
1

MARS: Enabling Verifiable Range-Aggregate
Queries in Multi-Source Environments

Qin Liu, Member, IEEE, Yu Peng, Graduate Student Member, IEEE,
Qian Xu, Graduate Student Member, IEEE, Hongbo Jiang, Senior Member, IEEE, Jie Wu, Fellow, IEEE,

Tian Wang, Member, IEEE, Tao Peng, Member, IEEE, Guojun Wang, Member, IEEE,
and Shaobo Zhang, Member, IEEE

Abstract—The huge values created by big data and the recent advances in cloud computing have been driving data from different
sources into cloud repositories for comprehensive query services. However, cloud-based data fusion makes it challenging to verify if an
untrusted server faithfully integrates data and executes queries or not. This is even harder for range-aggregate queries that apply
aggregate operations on data within given ranges. In this paper, we propose a query authentication scheme, named MARS, enabling a
user to efficiently authenticate range-aggregate queries on multi-source data. Specifically, MARS creates a VG-tree by subtly
integrating Expressive Set Accumulator into a multi-dimensional G-tree while signing the root digest with a multi-source aggregate
signature scheme. Compared with previous solutions, MARS has the following merits: (1) Practicality. Instead of treating range and
aggregate queries separately, the user can directly verify the statistical result of selected data. (2) Scalability. Instead of authenticating
the individual result from each source, the user can perform an aggregative validation on the integrated result from multiple sources.
The experimental results demonstrate the effectiveness of MARS. For large-scale data fusion, the user-side verification time increases
by only 103ms as the amount of data sources increases by five times.

Index Terms—Cloud computing, data fusion, authentication, multi-source data, range-aggregate queries

F

1 INTRODUCTION

In recent years, data fusion that integrates data from multi-
ple sources and provides users with united analysis results
has become a common trend in big data applications [1]. For
example, sentiment analysis systems fuse multi-source cor-
pora data to make a more accurate prediction [2]; intelligent

• Qin Liu, Yu Peng, Qian Xu, and Hongbo Jiang are with the College
of Computer Science and Electronic Engineering, Hunan University,
Changsha, Hunan Province 410082, China. E-mail: {gracelq628,
pengyu411, kilometerxu}@hnu.edu.cn; hongbojiang2004@gmail.com

• Jie Wu is with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122 USA. E-mail:
jiewu@temple.edu

• Tian Wang is with the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University & UIC, Zhuhai, Guangdong
Province 519000, China. E-mail: cs_tianwang@163.com

• Tao Peng and Guojun Wang are with the School of Computer Science
and Cyber Engineering, Guangzhou University, Guangzhou, Guangdong
Province 510006, China. E-mail: {pengtao, csgjwang}@gzhu.edu.cn

• Shaobo Zhang is with the School of Computer Science and Engineering
of the Hunan University of Science and Technology, Xiangtan, Hunan
Province 411201, China. E-mail: shaobozhang@hnust.edu.cn

This work was supported in part by the National Key Research and Devel-
opment Program of China under Grant 2022YFE0201400, in part by the
NSFC Grants 62272150, U20A20181, 62272162, 62172159, and 61872133,
in part by the Humanities and Social Sciences Research Project of the
Ministry of Education of China under Grant 22YJAZH155, in part by the
Natural Science Foundation of Guangdong Province of China under Grant
2023A1515012358; and in part by the Hunan Provincial Natural Science
Foundation of China under Grants 2021JJ30294, 2023JJ30267, 2020JJ3015.
(Corresponding authors: Yu Peng and Tao Peng.)

Amazon S3

PID Age BP(mmHg)
Penicillin’s

Cost

P1 21 111 9

P2 40 150 6

P3 67 180 12

Dataset 1

User

Pharmacy A2

PID Age BP(mmHg)
Penicillin’s

Cost

P4 16 112 36

P5 45 178 6

P6 63 197 18

Company A

Q= ([60, 80],

[160, 200],

AVE(Penicillin))

Result

=15Dataset 2

Pharmacy A1

Fig. 1: Cloud-based medical data fusion.

transportation systems combine multi-source traffic data
to preferably monitor road network [3]. As the increasing
number of data sources producing enormous data flows,
maintaining in-house data fusion infrastructure may in-
cur expensive overheads. For cost-effectiveness, entrusting
cloud service providers (CSPs) to merge data and provide
query services has emerged as a more popular choice [4].

Let us consider an application shown in Fig. 1. For better
analysis of drug consumption trend, chain pharmacies of
Company A cooperate to build a united medical data system
relying on Amazon S3 [5]. Once authorized, a user is able
to obtain the statistical results of selected data by querying
the cloud-based data fusion system. For example, a staff of
Company A can issue a query Q = (Age = [60, 80],BP =
[160, 200],AVE(Penicillin)) to get the average expense on

2

Penicillin for the patients with age between 60 and 80 and
blood pressure between 160 and 200.

Being affected by various factors inside and outside (e.g.,
external attacks, internal misconfiguration errors, software
bugs, and insider threats), a CSP may return incorrect and
incomplete results consciously or unconsciously. For exam-
ple, BlueBleed leaked sensitive data of 65, 000+ entities in
111 countries because of a single misconfigured data bucket
in Azure1; FlexBooker suffered a data breach exposing infor-
mation of 3.7 million users due to a compromised account
within Amazon web service infrastructure2. Returning to
our application scenario, Amazon may return 12 instead of
15 as the result owing to the accidental loss of record P6.

To ensure result authenticity, existing studies [6]–[15]
suggest the data owner to sign an authenticated data struc-
ture (ADS) so that the CSP can construct a verifiable object
(VO) for the user to authenticate query results. However,
previous verifiable query solutions mainly focus on a single
data source without considering combing range and ag-
gregate queries for unified verification, and thus they are
unable to accommodate the requirements in the above ap-
plication: (1) Verifiable range-aggregate queries. The statistical
result of selected data serves as the basis of data analysis.
The user should be able to authenticate aggregate operations
(e.g., AVE, SUM, and COUNT) on the data within the given
query ranges. (2) Data integration. The incompleteness of
data sources makes data analysis meaningless. The user
should be able to verify if the CSP faithfully fuses data or
not. (3) Efficiency. The verification process should be light-
weight enough that the user can verify the result anytime
and anywhere even if using resource-constrained devices.

To realize the above requirements, this paper proposes a
multi-source authenticated range-aggregate scheme, MARS,
based on a VG-tree-based ADS and a well-designed multi-
source aggregate signature (MSAS) scheme. Specifically, the
VG-tree is constructed by subtly integrating Expressive Set
Accumulator (ESA) [18] into a multi-dimensional G-tree [8],
[9]; while the MSAS scheme is constructed by incorporating
secret sharing scheme [20] into an improved identity-based
aggregate signature (IBAS) scheme [21]. The main trick is
that both the VG-tree and signature have the property of
combinableness, enabling the CSP to construct an integrated
VO and an aggregate signature based on multi-source fused
data, so that the user can perform the aggregative validation
in a lightweight way. To better understand the benefits
of aggregative validation, we provide two constructions,
MARS0 and MARS+. As the basic construction, MARS0 let
the CSP construct an individual VO based on each ADS
for the user to authenticate range-aggregate queries on each
source separately, while the advanced construction MARS+

allows the CSP to return an integrated VO based on a
merged ADS for the user to execute one-time verification.
Detailed discussions are also provided to support dynamic
rich queries and improve system practicality. The main
contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work to
devise an aggregative validation solution for range-

1. https://socradar.io/details-on-the-largest-b2b-leak-bluebleed/
2. https://securityaffairs.com/126409/data-breach/flexbooker-data-

breach.html

Data owners

PKG

User

CSP

Fig. 2: System model. The communication channels between
all entities are assumed to be secured under SSL/TLS.

aggregate queries in a multi-source environment.
• Based on the VG-tree and the MSAS scheme, MARS

allows a user to authenticate range-aggregate queries
on multi-source data in an efficient way. Compared
with previous solutions, MARS has the following
advantages: (1) Practicality. The user can authenticate
the statistical results for the data selected as needed.
(2) Scalability. The user can perform an aggregative
validation on multi-source fused data at once.

• We conduct formal security analyses and an empir-
ical study to validate the effectiveness of MARS. At
worst, it needs only around 160ms for the user to
verify range-aggregate queries on a united dataset
consisting of millions of records.

Paper Organization. Section 2 formulates the problem,
followed by the description of the basic construction in
Section 3. After describing the advanced construction in
Section 4, we provide analyses and discussions in Sections 5
and 6, respectively. We evaluate the constructions in Sec-
tion 7 before introducing the related work in Section 8
Finally, we conclude this paper in Section 9.

2 PROBLEM FORMULATION

2.1 The System and Threat Models
As shown in Fig. 2, our system model consists of four
types of entities: n data owners/sources, denoted by
DO1, . . . ,DOn, an authorized user, a CSP, and a private
key generator (PKG). A data ownerDOi possesses a dataset
Di, where the data is modeled as a set of ni objects
{o1, . . . , oni

}. To produce comprehensive analysis results,
the n data owners cooperate to build a united dataset
D∗ =

⋃n
i=1 Di, and prefer to upload their own datasets to

the CSP for ease of data fusion. Each object ok ∈ D∗ is
represented as (Ak, vk), where Ak is a vector of d com-
parative attribute values, and vk is a functional attribute
value3. To enable verifiable queries, DOi also outsources an
authenticated structure signed by its signature (ADSi, σi).

The user issues range-aggregate queries to obtain the
statistical results of selected data. A query is in the form
of Q = (R,Υ), where R is a d-dimensional range query
on comparative attributes, and Υ is an aggregate oper-
ator on the functional attribute. This work mainly con-
siders four kinds of aggregate operators: SUM, COUNT,

3. The case of multiple functional attribute values can be handled
similarly and will not be described here for simplicity.

3

MIN, and MAX. For example, for Q1 = (Age = [10, 30],
BP = [100, 120]), SUM(Penicillin)) and Q2 = (Age = [60,
80],BP = [160, 200]),MIN(Penicillin)), the results from the
example dataset shown in Fig. 1 are 45 and 12, respectively.

The CSP pools massive resources to provide verifiable
range-aggregate query services over the united dataset D∗.
Once receiving a query request Q = (R,Υ), the CSP first
executes the range queryR on dataset D∗ to screen out can-
didate objects, and then performs the aggregate operation Υ
on these objects to obtain the statistical result τ∗. To enable
the user to validate the final result τ∗, the CSP also returns
an integrated VO and an aggregated signature (VO∗, σ∗).

Corresponding to the scenario of Fig. 1, chain pharma-
cies of Company A are data owners, the staff of Company A
is the user, and Amazon is the CSP. Besides, our system also
includes a PKG responsible for broadcasting system param-
eters and public keys (Ω, {pki}ni=1), distributing secret keys
(Φ, ski) to DOi, and sending auxiliary message Ψ to the
user. Unlike the CSP executing resource-intensive tasks, the
PKG performs only lightweight operations during system
initialization and can be maintained in-house. For instance,
an edge server deployed in Company A may act as the PKG.

Following previous work [29], [32], [34], our threat
model assumes that the data owners, the user, and the
PKG are trustworthy, and assumes the CSP as a potential
adversary may return incorrect statistical results by design
or accident. For a query Q = (R,Υ), the user verifies if the
CSP faithfully executes the query in the following aspects:

• Integrity of Range Query. No object in the query
range R is overlooked or tampered with.

• Correctness of Aggregate Query. The statistical re-
sult of the objects in the query range R is authentic.

• Completeness of Data Sources. No data source is
skipped in the query process.

2.2 Notations

Let λ ∈ N be a security parameter throughout this paper.
Notation [n] represents the set of integers {1, . . . , n}. For a
finite set X = {x1, . . . , xn}, notation |X| denotes its cardi-
nality. The set of all binary strings of length x is denoted
by {0, 1}x and the set of finite binary strings is denoted by
{0, 1}∗. Notation ∥ denotes string concatenation.

