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Abstract—Order dispatching, which involves assigning or-
ders to demand-matched vehicles, is an underlying issue for
ride-sharing services. Previous works on order dispatching are
often quasi-static and myopic1, thus performing unsatisfactorily
in the ride-sharing setting. To address these challenges, recent
studies attempt to augment large-scale decision optimization
from a data-driven perspective. Among them, Adaptive Dynamic
Programming (ADP) has exhibited its particular potential for
sequential decision-making with a long-term objective under
uncertainty. In this paper, we investigate order dispatching with
consideration of vehicle repositioning by exploiting ADP. We
first formulate the optimization problem as a Markov Decision
Process (MDP), where the dispatching decision is determined by
a series of agents (the decision-making entity) under the time
sequence model. Then, based on the generated available trips
by a graph theory-based method, an ADP-based Multi-driver
Order Dispatching method (AMOD) is proposed. In particular,
AMOD reconstructs the Bellman update process around the
post-decision states to avoid approximating the embedded ex-
pectations explicitly. As for non-linear function approximation,
it converts the value function into a linear combination by a
quadratic decomposition, and estimates the decomposed value
function with neural network-based parameter approximation. In
addition, vehicle repositioning is performed along with each batch
dispatching to balance ride supply across geographic dimensions.
Extensive simulations are conducted based on real-world data.
Especially, AMOD can achieve 34.6% improvement at maximum
and 15.9% on average compared with other baselines, when the
capacity constraint is 10.

Index Terms—Order Dispatching; Adaptive Dynamic Pro-
gramming; Graph Theory; Markov Decision Process.

I. INTRODUCTION

W ITH the popularity of shared mobility in traffic re-
source reconfiguration, on-demand ride-sharing ser-

vices prevail as an essential pillar of the modern transportation
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system [1]. The advanced user-centric ride-sharing platforms,
exemplified by Uber, Lyft, DiDi Chuxing, etc., have sub-
stantially revolutionized the transportation landscape. By one
estimate, the global market value of the ride-sharing industry
gets $135 billion in 2020, which is expected to reach $218
billion by 2025 [2].

On-demand ride-sharing services can coordinate between
finite supply (vehicle) and asymmetric demand (order). This
efficient and sustainable traffic mode facilitates a common ve-
hicle to synchronously serve multiple passengers with similar
and time-diverse itineraries [3]. It alleviated traffic congestion,
emission, and energy consumption via elevating idle seat
utilization, thereby offering enormous potential to improve
transportation efficiency and living conditions [1].

As the ride-sharing service evolves imperative to promote,
numerous issues remain yet to be resolved. Thereinto, order
dispatching is a critical issue in alleviating the once-prominent
gap between supply and demand. It requires instantaneous
decision-making for extensive vehicles over an uncertain fu-
ture demand. Meanwhile, each vehicle also has to decide
whether to actively pick up new orders based on its vehicle
status. Underlying these is a sequential decision-making prob-
lem, which corresponds to assigning a combination of order
requests to a demand-matched vehicle (empty or partially
filled) under delay and capacity constraints [4]. Considering
the long-term (e.g., several hours or a day) influences, the
objective is to perform order dispatching by satisfying the
current demand and optimizing the anticipated utility over
time. Optimizing over time means that we need to consider
the impact of decisions now on an uncertain future where the
model is aware of the current travel patterns. This relies on
situation awareness, real-time regulation, as well as adaptive
tailoring of supply and demand [5], [6]. Therefore, a flexible
and provident order dispatching method is urgently required.

Indeed, in a highly stochastic and non-stationary ride-
sharing setting, the orders service record, actual routes, vehicle
status (current position, passenger count, capacity constraint)
should be updated continuously based on historical informa-
tion. Previous works [7]–[9] using greedy or model-based
heuristics often rely on regular distribution hypotheses and
pre-specified rules. Nevertheless, the dynamics of supply and
demand are uncertain in spatiotemporal space, which poses
challenges to predict and model. Furthermore, these methods
are quasi-static and myopic1 for potential future demands.

