traffic,” in Proc. of ASIACCS, 2017.

12

[14] X. Yuan, X. Wang, J. Lin and, C. Wang, “Privacy-preserving
deep packet inspection in outsourced middleboxes,” in Proc. of
INFOCOM, 2016.

[15] J. Fan, C. Guan, K. Ren, Y. Cui, and C. Qiao, “SPABox: safe-
guarding privacy during deep packet inspection at a middlebox,”
IEEE/ACM Transactions on Networking, 2017.

[16] J. Ning, G. Poh, J. C. Loh, J. Chia, and E. C. Chang, “PrivDPI:
privacy-preserving encrypted traffic inspection with reusable ob-
fuscated rules,” in Proc. of CCS, 2019.

[17] J. Ning, X. Huang, G. S. Poh, S. Xu, J. C. Loh, J. Weng, and
R. H. Deng, “Pine: enabling privacy-preserving deep packet in-
spection on TLS with rule-hiding and fast connection establish-
ment,” in Proc. of ESORICS, 2020.

[18] N. Desmoulins, P. A. Fouque, C. Onete, and O. Sanders, “Pattern
matching on encrypted streams,” in Proc. of ASIACRYPT, 2018.

[19] A. Bkakria, N. Cuppens, and F. Cuppens, “Privacy-preserving
pattern matching on encrypted data,” in Proc. of ASIACRYPT, 2020.

[20] S. Lai, X. Yuan, S. Sun, J. K. Liu, S. Ron, A. Sakzad, and
D. Liu, “Practical encrypted network traffic pattern matching for
secure middleboxes,” IEEE Transactions on Dependable and Secure
Computing, 2021.

[21] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. “Leakage-abuse
attacks against searchable encryption,”. in Proc. of CCS, 2015.

[22] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.C. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. of CRYPTO, 2013.

[23] J. Han, S. Kim, J. Ha, and D. Han, “SGX-Box: enabling visibility
on encrypted traffic using a secure middlebox module,” in Proc. of
APNet, 2017.

[24] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “ShieldBox: secure middleboxes using shielded execu-
tion,” in Proc. of SOSR, 2018.

[25] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks:
shielding network functions in the cloud,” in Proc. of NSDI, 2018.

[26] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren,
“LightBox: full-stack protected stateful middlebox at lightning
speed,” in Proc. of CCS, 2019.

[27] J. Han, S. Kim, D. Cho, B. Choi, J. Ha, and D. Han, “A secure mid-
dlebox framework for enabling visibility over multiple encryption
protocols,” IEEE/ACM Transactions on Networking, 2020.

[28] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“SgxPectre: stealing intel secrets from sgx enclaves via speculative
execution,” IEEE Security & Privacy, 2020.

[29] J. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
extracting the keys to the intel SGX kingdom with transient out-
of-order execution,” in Proc. of USENIX Security, 2018.

[30] X. Yuan, H. Duan, and C. Wang, “Assuring string pattern match-
ing in outsourced middleboxes,” IEEE/ACM Transactions on Net-
working, 2018.

[31] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “DFC: accel-
erating string pattern matching for network applications,” in Proc.
of NSDI, 2016.

[32] A. D. Caro, and V. Iovino, “jPBC: Java pairing based cryptogra-
phy,” in Proc. of ISCC, 2011.

Qin Liu received her B.Sc. in Computer Sci-
ence in 2004 from Hunan Normal University,
China, received her M.Sc. in Computer Science
in 2007, and received her Ph.D. in Computer
Science in 2012 from Central South University,
China. She has been a Visiting Student at Tem-
ple University, USA. Her research interests in-
clude security and privacy issues in cloud com-
puting. Now, she is an Associate Professor in
the College of Computer Science and Electronic
Engineering at Hunan University, China.

Yu Peng is currently pursuing the Ph.D. degree
in the College of Computer Science and Elec-
tronic Engineering at Hunan University, China.
His research interests include the security and
privacy issues in cloud computing and net-
worked applications.

Hongbo Jiang received the PhD degree from
Case Western Reserve University, in 2008. Af-
ter that, he joined the faculty of the Huazhong
University of Science and Technology as a full
professor and the dean of the Department of
Communication Engineering. Now, he is a full
professor with the College of Computer Science
and Electronic Engineering, Hunan University.
His research concerns computer networking, es-
pecially algorithms and protocols for wireless
and mobile networks.He is serving as an editor

for the IEEE/ACM Transactions on Networking, associate editor for the
IEEE Transactions on Mobile Computing, and associate technical editor
for the IEEE Communications Magazine.

Jie Wu is the Chair and a Laura H. Carnell Pro-
fessor in the Department of Computer and Infor-
mation Sciences at Temple University, Philadel-
phia, PA, USA. Prior to joining Temple Univer-
sity, he was a Program Director at the National
Science Foundation and a Distinguished Pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, routing protocols, cloud and
green computing, network trust and security, and
social network applications. Dr. Wu has regularly

published in scholarly journals, conference proceedings, and books. He
serves on several editorial boards, including IEEE TRANSACTIONS
ON SERVICE COMPUTING, and Journal of Parallel and Distributed
Computing. Dr. Wu was general co-chair/chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as
well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Tian Wang received his BSc and MSc degrees
in Computer Science from the Central South
University in 2004 and 2007, respectively. He
received his PhD degree in City University of
Hong Kong in 2011. Currently, he is a professor
at the Institute of Artificial Intelligence and Fu-
ture Networks, Beijing Normal University & UIC,
China. His research interests include internet of
things and edge computing.

Tao Peng received the B.Sc. in Computer Sci-
ence from Xiangtan University, China, in 2004,
the M.Sc. in Circuits and Systems from Hunan
Normal University, China, in 2007, and the Ph.D.
in Computer Science from Central South Uni-
versity, China, in 2017. Now, she is an Asso-
ciate Professor of School of Computer Science
and Cyber Engineering, Guangzhou University,
China. Her research interests include network
and information security issues.

Guojun Wang received B.Sc. degree in Geo-
physics, M.Sc. degree in Computer Science, and
Ph.D. degree in Computer Science, at Central
South University, China, in 1992, 1996, 2002,
respectively. He is a Pearl River Scholarship
Distinguished Professor of Higher Education in
Guangdong Province, a Doctoral Supervisor of
School of Computer Science and Cyber Engi-
neering, Guangzhou University, China, and the
Director of Institute of Computer Networks at
Guangzhou University. He has been listed in

Chinese Most Cited Researchers (Computer Science) by Elsevier in
the past eight consecutive years (2014-2021). His research interests in-
clude artificial intelligence, big data, cloud computing, Internet of Things
(IoT), blockchain, trustworthy/dependable computing, network security,
privacy preserving, recommendation systems, and smart cities. He is a
Distinguished Member of CCF, a Member of IEEE, ACM and IEICE.