The outsourced dataset D∗ =
⋃n

i=1 Di comes from n data
owners.DOi with public/private key pair (pki, ski) creates
a VG-tree VGT i as the ADS and produces a signature σi. In
VG-tree VGT i, the node VN i,x with label x is composed of
a G-tree node Ni,x and a digest δi,x. After merging n ADSs
and n signatures, the CSP produces an integrated VG-tree
VGT ∗ and an aggregate signature σ∗. For quick reference,
the most relevant notations are shown in Table 1.

2.3 Cryptographic Preliminaries

Bilinear Pairing [17]. Let G and GT be two cyclic groups
of prime order p with g being a generator of group G. A
bilinear pairing ê : G × G → GT has the following proper-
ties: (1)Bilinearity: ê(hx, uy) = ê(h, u)x·y for all h, u ∈ G and
x, y ∈ Zp. (2)Non-degeneracy: ê(g, g) ̸= 1. A bilinear-pairing
parameter generator is denoted by (p,G,GT , ê, g)← BG(λ).

TABLE 1: Summary of notations

Notations Descriptions

(pki, ski) The public/private key pair of DOi

(VGT i, σi) The VG-tree and signature created by DOi

(VGT ∗, σ∗) The integrated VG-tree and aggregated signature
Ni,x, δi,x The node with label x and its digest in tree VGT i

N ∗
x , δ

∗
x The node with label x and its digest in tree VGT ∗

OBJi,x The set of objects included in node Ni,x

Vi,x The functional attribute values of objects in OBJi,x
Υ(X) Execute aggregate operation Υ on set X
accX The accumulative value of set X

Expressive Set Accumulator [18]. ESA provides a suc-
cinct digest for a large set and a constant-size witness for
various set operations. Due to its expressiveness, ESA is em-
ployed to authenticate aggregate operations. Let [q] denote
the universal functional attribute values, where q = poly(λ),
and let AV (x) =

∑
v∈V xv be a polynomial on set V . The

tailored ESA scheme consists of the following algorithms:
• (ΩE , α)← Setup(λ) : The PKG picks a random secret

key α ∈ Z∗
p, gets pub = (p,G,GT , ê, g) by running BG(λ),

and sets the public parameters as ΩE = {pub, {gαv}v∈[q]}.
• accV ← GenAcc(V,ΩE) : The data owner defines a

polynomial AV (x) and calculates the accumulative value
for set V as accV = gAV (α) = g

∑
v∈V αv

.
• (π, τ) ← GenProof(V,Υ,ΩE) : The CSP defines a

polynomial AV (x) and performs in terms of operator Υ4:
(1) COUNT : It calculates BV (x) = AV (x)−AV (1)

x−1 , and
sets τ = AV (1) and π = gBV (α). (2) SUM : It calculates
BV (x) = AV (x)−AV (1)−A′

V (1)(x−1)

(x−1)2
, and sets τ = A′

V (1) and

π = (gBV (α),AV (1)), where A′(x) is the derivative of A(x).
(3) MIN: It sets τ = min(V) and π = g(AV (α)−ατ)/ατ+1

.
• {0, 1} ← VerProof(accV ,Υ, π, τ,ΩE) : To verify the

result τ , the user performs in terms of operator Υ:
(1) COUNT : It outputs 1 iff ê(accV /gτ , g) = ê(gα−1, π).

(2) SUM : It parses π as (π1, π2) = (gBV (α),AV (1)) and
outputs 1 iff ê(accV , g) = ê(g(α−1)2 , π1) · ê(gτ ·(α−1)+π2 , g).
(3) MIN : It outputs 1 iff ê(accV , g) = ê(gα

τ

, g) · ê(π, gατ+1

).
The security of ESA is based on q-SBDH assumption [19].

That is, given the parameters ΩE , the aggregate operator Υ,
and the accumulative value accV , it is difficult to find τ ′ ̸=
Υ(V) and π′ such that 1← VerProof(accV ,Υ, π′, τ ′,ΩE).

(n, n)-Secret-Sharing Scheme [20]. It divides a secret s
into n shares that are securely shared among n parties, such
that only all n parties together can reconstruct the secret s.
To implement, the first n − 1 parties create random values
ss1, . . . , ssn−1 and the last party sets ssn to s −

∑n−1
i=1 ssi.

Therefore, the secret can be obtained by s =
∑n

i=1 ssi.

Identity-based Aggregate Signature [21]. IBAS enables
to aggregate n parties’ signatures on n distinct messages
into a compact signature for one-time validation. Its security
is based on CDH assumption [22] and one-time-use distur-
bances. The tailored IBAS scheme works as follows.
• (ΩI , β) ← Setup(λ) : The PKG randomly chooses a

master key β ∈ Zp, and sets the public parameters as ΩI =

4. To reduce the parameter size from O(q2) to O(q), operator MAX is
realized by operator MIN after replacing each element v ∈ V with q−v.
Besides, operator AVE can be realized by SUM and COUNT operators.

4

(pub, h,H1), where pub = (p,G,GT , ê, g) ← BG(λ), h =
gβ , and H1 : {0, 1}∗ → G is a cryptographic hash function.
• (pki, ski) ← GenKey(IDi, β,ΩI) : The PKG calcu-

lates the public/private key pair for DOi with identity IDi

by setting pki = (hi,0, hi,1) and ski = (hβ
i,0, h

β
i,1), where

hi,0 ← H1(IDi∥0) and hi,1 ← H1(IDi∥1).
• σi ← GenSig(mi, ski,ΩI) : To sign a message mi ∈

Zp, DOi with ski = (hβ
i,0, h

β
i,1) chooses a disturbance W ∈

{0, 1}∗ hasn’t been used before and a random element ri ∈
Zp. It generates a signature σi = (W, ωi, φi), where ωi =

H1(W)ri · hβ
i,0 · h

β·mi

i,1 and φi = gri .
• σ∗ ← AggSig({σi}ni=1,ΩI) : The CSP aggregates n

signatures {σi}ni=1 with the same disturbanceW by setting
σ∗ = (W, ω∗, φ∗), where ω∗ =

∏n
i=1 ωi and φ∗ =

∏n
i=1 φi.

• {0, 1} ← VerSig(σ∗, {mi}ni=1, {pki}ni=1,ΩI) : The user
verifies the signature σ∗ and outputs 1 iff Eq. 1 is satisfied.

ê(ω∗, g) = ê(φ∗,H1(W)) · ê(h,
∏n

i=1
hi,0 ·

∏n

i=1
hmi
i,1). (1)

The IBAS scheme is reasonably efficient, requiring only
a constant number of bilinear pairings for verification. Fur-
thermore, an individual signature σi can be authenticated
by running VerSig(σi,mi,pki,ΩI) without aggregation.

3 THE BASIC CONSTRUCTION

In the basic construction MARS0, each data owner inde-
pendently constructs a VG-tree as the ADS based on which
the CSP generates an individual VO without merging data.
Given n VO/signature pairs, the user authenticates the
range-aggregate query over each dataset in turn.

Step 1: The PKG runs algorithm Initialization to generate
the secret keys {α, β}, the system parameters Ω, and the
key pairs (pki, ski)

n
i=1. Here, {α, β} will be kept secret,

({pki}ni=1,Ω) will be broadcast, and ski will be sent toDOi.
Step 2: DOi runs algorithm ADS Generation to gen-

erate the VG-tree and signature (VGT i, σi) that will be
outsourced together with the dataset Di. After getting
(Di,VGT i, σi)

n
i=1 from n data owners, the CSP keeps them

separately without performing merging operation.
Step 3: On receiving a query Q from the user, the CSP

runs algorithm VO Construction to get intermediate results
and VOs (τi,VOi)

n
i=1 from n datasets {Di}ni=1 and returns

them along with data owners’ signatures {σi}ni=1.
Step 4: The user runs the Verification algorithm to verify

intermediate values τ1, . . . , τn in sequence. If all validations
pass, the final result τ∗ is calculated as Υ({τ1, . . . , τn}).

3.1 VG-Tree
To construct an ADS for verifiable range-aggregate queries,
our main idea is first to construct a d-dimensional G-tree
from comparative attribute values, and then extending it to
a VG-tree by incorporating a digest into each G-tree node.

G-tree Construction. Let [Lk, Uk] denote the value range
of the k-th comparative attribute, for k ∈ [d]. A G-tree GT is
a 2d-ary tree, where each node Nx is defined as follows:

Definition 1 (G-tree node). If Nx is a non-leaf node, Nx =
⟨x, gbx, x1, . . . , x2d⟩; otherwise, Nx = ⟨x, gbx,OBJx⟩, where x
is the node label, gbx is the d-dimensional grid associated with
Nx, xi is the label of i-th children of node Nx, and OBJx is the
identifiers of objects included in this node.

(a) Sample Dataset

Level 2

o4

o5

o7

o6 o8

o2

o1

40 44

44

o3

0000 0001

00110010

00 01

1110
Level 1

Level 2

Level 0object A1 A2

o
1

40.3 43.3

o
2

40.8 43.6

o
3

42.6 42.2

o
4

41.3 41.2

o
5

41.7 41.7

o
6

40.6 40.6

o
7

43.3 41.2

o
8

42.4 40.5

(b) Grid Partition

N
0

N
00

N
01

N
10

N
11

N
0000

N
0110

N
1001

N
1010

N
1101

N
1110

… … … …

(c) G-tree Structure

o
1

o
2

o
3

o
4

o
5

o
6

o
7

o
8

Fig. 3: An example of 2-dimensional G-tree. The leaf nodes
with no object included are omitted. The value range of each
dimension is set as: [L1, U1] = [L2, U2] = [40.0, 44.0].

Each tree node is labeled with prefix code [23]. Taking
[Lk, Uk]

d
k=1 as the grid associated with the root node, the

grids at next levels are formed as follows: For each grid
at the i-th level, it is divided into 2d equal-size sub-grids
to form the grids at the (i + 1)-th level. The partition is
performed in a recursive manner until the number of grids
at the current level reaches a predefined threshold. Fig. 3
shows an example 2-dimensional G-tree. Initially, the root
grid is gb0 = {[40.0, 44.0], [40.0, 44.0]}, which is partitioned
into 4 sub-grids of the same size, {gb00, gb01, gb10, gb11}. If
the threshold is set to 16, the tree height is 3.

VG-tree Construction. Let H : {0, 1}∗ → {0, 1}λ be
a cryptographic hash function. A d-dimensional G-tree GT
can be extended to a VG-tree VGT by incorporating a digest
into each tree node from the bottom up as follows:

Definition 2 (Leaf node digest). For a leaf node VN x =
⟨Nx, δx⟩, where Nx = ⟨x, gbx,OBJx⟩ is a G-tree leaf node, the
digest δx is calculated by Eq. 2:

δx = H(gbx||H(accVx
)), (2)

where Vx is the functional values of objects in OBJx, and accVx

is the accumulative value of set Vx. In a special case, if OBJx = ∅,
accVx

is set to ⊥ and H(accVx
) is set to a dummy string S .

Definition 3 (Non-leaf node digest). For a non-leaf node
VN x = ⟨Nx, δx⟩, where Nx = ⟨x, gbx, x1, . . . , x2d⟩ is a G-
tree non-leaf node, the digest δx is calculated by Eq. 3:

δx = H(gbx1
||δx1
|| . . . ||gbx

2d
||δx

2d
). (3)

Each data owner independently builds trees from its
own dataset. In order to distinguish them, the G-tree and
VG-tree created by DOi are denoted by GT i and VGT i,
where the node with label x is denoted byNi,x and VN i,x =
(Ni,x, δi,x), respectively. In particular, for a non-leaf node,
Ni,x is in the form of (x, gbi,x, (i, x1), . . . , (i, x2d)), while for
a leaf node Ni,x is in the form of (x, gbi,x,OBJi,x).