1Limited adaptabilities to dynamics and only optimizing for immediate
returns without foresighted considerations.
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They learn only from the current one-step return and neglect
the long-term influences, i.e., a prior dispatching decision
could impact the supply distribution in subsequent time steps.
Thus, they consequently perform unsatisfactorily in practice.

All these challenges have promoted technical advances in
data analysis and computing power. Recently, these advances
have provided opportunities to augment large-scale decision
optimization from a data-driven perspective. Based on this,
Adaptive Dynamic Programming (ADP) has exhibited its
particular potential for the method design of order dispatching,
and attracted widespread concern. Specifically, ADP is the
interdiscipline of artificial intelligence and control domain,
especially deemed for control and sequential decision-making
with a long-term objective under uncertainty [10], [11]. In
the ADP setting, order dispatching is performed through a
function approximation structure. This structure estimates the
anticipated value of an operational decision with spatiotempo-
ral dependency.

In this paper, we investigate order dispatching with
consideration of vehicle repositioning by exploiting ADP.
Firstly, we formulate the optimization problem as a Markov
Decision Process (MDP), where the dispatching decision is
determined by a series of agents under the time sequence
model. Secondly, to handle the order combinatorial complex-
ity, we generate available trips for each vehicle through a
graph theory-based method. Thirdly, based on demand and
supply patterns from historical information, an ADP-based
Multi-driver Order Dispatching method (AMOD) is proposed.
Fourthly, we perform vehicle repositioning for non-occupied
vehicles to balance ride supply across geographic dimensions.
Along with each batch, all vehicles are repositioned toward
the areas of extractive order requests by performing a linear
program. Finally, we conduct simulations based on real-world
data from New York City taxi daily operations.

The main contributions are summarized as follows:
1) We study the large-scale order dispatching problem from

a data-driven perspective. Compared to previous works
(greedy-based and model-based heuristic methods), our
proposed AMOD makes dispatching decisions with adap-
tive and foresighted considerations. It captures hidden
dynamics of the environment through real-time iteration,
and estimates the anticipated future value rather than a
one-step return.

2) Generally, the ability to place expectations over future
knowledge in most dynamic programming works is taken
for granted. However, this is not legitimate enough,
and the expectation is rigid to compute. Therefore, we
reconstruct the Bellman update process around the post-
decision states to avoid approximating the embedded
expectations explicitly. Besides, as for non-linear function
approximation, we convert the value function into a linear
combination by a quadratic decomposition, and estimate
the decomposed value function with neural network-
based parameter approximation.

3) Except for order dispatching, we also perform vehicle
repositioning to balance ride supply across geographic
dimensions. Unlike most previous works (repositioning
decisions are dependent only on unassigned order re-

quests), all vehicles are repositioned toward the areas of
extractive order requests by performing a linear program.
This ensures that sufficient vehicles are involved in the
repositioning process along with each batch dispatching.
The remainder of this paper is organized as follows.

Section II reviews the related work. Section III defines the
system model formally. Section IV formulates the problem to
maximize the order request response rate of long term in the
system. Section V generates available trips for each vehicle
and proposes AMOD for order dispatching. Furthermore,
simulation results are analyzed in Section VI. Conclusion is
summarized in Section VII.

II. RELATED WORK

Order dispatching is a typical sequential decision-making
problem in on-demand ride-sharing, where its generalized
forms have been investigated substantially. Here, we categorize
existing solutions of order dispatching into three threads:
greedy-based methods [7], [8], [12]–[15], model-based heuris-
tic methods [16]–[21], and ADP-based methods [3], [11],
[23]–[26], [28], [29].