3.2 Details of MARS0

Let ESA and IBAS be an ESA scheme and an IBAS scheme
described in Section 2.3, respectively. The details of MARS0

5

Algorithm 1 Basic Construction MARS0

Initialization (by the PKG)
Input: Security parameter λ, data owners’ identities {IDi}ni=1

Output: Parameter Ω, keys {α, β}, key pairs (pki, ski)
n
i=1

1: (ΩE , α)← ESA.Setup(λ); (ΩI , β)← IBAS.Setup(λ)
2: for i = 1 to n do
3: (pki, ski)← IBAS.GenKey(IDi, β,ΩI)
4: Ω← (ΩE ,ΩI)

ADS Generation (by DOi)
Input: Dataset Di, public/private key pair (pki, ski)
Output: The ADS VGT i and signature σi

1: Construct a d-dimensional G-tree GT i according to Def. 1
2: for each leaf node of Ni,x = (x, gbi,x,OBJi,x) do
3: Vi,x ← {vk}ok∈OBJi,x ; accVi,x ← ESA.GenAcc(Vi,x,ΩE)
4: Extend GT i to a VG-tree VGT i based on Def. 2 and Def. 3
5: σi ← IBAS.GenSig(δi,0, ski,ΩI)

VO Construction (by the CSP)
Input: Query Q = (R,Υ), datasets {Di}ni=1, ADSs {VGT i}ni=1

Output: Intermediate results {τi}ni=1, VOs {VOi}ni=1

1: for i = 1 to n do
2: Run Query(VGT i.root,Di,R) to output (Vi,MNi,UNi)
3: (πi, τi)← ESA.GenProof(Vi,Υ,ΩE)
4: VOi ← (MNi,UNi, πi)

Verification (by the user)
Input: The query Q = (R,Υ), VOs/signatures {VOi, σi}ni=1,

intermediate results {τi}ni=1, public keys {pki}ni=1

Output: Verification report VR, final result τ∗

1: c← 0 ▷c denotes the number of verified intermediate results
2: for i = 1 to n do
3: Pares VOi as {MNi,UNi, πi}
4: if MNi and UNi pass validation then
5: Reconstruct VGT i and δi,0 with Def. 2 and Def. 3
6: if IBAS.VerSig(σi, δi,0,pki,ΩI) then
7: accVi ←

∏
VN i,x∈MNi

accVi,x

8: if ESA.VerProof(accVi ,Υ, πi, τi,ΩE) then
9: c← c+ 1

10: if c ̸= n then
11: VR ← 0; τ∗ ← ⊥ ▷ 0 indicates verification fails
12: else
13: VR ← 1; τ∗ ← Υ({τ1, . . . , τn})

are shown in Alg. 1, where every algorithm but Initialization
takes the system parameters Ω as the implicit input.

Initialization. The PKG first runs the ESA.Setup and
IBAS.Setup algorithms to create system parameters Ω and
secret keys {α, β}, and then runs algorithm IBAS.GenKey to
generate the key pair (pki, ski) for DOi (i ∈ [n]).

ADS Generation. DOi first creates a G-Tree GT i from
dataset Di and extends it to a VG-tree VGT i by incorporat-
ing a digest into each node, where the accumulative value
is calculated by algorithm ESA.GenAcc. Then, DOi runs
algorithm IBAS.GenSig to get a signature σi for the root
digest δi,0 (which is mapped to a value in Zp before signing).

VO Construction. On receiving a query Q = (R,Υ), the
CSP first runs algorithm Query on each VG-Tree VGT i and
dataset Di to obtain the functional values Vi of candidate
objects in query R, a set of matched nodes MNi, and a set
of unmatched nodes UNi. Then, the CSP runs algorithm
ESA.GenProof to output the intermediate result τi = Υ(Vi)
and relevant proof πi, and sets VOi = (MNi,UNi, πi).

The details of the query process are described in Alg. 2
(excluding the boxed codes). For each VG-tree VGT i, the

Algorithm 2 Query (the boxed codes are for MARS+)

Input: VG-tree VGT .root, dataset D, range query R
Output: Functional values V , set MN, set UN

1: Q← empty queue; (V,MN,UN)← empty set
2: Push VRT .root into queue Q
3: while Q is non-empty do
4: VN x ← the head of queue Q
5: if VN x is a non-leaf node then
6: if gbx disjoints from R then
7: Put (x, gbx, δx) into UN
8: else
9: Push all the children nodes of VN x into queue Q

10: if VN x is a leaf node then
11: if gbx is not included in R then
12: Put {x, gbx,accVx} into UN

Put (x, gbx, {accVi,x}ni=1) into UN
13: else
14: Put (x, gbx,accVx) into MN
15: V ← V ∪ Vx

Put (x, gbx, {accVi,x}ni=1) into MN

V ← V ∪
∪n

i=1 Vi,x

CSP performs a detection starting from the root node
VRT i.root as follows: If a non-leaf node is disjoint with the
range query R, it stops traversing the subtree rooted at this
node, and puts the label, the grid, and the digest into UNi;
Otherwise, it further checks all its children nodes. When
this traversal reaches a leaf node, it puts the functional
values of candidate objects into Vi, while putting the label,
the grid, and relevant accumulative value into UNi or MNi

depending on if the leaf is disjoint with queryR or not. As a
trade-off for time efficiency, the CSP may locally keep these
accumulative values to avoid repeated calculations.

Verification. On receiving intermediate results {τi}ni=1

and VO/signature pairs (VOi, σi)
n
i=1 from the CSP, the user

performs the following three-stage verification to check if
the CSP honestly executes the query Q = (R,Υ) or not.

Stage 1. For each VO/signature pair (VOi, σi), the user
authenticates the integrity of range queryR on dataset Di. It
first examines if MNi and UNi in VOi satisfy the following
requirements: (1) For each (x, gbi,x,accVi,x) ∈ MNi, gbi,x
is included in query R; (2) For each (x, gbi,x, ∗) ∈ UNi,
gbi,x disjoints with query R. If so, it reconstructs the root
digest δi,0 of VGT i with MNi and UNi and verifies the
signature σi using algorithm IBAS.VerSig. Note that, the
label and the grid of a parent node can be recovered from
those of its children node according to the prefix encoding
and the partitioning method of G-tree. Besides, it is hard for
the CSP to falsify the labels and grids. This is because the
G-tree structure is deterministic once the value ranges are
predefined. If the validation passes, this means that all the
components in MNi and UNi are indeed calculated from the
original Di and VGT i, and no candidate object is skipped,
validating the integrity of the range query.

Stage 2. For each intermediate result τi, the user au-
thenticates the correctness of the aggregate query Υ. It
first calculates accVi

=
∏

VN i,x∈MNi
accVi,x

to obtain the
accumulative value of candidate objects, and then runs al-
gorithm ESA.VerProof to verify result τi. Due to the security
of ESA, this algorithm outputs 1 only when τi = Υ(Vi),
validating the correctness of the aggregate query.

6

o1

o2o3

o4

40 42

42

R

o5

o6
o8

o7
40

42

42

R

=(5,9)

= =14

=

=(3,13)

= =16

=

DataSet

o5 40.5, 40.5 3

o6 40.3, 41.4 9

o7 41.1, 40.4 13

o8 41.3, 41.3 21

DataSet

object A1 A2 v

o1 40.5 41.5 13

o2 41.3 40.4 9

o3 40.4 40.4 5

o4 41.7 41.7 7

DataSet

object A1 A2 v

o5 40.5 40.5 3

o6 40.3 41.4 9

o7 41.1 40.4 13

o8 41.3 41.3 21

=30

Fig. 4: Exemplary working process of MARS0. As for a G-tree, the value range is [40.0, 44.0] and the threshold is set to 4.

Stage 3. Once the correctness of n intermediate results
is verified, the user calculates Υ({τ1, . . . , τn}) to obtain the
final result τ∗, validating the completeness of data sources.

3.3 Illustrative Example
To illustrate the working process of MARS0, let us consider
the example shown in Fig. 4, where two data owners,
DO1 and DO2, cooperate to build a unite dataset and a
user issues a query Q = (R, SUM) to obtain the sum of
functional values within range R = [40.0, 42.0], [40.0, 41.0].

ADS Generation. After system initialization, each DOi

independently creates a VG-tree, VGT i of height 2, and then
generates a signature σi for the root digest δi,0.

VO Construction. For each dataset Di, the CSP runs
algorithm Query on VGT i to generate (Vi,MNi,UNi). The
search process upon the VG-trees is marked by red thick
lines, while the matched and unmatched nodes are filled
with red and green, respectively. For dataset D1, the candi-
date objects in R are {o2, o3} with V1 = {9, 5}. It runs al-
gorithm ESA.GenProof to get π1 and τ1 = 14 ← SUM(V1),
and sets VO1 = {MN1,UN1, π1}. For dataset D2, the can-
didate objects in R are {o5, o7} with V2 = {3, 13}. It runs
algorithm ESA.GenProof to get π2 and τ2 = 16← SUM(V2)
and sets VO2 = {MN2,UN2, π2}.

Verification. The user first reconstructs a VG-tree VGT i

based on each VOi = {UNi,MNi, πi}, and verifies the
root digest δi,0 by algorithm IBAS.VerSig. For example,
given UN1 = {(00, gb1,00,accV1,00

), (01, gb1,01,accV1,01
)}

and MN1 = {(10, gb1,10,accV1,10
), (11, gb1,11,accV1,11

)},
the user recover the structure of VG-tree VGT 1 and calcu-
lates digests from the bottom up: After calculating the leaf
digests δ1,00, δ1,01, δ1,10, and δ1,11 with Eq. 2, it calculates
the root digest δ1,0 with Eq. 3. If the validation passes,
it calculates the accumulative value accVi

for candidate
objects in VGT i and further verifies the intermediate result
τi by algorithm ESA.VerProof. Once τ1 and τ2 are verified, it
calculates SUM({14, 16}) to obtain the final result τ∗ = 30.

4 THE ADVANCED MARS CONSTRUCTION

MARS0 supports multi-source range-aggregate queries in a
verifiable way, but lacks scalability since both the VO con-
struction and verification costs are linear with the number of
data owners. To address this, MARS+ designs a combinative
digest signed by a MSAS scheme, so that the CSP can merge

multi-source data to construct an integrated VO and an ag-
gregate signature, enabling the user to perform aggregative
verification in a lightweight way. The main differences from
MARS0 lie in the following aspects:

Step 1: The PKG runs algorithm Initialization to initialize
the system and generate public/private keys to all data
owners. Beyond that, it sends auxiliary messages Ψ to the
user, and sends shared keys Φ to each data owner.

Step 2: DOi runs algorithm ADS Generation to generate
(VGT i, σi) and outsources them together with dataset Di.

Step 3: Given (Di,VGT i, σi)
n
i=1, the CSP runs algorithm

Merging to form an integrated VG-tree VGT ∗ for the united
dataset D∗ and produces an aggregated signature σ∗.

Step 4: Given a query Q from the user, the CSP runs
algorithm VO Construction to produce the final result and
integrated VO (τ∗,VO∗) and returns them along with σ∗.

Step 5: With the integrated signature/VO pair (σ∗,VO∗)
and the auxiliary messages Ψ, the user runs the Verification
algorithm to verify the final result τ∗ directly.

4.1 Main Idea

The G-tree is inherently mergeable when the value ranges
of comparative attributes as well as the partitioning method
are shared among data owners. Furthermore, the IBAS
scheme as the basis of the MSAS scheme supports the aggre-
gation of signatures. Therefore, our main idea is to make the
digests combinative, while signing each root digest with the
MSAS scheme, so that the CSP can produce an integrated
VG-tree signed by an aggregated signature. However, this
extension is non-trivial due to the following challenges:

Challenge 1: How to Design an Combinative Digest?
Let Λ denote any merging operation. Given the digests
δ1,x, . . . , δn,x of n nodes with label x, the digest of the
merged node is denoted by δ∗x = Λ(δ1,x, . . . , δn,x). To enable
the user to reconstruct the integrated VG-tree, δ∗x needs to be
able to calculated from children nodes’ digests δ∗x1

, . . . , δ∗x
2d

.
To fulfill this property, we set the digest δi,x to an element
in Zp, s.t. δi,x =

∑2d

k=1 δi,xk
mod p, where {δi,xk

}2dk=1 are
children nodes’ digests. If Λ denotes the add operation in
Zp, the combinative digest is obtained by: δ∗x =

∑n
i=1 δi,x =∑n

i=1

∑2d

k=1 δi,xk
=

∑2d

k=1

∑n
i=1 δi,xk

=
∑2d

k=1 δ
∗
xk

.
Challenge 2: How to Combine with the MSAS Scheme?

As described in Section 2.3, the IBAS.VerSig algorithm takes
the root digests {δi,0}ni=1 and the public keys {pki}ni=1 as

7

input to verify the aggregate signature σ∗. That is, the user
needs to reconstruct n VG-trees {VGT }ni=1 to obtain all
the root digests {δi,0}ni=1, before running this algorithm. To
further reduce the user-side overhead, the MSAS scheme
improves the IBAS scheme by subtly introducing a common
share into data owners’ public keys, so that the user can
reconstruct an integrated VG-tree VGT ∗ and use its root
digest δ∗0 straightway for efficient verification.

Challenge 3: How to Verify the Completeness of Data
Sources? The verification algorithm examines digest au-
thenticity, rather than the completeness of data sources. That
is, algorithm IBAS.VerSig outputs 1 if δ∗0 is the integration
of real root digests. To deceive the user, the CSP may merge
partial VG-trees VGT 1, . . . ,VGT n−1 to form ṼGT

∗
while

returning σ̃∗ =
∏n−1

i=1 σi and ṼO
∗

constructed from ṼGT
∗
.

Since σ̃∗ and ṼO
∗

are indeed calculated from the original
data, the CSP may successfully make the user accept δ̃∗0
recalculated from ṼO

∗
. To solve this problem, we integrate

the secret sharing scheme into the MSAS scheme so that al-
gorithm MSAS.VerSig outputs 1 only when all the returned
data is authentic and there is no skipped data owner.

4.2 The MSAS Scheme
The MSAS scheme built based on the IBAS scheme and
secret sharing scheme consists of the following algorithms:
• (ΩI , β) ← Setup(λ) : The PKG randomly chooses a

master key β ∈ Zp and sets the public parameters as ΩI =
(pub, h,H1, u), where u is a random element in G and the
remaining components are defined in the same way as those
in the IBAS.Setup algorithm.
• (pki, ski) ← GenKey(IDi, β,ΩI) : The PKG chooses

a random element si ∈ Zp and calculates hi,0 ← H1(IDi∥0)
and hi,1 = us−1

i , s.t. hsi
i,1 = u. Then, it sets the public/private

key pair as pki = (hi,0, hi,1) and ski = (si, h
β
i,0, h

β
i,1) for

DOi with identity IDi. Based on the CDH assumption, it is
hard for an adversary to recover {si}ni=1 from (u, {hi,1}ni=1).
• σi ← GenSig(mi, ski,ΩI) : Before signing, n data

owners negotiate the disturbance W ∈ {0, 1}∗ and then
collaboratively run SSS to get random shares {ri}ni=1 for
a secret s ∈ Zp, s.t.

∑n
i=1 ri mod p = s. To sign a mes-

sage mi ∈ Zp, DOi with ski = (si, h
β
i,0, h

β
i,1) generates a

signature σi = (W, ωi), where ωi = H1(W)ri ·hβ
i,0 ·h

β·si·mi

i,1 .
• σ∗ ← AggSig({σi}ni=1,ΩI) : The CSP aggregates n

signatures {σi}ni=1 with the same disturbanceW by setting
σ∗ = (W, ω∗), where ω∗ =

∏n
i=1 ωi.

• {0, 1} ← VerSig(σ∗,
∑n

i=1 mi, {pki}ni=1, g
s,ΩI) : This

algorithm outputs 1 iff Eq. 4 is satisfied:

ê(ω∗, g) = ê(gs,H1(W)) · ê(h,
∏n

i=1
hi,0 · u

∑n
i=1 mi) (4)

Since u = hsi
i,1 for i ∈ [n] and g

∑n
i=1 ri = gs, the left-hand

side of Eq. 4 expands using the bilinear pairing properties:

ê(ω∗, g) = ê(
∏n

i=1 H1(W)ri · hβ
i,0 · h

β·si·mi

i,1 , g)

= ê(H1(W)
∑n

i=1 ri , g) · ê(
∏n

i=1 h
β
i,0 · h

β·si·mi

i,1 , g)
= ê(gs,H1(W)) · ê(h,

∏n
i=1 hi,0 · hsi·mi

i,1)
= ê(gs,H1(W)) · ê(h,

∏n
i=1 hi,0 ·

∏n
i=1 u

mi)
= ê(gs,H1(W)) · ê(h,

∏n
i=1 hi,0 · u

∑n
i=1 mi),

which is the right-hand side as required, thus validating the
correctness of the MSAS scheme. Since gs that gathering

Algorithm 3 Advanced Construction MARS+

Initialization (by the PKG)
Input: Security parameter λ, data owners’ identities {IDi}ni=1

Output: Parameter Ω, keys {α, β}, key pairs (pki, ski)
n
i=1,

auxiliary messages Ψ, shared keys Φ
1: (ΩE , α)← ESA.Setup(λ); (ΩI , β)← MSAS.Setup(λ)
2: Chooses random secrets s ∈ Zp and κ ∈ {0, 1}λ
3: for i = 1 to n do
4: (pki, ski)← MSAS.GenKey(IDi, β,ΩI)
5: Ω← (ΩE ,ΩI); Ψ← (gs, κ); Φ← {s, κ}

ADS Generation (by DOi)
Input: Dataset Di, private key pair (pki, ski), key Φ
Output: The ADS VGT i and signature σi

1: Execute lines 1-3 of MARS0.ADS Generation
2: Construct a VG-tree VGT i based on Def. 4 and Def. 5
3: σi ← MSAS.GenSig(δi,0, ski, s,ΩI)

Merging (by the CSP)
Input: The ADSs and signatures (VGT i, σi)

n
i=1

Output: The integrated ADS and signature (VGT ∗, σ∗)
1: Obtain VGT ∗ by merging {VGT i}ni=1 according to Def. 6
2: σ∗ ← MSAS.AggSig({σi}ni=1,ΩI)

VO Construction (by the CSP)
Input: Query Q = (R,Υ), dataset D∗, an ADS VGT ∗

Output: Final result τ∗, integrated VO VO∗

1: Run Query(VGT ∗.root,D∗,R) to output (V ∗,MN∗,UN∗)
2: (π∗, τ∗)← ESA.GenProof(V ∗,Υ,ΩE)
3: VO∗ ← (MN∗,UN∗, π∗).

Verification (by the user)
Input: QueryQ = (R,Υ), VO/signature (VO∗, σ∗), final result

τ∗, public keys {pki}ni=1, auxiliary messages Ψ
Output: Verification report VR

1: VR ← 0 ▷ 0 indicates verification fails
2: Pares VO∗ as (MN∗,UN∗, π∗)
3: if MN∗ and UN∗ pass validation then
4: Reconstruct VGT ∗ and δ∗0 with Def. 4-Def. 6
5: if MSAS.VerSig(σ∗, δ∗0 , {pki}ni=1, g

s,ΩI) then
6: accV ∗ ←

∏n
i=1

∏
VN i,x∈MN∗ accVi,x

7: if ESA.VerProof(accV ∗ ,Υ, π∗, τ∗,ΩE) then
8: VR ← 1

the information of n shares is provided by the user instead
of the CSP, Eq. 4 does not hold if the CSP overlooks any
data source due to the security of the secret sharing scheme,
validating the completeness of data sources.

The security of the MSAS scheme can be easily derived
from that of the IBAS scheme as follows: Let Mi = (si ·
mi) mod p denote the cipertext of DOi’s message mi. The
signature generated by IBAS.GenSig is σi = (W, ωi, φi),
where ωi = H1(W)ri ·hβ

i,0 ·h
βMi

i,1 and φi = gri . In algorithm
IBAS.VerSig, the user verifies whether Eq. 5 is satisfied:

ê(ω∗, g) = ê(φ∗,H1(W)) · ê(h,
∏n

i=1
hi,0 ·

∏n

i=1
hMi
i,1) (5)

where ω∗ =
∏n

i=1 H1(W)ri · hβ
i,0 · h

βMi

i,1 and φ∗ = g
∑n

i=1 ri .
Note that the left-hand side of Eq. 5 is the same as that of
Eq. 4, and the right-hand side of Eq. 5 evolves as follows:

ê(φ∗,H1(W)) · ê(h,
∏n

i=1 hi,0 ·
∏n

i=1 h
Mi
i,1)

= ê(gs,H1(W)) · ê(h,
∏n

i=1 hi,0 ·
∏n

i=1 h
si·mi
i,0)

= ê(gs,H1(W)) · ê(h,
∏n

i=1 hi,0 ·
∏n

i=1 u
mi)

= ê(gs,H1(W)) · ê(h,
∏n

i=1 hi,0 · u
∑n

i=1 mi)

8

o1
o6

o4

o8

o3

o5 o2
o7

R

40

42

42 =(5,3,9,13)

= =30

=

DataSet

object A1 A2 v

o1 40.5 41.5 13

o2 41.3 40.4 9

o3 40.4 40.4 5

o4 41.7 41.7 7

DataSet

object A1 A2 v

o5 40.5 40.5 3

o6 40.3 41.4 9

o7 41.1 40.4 13

o8 41.3 41.3 21

=30

Fig. 5: Exemplary working process of MARS+. A G-tree is constructed under the same requirements of Fig. 4.

which is the same as that of Eq. 4. Therefore, the output of
algorithm MSAS.VerSig is equivalent to that of algorithm
IBAS.VerSig. The IBAS.VerSig algorithm outputting 1 veri-
fies the authenticity of ciphertexts {Mi}ni=1, validating the
authenticity of messages {mi}ni=1 and their sum

∑n
i=1 mi.

4.3 Details of MARS+

Let Fκ : {0, 1}∗ → Zp be a pseudo-random function (PRF)
with key κ ∈ {0, 1}λ, and let MSAS be a MSAS scheme
described in Section 4.2. The details of MARS+ are shown in
Alg. 3 that takes system parameters Ω as the implicit input.

Initialization. The PKG first runs algorithms ESA.Setup
and MSAS.Setup to create system parameters Ω and secret
keys {α, β}, and then runs algorithm MSAS.GenKey to gen-
erate key pairs (pki, ski)

n
i=1 . Besides, it generates auxiliary

messages Ψ = {κ, gs} and shared keys Φ = {s, κ}.
ADS Generation. DOi builds a d-dimensional G-tree

GT i according to Def. 1, and extends GT i to a VG-tree VGT i

by incorporating a digest into each tree node as follows:

Definition 4 (Leaf node digest). For a leaf node VN i,x =
⟨Ni,x, δi,x⟩, where Ni,x = ⟨x, gbi,x,OBJi,x⟩ is a G-tree leaf
node, the digest δi,x is calculated by Eq. 6:

δi,x = Fκ(gbi,x||H(accVi,x
)) mod p (6)

where Vi,x is the functional values of objects in OBJi,x, and
accVi,x is the accumulative value. In a special case, if OBJi,x =
∅, accVi,x is set to ⊥ and δi,x is set to the identity element of Zp.

Definition 5 (Non-leaf node digest). For a non-
leaf node VN i,x = ⟨Ni,x, δi,x⟩, where Ni,x =
⟨x, gbi,x, (i, x1), . . . , (i, x2d)⟩ is a G-tree non-leaf node,
the digest δi,x is calculated by Eq. 7:

δi,x =
∑2d

k=1
δi,xk

mod p (7)

After creating the VG-tree, DOi signs the root digest δi,0
and produces a signature σi by algorithm MSAS.GenSig.

Merging. Once receiving the ADSs from n data owners,
the CSP first merges the VG-trees VGT 1, . . . ,VGT n into an
integrated VG-tree VGT ∗ by combing the digests as follows:

Definition 6 (The digest of a merged node). A merged node is
defined as VN ∗

x = (N ∗
x , δ

∗
x), where N ∗

x = ⟨x, gbx, {OBJi,x}ni=1⟩
if VN ∗

x is a leaf node, and N ∗
x = ⟨x, gbx, x1, . . . x2d⟩ otherwise.