A. Greedy-based methods for order dispatching

In the infancy of ride-sharing, greedy-based methods
are widely adopted for order dispatching. They dispatch the
vehicle based on the nearest neighbour query or first-come-
first-serve principles. For instance, Tong et al. [7] explored
the performance of the greedy-based method in practice,
and justified that this straightforward rule can also deliver
good results. Cheng et al. [12] developed the utility-aware
order dispatching problem on road networks, and operated
the dispatching decision in a greedy manner to maximize the
overall utility. Similarly, to maximize the revenue of the ride-
sharing platform without compromising service quality, a dis-
tributed auction-based framework was proposed in [13], which
dispatched the order requests to vehicles with the highest bids.
Furthermore, Zhang et al. [14] investigated the theoretical
queueing model for autonomous mobility-on-demand systems,
and optimized the objective function upon the current arranged
request. Lowalekar et al. [8] focused on assigning vehicles to
the generated zone paths, where each zone path represents
a combination of order requests. Duan et al. [15] proposed
a greedy strategy based on iterative matching and merging,
intending to reduce the number of vehicles required for order
requests.

Although these greedy-based methods are simple to im-
plement, they are myopic for potential future requests. They
tend to prioritize immediate return rather than global supply
utilization. As the mismatch between demand and supply in
spatiotemporal distribution, these methods will lead to local
sub-optimal solutions when considering the long-term run.

B. Model-based heuristic methods for order dispatching

With the availability of big data, another thread tries
to design model-based heuristic methods from a data-driven
perspective. Bei et al. [16] presented the ride-sharing assign-
ment problem as a combinatorial optimization problem, and



3

addressed it from an algorithmic resource allocation perspec-
tive. To et al. [17] established the maximum task assignment
problem in spatial crowdsourcing, and proposed alternative
solutions by exploiting the spatial properties of the problem
space. Furthermore, Greenwood et al. [18] devoted themselves
to uncovering the societal benefits of order dispatching in ride-
sharing services. Zhang et al. [19] demonstrated that consid-
ering spatial optimality alone can achieve a preferable success
rate of global order matches, although they just focused on
the current one-step return. Chen et al. [20] investigated the
order dispatching in the circumstance of package delivery.
They applied a two-phase solution, including order prediction
and delivery route planning. Ma et al. [21] proposed a mobile-
cloud-based real-time taxi-sharing system, which optimizes the
delivery capability and total travel distance of vehicles.

However, these model-based heuristic methods are often
quasi-static and rely on regular distribution hypotheses. They
oversimplify demand-supply dynamics and fail to consider
all the intricacies involved in order dispatching. Thus, when
scaling to large-scale scenarios, this class of methods cannot
provide the theoretically claimed performance.

C. ADP-based methods for order dispatching

Finally, several works consider optimizing dispatching
decisions as a sequential decision problem, and use the ADP
framework to cope with the myopic dispatching in ride-
sharing. For instance, Ulmer et al. [22] integrated temporal and
spatial anticipation of order requests into ADP, and introduced
offline function approximation with online rollout algorithms
to ensure strategy efficiency. Al-Kanj et al. [23] exploited
flexible dispatch strategies by ADP, and employed hierarchical
aggregation to improve value function estimations with slight
observations. Similarly, Yu et al. [24] minimized the waiting
and travel times by optimization-related subproblems under the
ADP framework, and revealed the properties of the approxi-
mated value function at each stage. Besides, reinforcement
learning can also be viewed as an ADP-based method in
the context of operational research and control theory. Xu
et al. [25] performed the temporal-difference update rule in
large-scale ride-hailing platforms. They optimized the service
experience and resource utilization from a global, long-term
perspective. Chen et al. [26] optimized order dispatching and
pricing strategies jointly, of which both components conduct
value function approximations in a mutual bootstrapping man-
ner. Recently, several works [3], [11], [28], [29] have adopted
neural network-based parameter approximations for value
function evaluations in ADP. Based on the generalizability of
neural networks, they can extend beyond the spatiotemporal
state and incorporate contextual information.