In any case, the digest δ∗x is calculated by Eq. 8:

δ∗x =
∑n

i=1
δi,x mod p (8)

Given the integrated VG-tree, it generates an aggregated
signature σ∗ for the digest δ∗x by algorithm MSAS.AggSig.

VO Construction. Given a query Q = (R,Υ), the
CSP executes algorithm Query(VGT ∗.root,D∗,R) to get
(V ∗,MN∗,UN∗). Then, it runs algorithm ESA.GenProof to
output the final result τ∗ = Υ(V ∗) and relevant proof π∗.
The integrated VO is set to VO∗ = (MN∗,UN∗, π∗). As
shown in Alg. 2 (including the boxed codes), the query
process slightly differs from that of MARS0: When the
traversal reaches a leaf node, the CSP puts the functional
values of candidates objects in n VG-trees into V ∗, while
putting the label, the grid, and the accumulative values in n
VG-trees into MN∗ or UN∗ depending on if the leaf node is
included in the range query R or not.

Verification. Given the final result τ∗ and the integrated
VO/signature pair (VO∗, σ∗), the user performs the fol-
lowing two-stage verification to check if the CSP honestly
executes the query Q = (R,Υ) on n datasets or not.

Stage 1. The user first examines if MN∗ and UN∗ con-
forms to the standard in the same way as MARS0. If so,
reconstructs the integrated VG-tree VGT ∗ with MN∗ and
UN∗ and then verifies the root digest δ∗0 using the algorithm
MSAS.VerSig. Based on the security of the SSS and IBAS
schemes, this algorithm outputting 1 means that all the
components in MN∗ and UN∗ are indeed calculated from
the original D∗ and VGT ∗, no candidate object is skipped,
and no data source is omitted. This validates the integrity of
range query R as well as the completeness of data sources.

Stage 2. The user calculates
∏n

i=1

∏
VN i,x∈MN∗ accVi,x

to obtain accV ∗ , the accumulative value of candidate
objects from all data sources, and then runs algorithm
ESA.VerProof to authenticate the final result τ∗. Due to
the security of ESA, this algorithm outputs 1 only when
τ∗ = Υ(V ∗), validating the correctness of aggregate query.

4.4 Illustrative Example

As for the application scenario in Section 3.3, Fig. 5 illus-
trates the working process of MARS+:

ADS Generation. After system initialization, each DOi

independently creates a VG-tree, VGT i, as shown in Fig. 5,
and then produces a signature σi for the root digest δi,0.

Merging. Given (Di,VGT i, σi)i=1,2, the CSP merges the
VG-trees and aggregates signatures. The integrated VG-tree
VGT ∗ and the aggregated signature are as shown in Fig. 5.

VO Construction. For the united dataset D∗, the CSP
runs algorithm Query on VGT ∗ to get (V ∗,MN∗,UN∗). The

9

TABLE 2: Performance comparison of MARS0 and MARS+

MARS0 MARS+

CPU Cost COMM. Cost CPU Cost COMM. Cost

PKG O(q · C∧ + n× C∧) O(q + n) O(q · C∧ + n× C∧) O(q + n)
DOi O(ni · C× +N · Ch) O(N) O(ni · C× +N1 · (Ch + Cf) +N2 · C+) O(N)
CSP O(c · C×) O(n ·m) O(n ·N · C+ + n · C× + c · C× + n · C×) O(n ·m1)
User O(n ·m · Ch + c · C× + n · (C× + Cb + C×T)) O(n ·m) O(n ·m1 · (Ch + Cf) +m2 · C+ + (c+ n) · C×) O(n ·m1)

[q] is the universal values; n is the number of data owners; N1 and N2 are the number of leaf and non-leaf nodes in each VG-tree, m1 and m2

are the number of leaf and non-leaf nodes visited in the query process, respectively; c is the total number of candidate objects; ni is the number
of objects in dataset Di; m = m1 +m2 is the total number of visited nodes; N = N1 +N2 is the total number of nodes in a VG-tree.

search process upon the integrated VG-tree is marked by
red thick lines, while the matched and unmatched nodes
are filled with red and green, respectively. For dataset D∗,
the candidate objects in R are {o2, o3, o5, o7} with V ∗ =
{9, 5, 3, 13}. It then runs algorithm ESA.GenProof to get π∗

and τ∗ = 30 and sets VO∗ = {MN∗,UN∗, π∗}.
Verification. The user reconstructs VGT ∗ from VO∗ and

verifies the root digest δ∗0 by algorithm MSAS.VerSig. If
the validation passes, it calculates the accumulative values
accV ∗ of all candidate objects and directly authenticates the
final result τ∗ by algorithm ESA.VerProof.

5 ANALYSIS

5.1 Performance Analysis
Let Ch, Cf , Cb, C+, C×T

, C× and C∧ denote the CPU cost
of a hash function, a PRF, a bilinear pairing, an addition
operation in Zp, a multiplication operation in GT and a
multiplication operation, and a power operation in G, re-
spectively. Given n data owners, each DOi is supposed to
build a 2d-ary VG-tree VGT i of height η over a dataset Di

that consists of ni objects. Therefore, each VG-tree includes
N1 = 2d·(η−1) leaf nodes and N2 =

∑η−1
k=1 2

d·(k−1) non-
leaf nodes. Given a query Q = (R,Υ), the total number of
candidate objects in query R is denoted by c, and the num-
ber of leaf and non-leaf nodes visited in algorithm Query is
denoted by m1 and m2, respectively. The comparison results
of CPU and communication costs are shown in Table 2,
where the incoming (resp. outgoing) communication costs
are considered for the user (resp. the remaindering entities).

Initialization. In MARS0, the major costs lie in al-
gorithms ESA.Setup and IBAS.Genkey, which incur cost
O(q ·C∧) to output system parameters of size O(q) and cost
O(n×C∧) to generate private keys of size O(n), respectively.
MARS+ incurs similar costs as MARS0.

ADS Generation. In MARS0, DOi produces accumula-
tive values for all objects in Di by algorithm ESA.GenAcc,
and calculates hash digest for each node, resulting the total
CPU cost O(ni · C× + (N1 + N2) · Ch). Once the VG-
tree is built, it then produces a signature by algorithm
IBAS.GenSig, which incurs a constant cost. Compared with
MARS0, MARS+ requires DOi to calculate hash functions
and pseudo-random functions to obtain leaf nodes’ digests
while calculating 2d additions in Zp for each non-leaf node’
digest, resulting the total CPU cost O(ni · C× +N1 · (Ch +
Cf) + N2 · C+). Besides, both of them outsource a VG-tree
of size O(N1 +N2) and a constant-size signature.

Merging. In MARS+, the CSP performs n · (N1 + N2)
additions in Zp to merge n VG-trees, and runs algorithm

MSAS.AggSig to aggregate n signatures, resulting the total
CPU cost O(n·(N1+N2)·C++n·C×). After merging, the size
of ADSs and signatures is reduced from O(n × (N1 +N2))
and O(n) to O(N1 +N2) and O(1), respectively.

VO Construction. MARS0 requires the CSP to run the
Query algorithm for n times to outputs n VOs, and run
algorithm ESA.GenProof for n times to generate n proofs
{πi}ni=1 and n intermediate results {τi}ni=1. By contrast,
MARS+ requires the CSP to run the Query algorithm once to
output an integrated VO, and run algorithm ESA.GenProof
once to generate a proof π∗ and a final result τ∗. Suppose
that in both constructions, the CSP locally keeps the ac-
cumulative values {accVi,x

}i∈[n],x∈[N1+N2]. Since the cost
of algorithm ESA.GenProof is related to the number of
candidate objects, both constructions incur similar the CPU
costs O(c · C×). The VO size in MARS0 and MARS+ is
O(n · (m1 +m2)) and O(n ·m1), respectively.

Verification. In MARS0, the user reconstructs n VG-trees
while running algorithms ESA.VerProof and IBAS.VerSig
for n times. In MARS+, the user reconstructs an inte-
grated VG-tree while running algorithms ESA.VerProof and
MSAS.VerSig once. The CPU costs in MARS0 and MARS+

are O(n · (m1+m2) ·Ch+ c ·C×+n · (C×+Cb+C×T
)) and

O(n ·m1 · (Ch +Cf)+m2 ·C+ +(c+n) ·C×), respectively.

5.2 Security Analysis
Theorem 1. MARS0 achieves integrity, correctness, and com-
pleteness, if hash functions are collision resistant, and the IBAS
and ESA schemes are secure.

Proof. The security can be proven by contradiction:
Case 1: For accVi,x

∈ VOi, the CSP forges a fake set
Ṽi,x by replacing an element in Vi,x with a fake element
or an empty element, and replaces accVi,x with accṼi,x

. In
this case, the CSP forges or skips certain objects, trying to
compromise the integrity of range queries. Since the accu-
mulative values are collision resistant, accVi,x

̸= accṼi,x

when Vi,x ̸= Ṽi,x. The root hash is signed with the private
key of DOi. Due to the security of the IBAS scheme, the
CSP has to generate the same hash root with ṼOi. A forged
accumulative value generating the correct hash root of a
VG-tree implies a collision to the security of hash functions.

Case 2: The CSP replaces the intermediate result τi with
a fake value τ̃i, trying to compromise the correctness of
aggregate queries. As proven in Case 1, the accumulative
values in MNi are authentic, validating the authenticity
of accVi

=
∏

VN i,x∈MNi
accVi,x

. To pass the verification,
the CSP needs to construct a forged τ̃i and a fake proof

10

π̃i making algorithm ESA.VerProof output 1, leading a
contradiction to the security of the ESA scheme.

The user verifies the intermediate result obtained from
each VG-tree separately. If result integrity and correctness
regarding each VG-tree are proven in Case 1 and Case 2, the
completeness of data sources is also confirmed.

Theorem 2. MARS+ achieves integrity, correctness, and com-
pleteness, if hash functions are collision resistant, PRFs are secure,
and the MSAS, ESA, and secret sharing schemes are secure.

Proof. The security can be proven by contradiction:
Case 1: For accVi,x

∈ VO∗, the CSP forges a fake set
Ṽi,x by replacing an element in Vi,x with a fake element
or an empty element, and replaces accVi,x

with accṼi,x
.

In this case, the CSP forges or skips certain objects, try-
ing to compromise the integrity of range queries. Since
the accumulative values and hash functions are collision
resistant, H(accVi,x

) ̸= H(accṼi,x
) when Vi,x ̸= Ṽi,x. The

root digest δ∗0 of the integrated VG-tree is signed with the
aggregated signature of n data owners. Due to the security
of the MSAS scheme, the CSP has to generate a fake digest
δ̃∗0 = (δ∗0 − Fκ(gbx||H(accVi,x)) + Fκ(gbx||H(accṼi,x

)))

mod p with ṼO∗ s.t. δ̃∗0 = δ∗0 . Since the key κ is protected
against the CSP, the case that CSP forges a digest passing
verification implies a collision to the security of PRFs.

Case 2: The CSP replaces the final result τ∗ with a fake
value τ̃∗, trying to compromise the correctness of aggregate
queries. As proven in Case 1, the accumulative values in
MN∗ are authentic, validating the authenticity of accV ∗ =∏n

i=1

∏
VN i,x∈MN∗ accVi,x . To pass the verification, the CSP

needs to construct a forged τ̃∗ and a fake proof π̃∗ making
algorithm ESA.VerProof output 1, leading a contradiction to
the security of the ESA scheme.

Case 3: The CSP merges only n − 1 VG-trees to form
ṼGT

∗
, aggregates only n − 1 signatures to form σ̃∗ =∏n−1

i=1 σi, and constructs an incomplete ṼO
∗

from ṼGT
∗
.

In this case, the CSP skips a data owner trying to com-
promise the completeness of data sources. Since n secret
shares and their aggregation are protected against the CSP,
a fake digest δ̃∗ =

∑n−1
i=1 δi,0 calculated from ṼO

∗
making

algorithm MSAS.VerSig output 1, leading a contradiction to
the security of the secret sharing scheme.