The aforementioned works highlight the efficacy of ADP
for order dispatching. Nevertheless, their reliance on linear
value function approximations hinders the immediate appli-
cation of ADP in real-world ride-sharing scenarios. The as-
sumption that dispatching can be modelled as a linear program
may not always hold for all instances due to the dynamics of
vehicle capacity throughout the ride-sharing process. Besides,
dispatching multiple orders to partially filled vehicles at each

TABLE I
NOTATIONS AND SYMBOLS

Notation Explanation

I the set of street intersections in G
A the adjacency of street intersections in G
O𝑡 the set of order requests in time slot 𝑡
𝑎𝑡
𝑗
, 𝑏𝑡

𝑗
the origin and destination of order request 𝑜 𝑗,𝑡

N𝑡 the set of available vehicles in time slot 𝑡
𝑝𝑡
𝑖
, 𝑐𝑡

𝑖
the position and capacity constraint of vehicle 𝜈𝑖,𝑡

𝜉 𝑡
𝑖

the list of locations that vehicle 𝜈𝑖,𝑡 will traverse to capture
subsequent orders

𝛷𝑝 , 𝛷𝑑 the maximum pick-up delay and maximum detour delay
𝑃𝑡 a potential trip in time slot 𝑡
Q𝑖,𝑡 the set of available trips for vehicle 𝜈𝑖,𝑡

𝑞𝑖,𝑡 an available trip for vehicle 𝜈𝑖,𝑡 in time slot 𝑡
𝑥𝑡
𝑖,𝑞

the decision of vehicle 𝜈𝑖,𝑡 for its available trip 𝑞𝑖,𝑡

𝜂𝑡
𝑖,𝑞

the number of order requests in available trip 𝑞𝑖,𝑡

H𝑡 the sample set after the batch dispatching in time slot 𝑡
E𝑡 the set of unassigned vehicles in time slot 𝑡
𝑐𝑡
𝑖, 𝑗

the repositioning decision of vehicle 𝜈𝑖,𝑡 for order request 𝑜 𝑗,𝑡

𝜅𝑡
𝑗

the number of vehicles repositioned toward order request 𝑜 𝑗,𝑡

bitch leads to extra combinatorial complexity. The efficient so-
lution to this remains the key challenge for the aforementioned
works.

D. Our Motivation

ADP surpasses the first two threads (greedy-based and
model-based heuristic methods) in flexibility and adaptability.
By leveraging the power of random policies and model ensem-
ble methods, ADP can mitigate the impact of environmental
uncertainty and produce more accurate results. This motivates
us to investigate order dispatching by exploiting ADP.

Inspired by existing studies, our work operates the system
under the time sequence model and proposes an integrated
framework (AMOD). Thereinto, available trips are generated
through a graph theory-based method to handle the order
combinatorial complexity. We elaborate on the Bellman update
process around post-decision states, and estimate the decom-
posed value function with neural network-based parameter
approximation. Compared to solutions from the first two
threads, our work makes dispatching decisions with adaptive
and foresighted considerations. It captures hidden dynamics
of the environment through real-time iteration, and estimates
the anticipated future value rather than a one-step return. In
addition, except for order dispatching, vehicle repositioning
is also an essential factor in balancing ride supply across
geographic dimensions. We consider these two aspects jointly
in a stochastic ride-sharing setting. Along with each batch, all
vehicles are repositioned toward the areas of extractive order
requests by performing a linear program. Finally, based on
real-world data, we conduct extensive simulations to verify
the effectiveness of AMOD.

III. SYSTEM MODEL AND DEFINITION

We consider a ride-sharing system operating on a prede-
fined road network. Passengers who want to travel from one lo-
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Order Request Vehicle Order Destination

Fig. 1. Example of a road network with three vehicles (A, B, C) and
five order requests (1-5). The orange dotted line refers to the origin and
destination of a certain order request. Vehicles A and B have passengers,
while Vehicle C is empty in the current time slot. The grey arrows indicate
the moving direction of a vehicle due to the existing passengers.

cation to another send orders to a centralized decision platform
via applications on mobile clients. In particular, vehicle status
(positions, capacity constraints, and occupancy status) can be
known immediately with the assistance of the onboard unit
(a type of vehicular communication device). The platform is
responsible for collecting order requests, and dispatching them
to available vehicles within each time window. Accordingly,
this section defines the system model formally as below. The
main notations are listed in Table I.

Definition 1: (Time slot) Assume the ride-sharing system
operates in a fixed length of time slots (i.e., batching) 𝑡 ∈
{1, . . . , Γ}, where Γ denotes the finite time horizon. Each time
slot 𝑡 is an element in the batch sequence.