6 DISCUSSIONS

6.1 Extension to Dynamic Updates and Rich Queries

MARS allows a user to efficiently authenticate statistical
results of selected multi-source data. However, under prac-
tical circumstances, each data owner continuously gathers
new data and needs to update the outsourced dataset as
required, while the user may perform top-K queries or con-
ditional aggregate queries for a better user query experience.
Therefore, we will discuss how to extend MARS to support
dynamic updates and rich queries.

How to Support Updates in Multi-source Environ-
ments. The VG-tree structure allows for efficient updates.
When a new object is added into a leaf node, the data owner
only needs to recalculate relevant accumulative value and
recalculate the digests in the path from this leaf node to the

root, while resigning the root digest. Unlike MARS0 where
each data owner independently chooses a disturbance and
a random number to produce a new signature, MARS+ re-
quires all the data owners to share the disturbance and gen-
erate the random numbers using the secret sharing scheme
in the signing process. Once the share ri is updated to r′i for
i ∈ [n], the data owners need to send the aggregation of new
shares gs

′
= g

∑n
i=1 r′i to the user for authenticating queries

on the updated data. To reduce the number of interactions,
an alternative solution is letting the data owners and the
user share a key uk, with which each entity can calculate
the new aggregation gs

′
by itself. Let ri and G = gs denote

the current share and aggregation of shares, respectively.
A new shared is calculated by r′i = ri + Fuk(IDi||W) for
i ∈ [n], so that the user can obtain the new aggregation gs

′

by computing G
∑n

i=1 Fuk(IDi||W) on his own, in whichW is
the disturbance contained in the signature.

How to Enrich Search Functionalities. Besides the nor-
mal aggregate operations, e.g., COUNT, SUM, MIN, and
MAX, MARS can be extended to realize the following types
of queries within a given range.
• Top-K queries. To authenticate the top-K functional

values within a range R, our solution is letting the CSP
prove to the user that the top-i value is the max value for
the candidate functional values excluding the top-1, . . . top-
(i − 1) values. That is, a range-top-K query can be verified
by authenticating a range-MAX query for K times. Let V 0

denote the candidate objects inR, and let τi denote the top-i
value in V 0. For i ∈ [K], the CSP sets V i ← V i−1−τi−1 and
runs GenProof(V i,MAX,ΩE) to output (πi, τi), so that the
user can run algorithm VerProof(accV i ,MAX, πi, τi,ΩE) to
verify if τi is the maximal elements in V i, where accV i can
be calculated by accV i−1/gs

τi−1 , with τ0 = ⊥ and gs
τ0

= 1.
• COUNTIF and SUMIF queries. To support conditional

aggregate queries, our main idea is to construct a (d + 1)-
dimensional G-tree from d comparative attributes and a
functional attribute, so that the conditional statement can be
treated as a query coverage over the (d + 1)-th attribute.
While generating the ADS, a G-tree and a VG-tree are
created in a similar way as before, except that the G-tree is a
2(d+1)-ary tree. Given a query Q = (R,COUNTIF) or Q =
(R, SUMIF), the CSP first transforms R to R′ = R ∧ Rd+1

where Rd+1 is the query coverage over the functional at-
tribute corresponding to the conditional statement. Then,
the CSP runs algorithm Query to find out the candidate
objects within range R′, and performs aggregate operator
on these objects. The rest of the process is similar to before.

6.2 Practicability Issues

In our threat model, the PKG as an internal entity is as-
sumed to be fully trusted. This assumption is reasonable
for specific applications in which all data sources belong to
the same organization (as illustrated in Fig. 1), but it limits
the practicality of the proposed scheme. In the real world,
the PKG may work abnormally due to external attacks or
internal misconfigurations, resulting in potential security
problems. In especial, the PKG is responsible for generating
signature private keys for data sources, and its malfunction
will make our MSAS scheme fail to work. Therefore, we will
provide discussions on how to reduce trust in the PKG.

11

(a) Distributed PKGs (b) Collaborative Key Generation

Fig. 6: The main ideas of extended MSAS schemes.

Distributed PKGs. Inspired by previous work [24], a
feasible solution is to distribute the master secret key β
among multiple PKGs using threshold cryptography [25]
or the secret sharing scheme defined in Section 2.3. In this
condition, no single PKG has the complete knowledge of β,
and attackers can obtain β only when they break through a
sufficient number of PKGs. Suppose that there exist t PKGs,
denoted by PKG1, . . . ,PKGt, in the system, and that all
PKGs collaborate using the secret sharing scheme. As shown
in Fig. 6-(a), our main idea is letting PKGj with a secret
key share βj generate a private key share ski,j for DOi,
which runs algorithm CombKey to obtain the final private
key ski. Specifically, the MSAS scheme extended based on
distributed PKGs consists of the following algorithms:
• (ΩI , {βj}tj=1) ← Setup(λ) : All PKGs collaboratively

run SSS to get secret key shares {βj}tj=1 for a master
secret key β ∈ Zp, s.t.

∑t
j=1 βj mod p = β. The public

parameters ΩI are defined in the same way as those in
algorithm MSAS.Setup.
• (pki, ski,j) ← GenKey(IDi, βj ,ΩI) : Before key gen-

eration, all PKGs collaboratively choose a random element
si ∈ Zp and run SSS to get secret key shares {si,j}tj=1 s.t.∑t

j=1 si,j mod p = si. For DOi with identity IDi, PKGj
calculates the public key pki = (hi,0, hi,1) in the same way
as algorithm MSAS.GenKey and generates the private key
share as ski,j = (si,j , h

βj

i,0, h
βj

i,1).
• (ski)← CombKey({ski,j}tj=1) : On receiving t private

key shares {ski,j}tj=1 from all PKGs, DOi calculates si ←∑t
j=1 si,j , hβ

i,0 ←
∏t

j=1 h
βj

i,0 and hβ
i,1 ←

∏t
j=1 h

βj

i,1, and sets
his private key as ski = (si, h

β
i,0, h

β
i,1).

The remaining algorithms including GenSig, AggSig,
and VerSig are constructed in the same way as the original
MSAS scheme. In terms of security, external attackers need
to breach all the PKGs to gain the master secret key β due
to the security of secret sharing scheme. As the value of t
increases, the difficulty to compromise all PKGs increases
greatly, thereby improving system security.

Collaborative Key Generation. The solution of dis-
tributed PKGs has the disadvantage of low efficiency, since
each data owner needs to interact with multiple PKGs to
obtain an adequate number of private key shares. Inspired
by previous work [26], a preferable solution is to enable
each data owner DOi and a single PKG to collaboratively
generate the private key ski. In this way, the PKG that

(a) Initialization Time (b) Size of Keys and Parameters

Fig. 7: The initialization cost on the PKG.

participates in part of the key generation process cannot
obtain the final private key. As shown in Fig. 6-(b), our
main idea is to let the PKG generate an intermediate private
key sk′

i with the master secret key β for DOi, which takes
a random secret γ as the input of algorithm GenFKey to
produce the final private key ski. Specifically, the main
changes in the extension lie in the following aspects:
• (ΩI , β) ← Setup(λ) : During system initialization,

all data owners negotiate a random element γ ∈ Zp and
sends gγ ∈ G to the PKG. The PKG randomly chooses a
master secret key β ∈ Zp, and sets the public parameters as
ΩI = (pub, h,H1, u), where h = gβ+γ ← gβ × gγ and the
remaining components are defined in the same way as those
in algorithm MSAS.Setup.
• (ski)← GenFKey(pki, sk

′
i, γ) : On receiving the inter-

mediate private key sk′
i = (si, h

β
i,0, h

β
i,1) from the PKG,DOi

with public key pki = (hi,0, hi,1) and random secret γ cal-
culates µ = hβ+γ

i,0 ← hβ
i,0× hγ

i,0 and ν = hβ+γ
i,1 ← hβ

i,1× hγ
i,1.

The final private key is set as ski = (si, µ, ν).
The remaining algorithms including GenKey, GenSig,

AggSig, and VerSig are constructed in the same way as
those in the original MSAS scheme. In terms of security, the
PKG without knowledge of the secret key γ cannot obtain
the final private key ski. The fact is that no one except the
data owner itself can obtain the final private key. Therefore,
system security is enhanced as it is hard for attackers to
forge signatures even if the PKG is compromised.

7 EVALUATION

In this section, we will evaluate the performance of MARS in
terms of computation and communication costs. To validate
the effectiveness, we conduct experiments on three real
datasets. As MARS is the first attempt to authenticate range-
aggregate queries on multi-source data, we compare it with
PA2 [15], the verifiable query solution closest to ours.

7.1 Experiment Settings and Datasets

In the experiments, a server with i5 4.4Ghz CPU (6 cores
and 12 threads) and a server with Intel Xeon Gold 5218
2.1Ghz CPU (16 cores and 32 threads) are regarded as the
PKG and the CSP, respectively; the data owner’s program
is run on a personal computer equipped with Intel Core i5
3.2GHz CPU and 32GB RAM, and the user-side program
is run on a laptop with Intel Core i7 1.8GHz CPU. For the
cryptographic algorithms, we set the security parameter λ
to 256, and apply SHA-256 and HMAC to implement hash
functions and PRFs, respectively. Besides, the experimental

12

5 10 15 20 25 5 10 15 20 25

(a) ADS Generation Time

5 10 15 20 25 5 10 15 20 25

(b) ADS Size

Fig. 8: The ADS generation cost on the data owner side.

code is written in Java, and the JPBC library [27] is employed
for group operations and bilinear pairing calculations.

We evaluate the experiments on three real datasets, Wind
Turbine Scada5 (Wind for short), FoodMarket6 (FoMa for
short), and US Population By Zip Code7 (USPo for short).
Wind contains 50, 525 records of wind turbines at different
times and each record consists of three attributes: wind
speed, theoretical power curve, and wind direction. FoMa
contains 164, 550 records of shopping transactions and each
record consists of three attributes: birthday, membership
age, and items. USPo is the largest dataset that contains
one million records of nationwide population in the United
States and each record consists of three attributes: minimum
age, maximum age, and zipcode. In the evaluation, the first
two attributes of three datasets are considered comparative
attributes, and the third attribute is taken as a functional
attribute. Since the parameter size and the computation
time of the ESA scheme are determined by the largest
possible value q of attributes, we preprocess each dataset
by scaling down all attribute values at a specific proportion.
Considering n data sources, we divide each dataset into n
parts equally and assign each part to a data owner.

According to the performance analysis in Section 5, we
know that the number of data owners n and the number of
candidate objects c are two important parameters affecting
performance. To demonstrate their concrete impacts on the
schemes, we set n to {5, 10, 15, 20, 25}, and the hit rate
rh = c/|D∗| of range query to {1%, 5%, 10%, 20%}. The
performance is evaluated with the following metrics: (1) The
initialization time; (2) The size of keys and parameters; (3)
The ADS generation time; (4) The ADS size; (5) The merging
time; (6) The VO construction time; (7) The VO size; (8)
The verification time. The first two metrics are tested on the
PKG, the 3-th and 4-th metrics are related to data owners,
the last metric is relevant to the user, and the remained
metrics are tested on the CSP. To minimize deviation, each
instance is run at least 100 times to obtain the average value.
The experimental results are shown in Fig. 7-13 and Table 3.
All the bars in these figures start from the same baseline.

7.2 Experimental Results
Initialization. Fig. 7 illustrates the cost in the initialization
phase. From this figure, we can see that the time for gen-
erating keys and the size of keys increase as n grows. The

5. https://www.kaggle.com/datasets/berkerisen/wind-turbine-
scada-dataset

6. https://recsyswiki.com/wiki/Grocery_shopping_datasets
7. https://www.kaggle.com/datasets/census/us-population-by-

zip-code

TABLE 3: The merging time on the CSP side (ms)

n = 5 n = 10 n = 15 n = 20 n = 25

MARS+(Wind) 21 35 53 61 65
MARS+(FoMa) 46 76 116 264 292
MARS+(USPo) 50 85 137 283 323

reason is obvious, the more the number of data owners, the
more the number of keys need to be generated. Moreover,
the initialization time and the key size of MARS+ is slightly
larger than those of MARS0. This is because algorithm
MSAS.GenKey calculates exponentiation operations to gen-
erate an extra key compared with algorithm IBAS.GenKey.

ADS Generation. From Fig. 8, we can observe that n has
little influence on the generation time and size of ADSs. The
main reason is that each data owner independently gener-
ates his own ADS, and this process can be done in parallel
among all data owners. Meanwhile, for both constructions,
the ADS generation costs on USPo are most expensive,
followed by FoMa, and then Wind. This is because the data
size of USPo is the largest and that of Wind is the least. In
Fig. 8-(a), MARS+ incurs less execution time compared with
MARS0. The main reason is MARS0 exploits hash operations
to calculate the digest of non-leaf nodes yet MARS+ just
requires additional operations. In Fig. 8-(b), the ADS size of
MARS+ is equal to that of MARS0 on the same dataset. This
is because the VG-trees built by MARS0 and MARS+ have
the same structure with nodes of the same size.

Merging. Since MARS0 does not merge data, we only
evaluate the merging time for MARS+ and demonstrate
the results in Table 3. From this table, we can see that the
merging time grows linearly along with n increasing. The
inherent reason is that the amount of merged data increases
as n grows. For the same reason, MARS+ incurs the most
and the least merging time on USPo and Wind, respectively,
under the same settings. It is noted that the merging time
difference between dataset Foma and USPo is very small
and the main reason is the VG-trees of both datasets have
the same height. In addition, the results also indicate that
our merging operation is efficient. For example, the merging
time is less than 0.4s for the whole USPo dataset.

VO Construction. To show the impact of parameter n on
query performance, we fix the hit rate rh to 5%. Fig. 9 and
Fig. 10 illustrate the VO construction time and VO size for
COUNT, SUM, MIN, and MAX aggregate queries, respec-
tively. From Fig. 9, we can observe the following trends for
MARS0 and MARS+: (1) The VO construction time of four
aggregate queries on three datasets increases as n grows.
This is because the bigger n means the more data needs to be
processed during VO construction. (2) For the same reason
as (1), the VO construction time of four aggregate queries
on USPo is the longest, followed by FoMa, and then Wind.
(3) Under the same settings, SUM query takes the most time
to construct VO and performs the worst, while MAX and
MIN queries spend the least time and perform the best.
The differences are caused by algorithm ESA.GenProof,
which requires the most number of group-related operations
for SUM query. (4) Compared with MARS0, MARS+ takes
less time to construct VO under the same settings. This is
because MARS+ just needs to search an integrated VG-tree

13

5 10 15 20 25 5 10 15 20 25

(a) VO Construction Time (COUNT)

5 10 15 20 25 5 10 15 20 25

(b) VO Construction Time (SUM)

5 10 15 20 25 5 10 15 20 25

(c) VO Construction Time (MIN)

5 10 15 20 25 5 10 15 20 25

(d) VO Construction Time (MAX)

Fig. 9: The time of constructing VO on the CSP, where rh = 5%.

5 10 15 20 25 5 10 15 20 25

(a) VO Size (COUNT)

5 10 15 20 25 5 10 15 20 25

(b) VO Size (SUM)

5 10 15 20 25 5 10 15 20 25

(c) VO Size (MIN)

5 10 15 20 25 5 10 15 20 25

(d) VO Size (MAX)

Fig. 10: The size of VO transmitted from the CSP to the user, where rh = 5%.

5 10 15 20 25 5 10 15 20 25

(a) Verification Time (COUNT)

5 10 15 20 25 5 10 15 20 25

(b) Verification Time (SUM)

5 10 15 20 25 5 10 15 20 25

(c) Verification Time (MIN)

5 10 15 20 25 5 10 15 20 25

(d) Verification Time (MAX)

Fig. 11: The verification time on the user side, where rh = 5%.

yet MARS0 requires sequentially querying n VG-trees.
From Fig. 10, we can get the following observations: (1)

The VO size increases as n grows for both constructions.
This is because the total number of visited nodes increases
as n grows. (2) The VO size generated by MARS0 is larger
than that of MARS+ under the same settings. The reason
is MARS+ just needs to visit one integrated VG-tree hence
can reduce some duplicate node information compared with
MARS0. (3) For the same construction, there is almost no
difference in VO size among all aggregate queries. This is
because the number of visited nodes is mainly impacted
by the hit rate rh of range queries rather than the types of
aggregate queries. (4) As for different datasets, the VO size
generated from USPo is biggest and that generated from
Foma is smallest. This is caused by the distribution of the
datasets: FoMa (resp. USPo) forms the most concentrated
(resp. decentralized) data distribution, thus incurring the
least (resp. most) number of matched and unmatched nodes.

Verification. From Fig. 11, we can observe that: (1) For
both constructions, the verification time of all aggregate
queries increases with the increase of n. This is because
the larger n, the larger VO hence incurring the longer
verification time. (2) The verification time of MARS+ is

basically an order of magnitude less than that of MARS0

under the same settings. The main reason is MARS+ just
requires reconstructing an integrated VG-tree and running
algorithms MSAS.VerSig and ESA.VerProof once. By con-
trast, MARS0 reconstructs n VG-trees while running algo-
rithms IBAS.VerSig and ESA.VerProof for n times. (3) Under
the same settings, four aggregate queries show only a small
difference in execution time. This is because four aggre-
gate queries require different numbers of bilinear pairing
operations in algorithm ESA.VerProof. (4) As for different
datasets, the verification time on USPo is the longest and
that on FoMa is the lowest, and the reason is also caused by
the distribution of datasets.

Performance on the Hit Rate. In the experiments, we fix
the number of data owners n to 25, and find that the results
of different aggregate queries have the same trend as the
hit rate rh changes. Therefore, we choose the most represen-
tative COUNT query and illustrate the experiment results
in Fig. 12. In addition, we compare our work with PA2 on
FoMa dataset and display the results in Fig. 13. Although
PA2 also supports verifiable range-aggregate queries, it es-
sentially differs MARS from the following aspects: (1) It is
designed for authenticating queries on single data source.

14

1% 5% 10% 20%
0

1

2

3

T
im

e(
s)

MARS0 MARS+

(a) VO Construction Time (COUNT)

1% 5% 10% 20%
0

250

500

750

1000

S
iz

e(
K

B
)

MARS0 MARS+

(b) VO Size (COUNT)

1% 5% 10% 20%
0

300

600

900

1200

1500

T
im

e(
m

s)

MARS0 MARS+

(c) Verification Time (COUNT)

Fig. 12: The cost of VO construction and verification on Wind dataset, where n = 25.

1% 5% 10% 20%
10-1

100

101

102

103

T
im

e(
s)

MARS0 MARS+ PA2

(a) VO Construction Time (COUNT)

1% 5% 10% 20%
0

50

100

150

200

250

S
iz

e(
K

B
)

MARS0 MARS+ PA2

(b) VO Size (COUNT)

1% 5% 10% 20%
0

500

1000

1500

2000

T
im

e(
m

s)

MARS0 MARS+ PA2

(c) Verification Time (COUNT)

Fig. 13: Performance comparison with PA2 on FoMa dataset, where n = 25.

Given n data sources, the CSP generates an individual VO
for each source and the user authenticates n VOs separately.
(2) It supports aggregate operations (SUM, COUNT, MIN,
MAX) over set-valued data based on bilinear-pairing ac-
cumulator [17]. As for a set-valued multiset, the COUNT
operation plays a similar role as in a numerical set.

From these figures, we can see that the computation and
communication costs of all schemes increases as rh grows.
The reason is the larger rh means that more objects will
be retrieved, hence resulting in more time to construct a
larger VO and more time to verify the results. In Fig. 13,
we also see that: (1) In terms of VO construction, MARS+

incurs the least time to generate the smallest VO, while
PA2 consumes the most time and MARS0 generates the
largest VO. (2) As for verification time, the time difference
between MARS+ and PA2 becomes longer as rh grows.
The performance gain in MARS+ is owing to the adoption
of aggregative validation, and the performance penalty in
PA2 is due to the abundant bilinear pairing operations in
signature verification. In summary, MARS+ performs best
among all schemes in multi-source environments. This is
because MARS+ supports aggregative validation, allowing
the user to perform one-time verification, while both MARS0

and PA2 do not merge data sources, thus requiring the user
to authenticate results on each source in sequence.

8 RELATED WORK

8.1 Verifiable Queries in Single Source Environment
As an increasing amount of data is being outsourced to the
cloud, a large body of research has been carried out to verify
the integrity of query results against an untrusted server.
The mainstream approaches normally design an ADS, based
on which the server constructs a VO for users to authenticate

query results. Merkel hash tree (MHT) [16] and its variants
as well as set accumulator [17], [18] are widely used to build
ADSs. Zhang et al. [6] proposed the CorrectMR system,
which combined Pedersen commitment [28] with Merkle
R-tree to authenticate SQL queries. Hu et al. [7] presented
the KV-Fresh scheme, in which a linked key span MHT
was designed to authenticate freshness of range queries in
the key-value store. Wu et al. [8] designed the ServeDB
system, in which a SVETree was developed by integrating
the hierarchical cube codes into balanced binary tree to
verify range queries on encrypted multi-dimensional data.
To reduce the computation and storage costs in Ref. [8],
Meng et al. [9] designed a verifiable range query scheme
VSRQ by combining accumulator technology and G-tree.
Meanwhile, they improved the G-tree structure by dividing
tree nodes adaptively to accelerate the query process.

In addition, several studies have been conducted to
accomplish the verification of rich query expressions. Li et
al. [10] designed a verifiable fuzzy query scheme VRFMS
by exploiting Bloom filter, locality-sensitive hashing and ho-
momorphic message authentication code (MAC). Our pre-
vious work [11] proposed a verifiable top-K search scheme
VDERS, which constructed a ranked verifiable matrix to
record the ranking information and encoded it with RSA
accumulator. Yung et al. [12] presented the VB method based
on the Voronoi diagram to authenticate moving kNN query.
Cui et al. [13] proposed a SVkNN scheme, which designed a
grid-based index on the basis of Voronoi diagram to achieve
verifiable kNN query on the encrypted data. Wang et al. [14]
presented the DynPilot solution, which designed a DSV-
tree to accomplish verifiable location-based skyline query.
Xu et al. [15] designed an authentication scheme PA2 for
range-aggregate queries on set-valued data by combining G-
tree and bilinear-pairing accumulators. However, the above

15

verification schemes are designed for the single source envi-
ronment. When being applied to the multi-source scenario,
the user has to verify the results obtained from each source
separately. That is, these schemes have limited scalability
since the verification costs increase as the number of data
sources increases.

8.2 Verifiable Queries in Multi-source Environment
With the advent of the big data era, how to provide users
with verifiable query results from multi-source fused data
has been widely concerned. However, the research in this
field is still in its infancy, and there are few verification
schemes designed for a multi-source environment. Chen
et al. [29] designed a homomorphic secret-sharing seal to
aggregate the inputs from multiple sources. Moreover, they
proposed two query verification schemes based on G-tree
and R-tree to verify the integrity and correctness of multi-
dimensional data from multiple sources. Chandrasekhar et
al. [30] exploited the multi-trapdoor hashing scheme [31]
to aggregate labels of data elements from multiple sources
in a verifiable way. Sun et al. [32] proposed ABKS-UR,
an authorized keyword search scheme on encryption data,
where an authorized user can authenticate search results
from multiple data owners. Lu et al. [33] designed EncGD,
a count query scheme with the verification functionality for
multi-source dynamic DNA data. Tong et al. [34] proposed
the VFIRM scheme based on dual secure k-nearest neigh-
bor technique and homomorphic MAC to realize verifiable
encrypted image retrieval in multiple data-owners environ-
ments. Gupta et al. [35] designed the Obscure scheme to
verify aggregated queries with conjunctive or disjunctive
predicates based on the secret-sharing technique [20]. How-
ever, their work distributed data across multiple servers
under the assumption that there were at least c > 2 non-
communicating servers. In summary, existing verification
schemes designed for multi-source environment either re-
quire multiple non-colluding servers or support only simple
aggregate queries, and thus cannot be applied to verify
statistical results of selected data from multiple sources.