The time sequence model is common in real ride-sharing
settings.

Definition 2: (Road network) A road network is a
weighted graph, denoted by G = (I,A), where I denotes
the set of street intersections, A refers to the adjacency of
these street intersections, and the weight corresponds to the
travel time for each road segment.

Street intersections are used to represent individual lo-
cations here. We assume that the vehicle can only pick up
and drop passengers off at street intersections. Compared to
the concept of "regions" [3], street intersections can provide
the vehicle with turn-by-turn navigation guidance. We identify
street intersections from OpenStreetMap (OSM) by taking
osmnx2, and estimate the travel time on each road segment
through the derived daily mean travel time. Details of these
methods could be found in [30] and [31], respectively. As
shown in Fig. 1, we discretize the road network into various
blocks through street intersections, assuming that the walking
distance between its center to the nearest street intersection is
acceptable.

2Osmnx is a Python library that simplifies the process of downloading,
processing, and analyzing street map data from OSM.

Definition 3: (Order request) Let O𝑡 ={
𝑜1,𝑡 , 𝑜2,𝑡 , . . . , 𝑜𝑚,𝑡

}
denotes the set of order requests

in time slot 𝑡. Each order request 𝑜 𝑗 ,𝑡 (𝑜 𝑗 ,𝑡 ∈ O𝑡 ) is
represented by an attribute tuple

〈
𝑎𝑡
𝑗
, 𝑏𝑡

𝑗
, 𝑡

〉
, where 𝑎𝑡

𝑗
, 𝑏𝑡

𝑗
and

𝑡 capture the origin, destination, and arrived slot of order
𝑜 𝑗 ,𝑡 , respectively.

The origin and destination of an order are input in the
form of the nearest street intersections. Notably, our work does
not rely on any assumptions rigid about their distribution.

Definition 4: (Vehicle) Let N𝑡 =
{
𝜈1,𝑡 , 𝜈2,𝑡 , . . . , 𝜈𝑛,𝑡

}
denotes the set of available vehicles in time slot 𝑡. Each
vehicle 𝜈𝑖,𝑡 (𝜈𝑖,𝑡 ∈ N𝑡 ) is represented by an attribute tuple〈
𝑝𝑡
𝑖
, 𝑐𝑡

𝑖
, 𝜉𝑡

𝑖

〉
, where 𝑝𝑡

𝑖
, 𝑐𝑡

𝑖
denote the current position and

capacity constraint (i.e., the maximum number of passengers
that the vehicle can sever synchronously) of vehicle 𝜈𝑖,𝑡 ,
respectively; 𝜉𝑡

𝑖
is the list of locations that vehicle 𝜈𝑖,𝑡 will

traverse to capture subsequent orders. The combination of
those three parts contributes to the current travel trajectory
of a vehicle.

A laden vehicle (i.e., with a current passenger count
equal to the capacity constraint) will appear "available" after
completing whichever orders it was assigned. This reusable
setting performs more realistic than the independent identi-
cal distribution, in which each "available" vehicle is treated
as a newly arrived independent state element following the
same distribution. Notably, the reusable setting promotes the
temporally extended property of dispatching decisions, i.e.,
current decisions will affect the future vehicle distribution and
repositioning process.

Definition 5: (Delay constraints) (1) the maximum pick-
up delay 𝛷𝑝 , which limits the difference between the arrival
and pick-up time for an order request. (2) the maximum detour
delay 𝛷𝑑 , which limits the difference between the drop-off time
of executing ride-sharing or not for an order request, i.e.,
detour delay is the difference between the time at which the
destination reached in ride-sharing and without ride-sharing.

Passengers are willing to accept ride-sharing only when
the pick-up and detour delays are less than the constraints. Be-
sides, for modeling simplicity, we assume that the maximum
pick-up and detour delays, as well as the preceding capacity
constraint are uniform global constraints.

Definition 6: (Potential trip) A potential trip 𝑃𝑡 (𝑃𝑡 ∈ O𝑡 )
represents the combination of order requests that an individual
vehicle can serve.

These potential trips are often unknown random variables
because they depend on incoming order requests and route
information that is typically uncertain. Multiple potential trips
of different sizes may both contain a particular order request,
i.e., an order request may form part of several potential trips.
Besides, a potential trip may admit more than one candidate
vehicle for execution.

Definition 7: (Trip availability) A potential trip becomes
"available" for a vehicle as long as all order requests can be
served, while the delay constraints get satisfying. Here, let Q𝑖,𝑡

denotes the set of available trips for vehicle 𝜈𝑖,𝑡 in time slot
𝑡, therein each element 𝑞𝑖,𝑡 (𝑞𝑖,𝑡 ∈ Q𝑖,𝑡 ) stands for the action
that vehicle 𝜈𝑖,𝑡 could execute.
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During the order dispatching phase, the action that vehicle
𝜈𝑖,𝑡 can take is to execute an available trip 𝑞𝑖,𝑡 from the order
requests pool in each slot 𝑡, which attempts to maximize the
system utility given in a later section.

Definition 8: (Route planning) Since the weight in road
network corresponds to the travel time for each road segment,
route planning can be implemented by a function F (𝜈, 𝑃),
which returns "valid" if a route exists.

Along with the existing passengers, the function provides
the optimal route that a vehicle should take. Based on this,
the vehicle can satisfy the assigned order requests with the
minimum trip delay. Besides, considering the order of travel
depends or partially depends on order requests generated
within the temporal dimension, this route also determines
the sequence in which the location should be traversed by
a vehicle, i.e., element 𝜉𝑡

𝑖
. Along the lines of [32], [33],

route planning can be implemented via heuristic methods, such
as Lin-Kernighan and simulated annealing. Specific method
procedures are out of our scope in this paper.

IV. ORDER DISPATCHING PROBLEM FORMULATION

This section first formulates the optimization objective
for order dispatching, and then models the order dispatching
process as a MDP.

A. Objective Function
The problem formulation step takes the generated avail-

able trip 𝑞𝑖,𝑡 as input, and explores the optimal dispatching
decisions between vehicles and available trips. Our objective is
to maximize the order request response rate of long-term in the
system. To this end, the corresponding optimization problem
can be formulated as:

max
𝑥𝑖,𝑞 ,𝑞𝑖

lim
Γ→∞

1
Γ

Γ∑︁
𝑡=1

∑︁
𝜈𝑖,𝑡 ∈N𝑡

∑︁
𝑞𝑖,𝑡 ∈Q𝑖,𝑡

𝑥𝑡
𝑖,𝑞

𝜂𝑡
𝑖,𝑞

|O𝑡 |

s. t. 𝐶1 : 𝑥𝑡𝑖,𝑞 ∈ {0, 1}, ∀𝜈𝑖,𝑡 ,∀𝑞𝑖,𝑡
𝐶2 :

∑︁
𝑞𝑖,𝑡 ∈Q𝑖,𝑡

𝑥𝑡𝑖,𝑞 = 1, ∀𝑣

𝐶3 :
∑︁

𝜈𝑖,𝑡 ∈N𝑡

∑︁
𝑞𝑖,𝑡 ∈Q𝑖,𝑡 ,
𝑜 𝑗,𝑡 ∈𝑞𝑖,𝑡

𝑥𝑡𝑖,𝑜 𝑗
≤ 1, ∀𝑜 𝑗 ,𝑡 ∈ O𝑡 .

(1)

Here, lim
𝑇→∞

1
𝑇
(. . . ) is the time-averaged order request

response rate in the system; 𝜂𝑡
𝑖,𝑞

denotes the number of order
requests that vehicle 𝜈𝑖,𝑡 can serve through dispatched trip 𝑞𝑖,𝑡
in time slot 𝑡; binary decision 𝑥𝑡

𝑖,𝑞
∈ {0, 1} denotes the trip

choice of vehicle 𝜈𝑖,𝑡 for the generated available trip 𝑞𝑖,𝑡 in
time slot 𝑡, where 𝑥𝑡

𝑖,