9 CONCLUSION

In this paper, we propose a multi-source authenticated ran-
ge-aggregate scheme, MARS, to ensure the correctness of
statistical results in a cloud-based data fusion environment.
Due to the combinableness property of the VG-tree and
MSAS scheme, the user can efficiently perform aggregative
validation by using an integrated VO and an aggregate
signature. To show the benefits of aggregative validation,
two constructions are provided and evaluated under differ-
ent parameters. The formal analyses and empirical studies
validate the security and practicality of MARS, respectively.
As part of our future work, we will try to combine MARS
with privacy-preserving techniques, such as searchable en-
cryption [36], [37] and order-preserving encryption [38] to
further ensure the confidentiality of multi-source data.

REFERENCES

[1] J. Liu, J. Huang, R. Sun, H. Yu, and R. Xiao, “Data fusion for
multi-source sensors using GA-PSO-BP neural network,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[2] Y. Dai, J. Liu, X. Ren, and Z. Xu, “Adversarial training based multi-
source unsupervised domain adaptation for sentiment analysis,”
in Proc. of AAAI, 2020.

[3] P. Bagga, A. K. Das, M. Wazid, J. J. Rodrigues, K.-K. R. Choo,
and Y. Park, “On the design of mutual authentication and key
agreement protocol in internet of vehicles-enabled intelligent
transportation system,” IEEE Transactions on Vehicular Technology,
2021.

[4] L. Xu, S. Sun, X. Yuan, J. K. Liu, C. Zuo, and C. Xu, “Enabling au-
thorized encrypted search for multi-authority medical databases,”
IEEE Transactions on Emerging Topics in Computing, 2021.

[5] Amazon cloud directory. [Online]. Available:
https://aws.amazon.com/cloud-directory/

[6] B. Zhang, B. Dong, and W. H. Wang, “CorrectMR: Authentication
of distributed sql execution on mapreduce,” IEEE Transactions on
Knowledge and Data Engineering, 2021.

[7] Y. Hu, X. Yao, R. Zhang, and Y. Zhang, “Freshness authentication
for outsourced multi-version key-value stores,” IEEE Transactions
on Dependable and Secure Computing, 2022.

[8] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “Servedb:
Secure, verifiable, and efficient range queries on outsourced
database,” in Proc. of ICDE, 2019.

[9] Q. Meng, J. Weng, Y. Miao, K. Chen, Z. Shen, F. Wang, and
Z. Li, “Verifiable spatial range query over encrypted cloud data
in vanet,” IEEE Transactions on Vehicular Technology, 2021.

[10] X. Li, Q. Tong, J. Zhao, Y. Miao, S. Ma, J. Weng, J. Ma, and K.-K.
R. Choo, “VRFMS: Verifiable ranked fuzzy multi-keyword search
over encrypted data," IEEE Transactions on Services Computing,
2023.

[11] Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang, “Enabling verifiable
and dynamic ranked search over outsourced data," IEEE Transac-
tions on Services Computing, 2022.

[12] D. Yung, Y. Li, E. Lo, and M. L. Yiu, “Efficient Authentication of
continuously moving k NN queries," IEEE Transactions on Mobile
Computing, 2015.

[13] N. Cui, X. Yang, B. Wang, J. Li, and G. Wang, “SVkNN: Efficient
secure and verifiable k-nearest neighbor query on the cloud plat-
form,” in Proc. of ICDE, 2020.

[14] Z. Wang, L. Zhang, X. Ding, K. -K. R. Choo, and H. Jin, “A
dynamic-efficient structure for secure and verifiable location-
based skyline queries," IEEE Transactions on Information Forensics
and Security, 2023.

[15] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei, “Authenticating ag-
gregate queries over set-valued data with confidentiality,” IEEE
Transactions on Knowledge and Data Engineering, 2018.

[16] Y. Sun, Q. Liu, X. Chen, and X. Du, “An adaptive authenticated
data structure with privacy-preserving for big data stream in
cloud," IEEE Transactions on Information Forensics and Security, 2020.

[17] L. Nguyen, “Accumulators from bilinear pairings and applica-
tions,” in Proc. of CT-RSA, 2005.

[18] Y. Zhang, J. Katz, and C. Papamanthou, “An expressive (zero-
knowledge) set accumulator,” in Proc. of EuroS&P, 2017.

[19] D. Boneh and X. Boyen, “Short signatures without random oracles
and the SDH assumption in bilinear groups,” Journal of Cryptology,
2008.

[20] A. Shamir, “How to share a secret,” Communications of the ACM,
1979.

[21] C. Gentry, and Z. Ramzan, “Identity-based aggregate signatures,”
in Proc. of PKC, 2006.

[22] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the
Weil pairing,” in Proc. of ASIACRYPT, 2001.

[23] E. S. Schwartz and B. Kallick, “Generating a canonical prefix
encoding,” Communications of the ACM, 1964.

[24] D. Boneh and M. Franklin, “Identity-based encryption from the
Weil pairing,” in Proc. of CRYPTO, 2001.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,” in
Proc. of EUROCRYPT, 1999.

[26] V. Goyal, “Reducing trust in the PKG in identity based cryptosys-
tems,” in Proc. of CRYPTO, 2007.

[27] A. D. Caro, and V. Iovino, “jPBC: Java pairing based cryptogra-
phy,” in Proc. of ISCC, 2011.

[28] T. P. Pedersen, “A threshold cryptosystem without a trusted
party,” in Proc. of EUROCRYPT, 1991.

[29] Q. Chen, H. Hu, and J. Xu, “Authenticated online data integration
services,” in Proc. of SIGMOD, 2015.

16

[30] S. Chandrasekhar, and M. Singhal, “Efficient and scalable query
authentication for cloud-based storage systems with multiple data
sources,” IEEE Transactions on Services Computing, 2017.

[31] S. Chandrasekhar, and M. Singhal, “Multi-trapdoor hash functions
and their applications in network security,” in Proc. of CNS, 2014.

[32] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Verifiable attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud,” IEEE Transac-
tions on Parallel and Distributed Systems, 2016.

[33] D. Lu, M. Li, Y. Liao, G. Tao, and H. Cai, “Verifiable privacy-
preserving queries on multi-source dynamic DNA datasets,” IEEE
Transactions on Cloud Computing, 2022.

[34] Q. Tong, Y. Miao, L. Chen, J. Weng, X. Liu, K. K. R. Choo, and
R. H. Deng, “VFIRM: Verifiable fine-grained encrypted image
retrieval in multi-owner multi-user settings," IEEE Transactions on
Services Computing, 2022.

[35] P. Gupta, Y. Li, S. Mehrotra, N. Panwar, S. Sharma, and S. Al-
manee, “Obscure: Information-theoretically secure, oblivious, and
verifiable aggregation queries on secret-shared outsourced data,”
IEEE Transactions on Knowledge and Data Engineering, 2022.

[36] S.-F. Sun, C. Zuo, J. K. Liu, A. Sakzad, R. Steinfeld, T. H. Yuen,
X. Yuan, and D. Gu, “Non-interactive multi-client searchable en-
cryption: Realization and implementation,” IEEE Transactions on
Dependable and Secure Computing, 2022.

[37] Q. Liu, Y. Peng, H. Jiang, J. Wu, T. Wang, T. Peng, and G.Wang,
“SlimBox: Lightweight packet inspection over encrypted traffic,”
IEEE Transactions on Dependable and Secure Computing, 2022.

[38] X. Li, T. Xiang, S. Guo, H. Li, and Y. Mu, “Privacy-preserving
reverse nearest neighbor query over encrypted spatial data,” IEEE
Transactions on Services Computing, 2022.

Qin Liu received her B.Sc. in Computer Sci-
ence in 2004 from Hunan Normal University,
China, received her M.Sc. in Computer Science
in 2007, and received her Ph.D. in Computer
Science in 2012 from Central South University,
China. She has been a Visiting Student at Tem-
ple University, USA. Her research interests in-
clude security and privacy issues in cloud com-
puting. Now, she is an Associate Professor in
the College of Computer Science and Electronic
Engineering at Hunan University, China.

Yu Peng is currently working toward the PhD
degree with the College of Computer Science
and Electronic Engineering, Hunan University,
China. His research interests include the secu-
rity and privacy issues in cloud computing, net-
worked applications and blockchain.

Qian Xu received her B.Sc. in Network Engi-
neering in 2020 from Xiangtan University, China.
Currently, she is studying for a Master’s degree
in the School of Computer Science and Elec-
tronic Engineering at Hunan University, China.
Her research interests include security and pri-
vacy issues in cloud computing.

Hongbo Jiang received the PhD degree from
Case Western Reserve University, in 2008. Af-
ter that, he joined the faculty of the Huazhong
University of Science and Technology as a full
professor and the dean of the Department of
Communication Engineering. Now, he is a full
professor with the College of Computer Science
and Electronic Engineering, Hunan University.
His research concerns computer networking, es-
pecially algorithms and protocols for wireless
and mobile networks.He is serving as an editor

for the IEEE/ACM Transactions on Networking, associate editor for the
IEEE Transactions on Mobile Computing, and associate technical editor
for the IEEE Communications Magazine.

Jie Wu is the Chair and a Laura H. Carnell Pro-
fessor in the Department of Computer and Infor-
mation Sciences at Temple University, Philadel-
phia, PA, USA. Prior to joining Temple Univer-
sity, he was a Program Director at the National
Science Foundation and a Distinguished Pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, routing protocols, cloud and
green computing, network trust and security, and
social network applications. Dr. Wu has regularly

published in scholarly journals, conference proceedings, and books. He
serves on several editorial boards, including IEEE TRANSACTIONS
ON SERVICE COMPUTING, and Journal of Parallel and Distributed
Computing. Dr. Wu was general co-chair/chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as
well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Tian Wang received his BSc and MSc degrees
in Computer Science from the Central South
University in 2004 and 2007, respectively. He re-
ceived his PhD degree in City University of Hong
Kong in Computer Science in 2011. Currently,
he is a professor in the Institute of Artificial In-
telligence and Future Networks, Beijing Normal
University & UIC. His research interests include
internet of things, edge computing and mobile
computing. He has 27 patents and has published
more than 200 papers in high-level journals and

conferences. He has more than 11000 citations, according to Google
Scholar. His H-index is 59.

Tao Peng received the B.Sc. in Computer Sci-
ence from Xiangtan University, China, in 2004,
the M.Sc. in Circuits and Systems from Hunan
Normal University, China, in 2007, and the Ph.D.
in Computer Science from Central South Uni-
versity, China, in 2017. Now, she is an Asso-
ciate Professor of School of Computer Science
and Cyber Engineering, Guangzhou University,
China. Her research interests include network
and information security issues.

Guojun Wang received B.Sc. degree in Geo-
physics, M.Sc. degree in Computer Science, and
Ph.D. degree in Computer Science, at Central
South University, China, in 1992, 1996, 2002,
respectively. He is a Pearl River Scholarship
Distinguished Professor of Higher Education in
Guangdong Province, a Doctoral Supervisor of
School of Computer Science and Cyber Engi-
neering, Guangzhou University, China, and the
Director of Institute of Computer Networks at
Guangzhou University. He has been listed in

Chinese Most Cited Researchers (Computer Science) by Elsevier in
the past eight consecutive years (2014-2021). His research interests in-
clude artificial intelligence, big data, cloud computing, Internet of Things
(IoT), blockchain, trustworthy/dependable computing, network security,
privacy preserving, recommendation systems, and smart cities. He is a
Distinguished Member of CCF, a Member of IEEE, ACM and IEICE.

Shaobo Zhang received the B.Sc. and M.Sc.
degree in computer science both from Hunan
University of Science and Technology, Xiangtan,
China, in 2003 and 2009 respectively, and the
Ph.D. degree in computer science from Central
South University, Changsha, China, in 2017. He
was a Post Doctoral Researcher of software
engineering with the National University of De-
fense Technology, Changsha, China, from 2018
to 2022. He has published more than 60 referred
papers in his research interests, which include

data privacy, information security, cloud computing etc. He is currently
an associate professor at School of Computer Science and Engineering
of the Hunan University of Science and Technology, China. His research
interests include privacy and security issues in social networks and
cloud computing.

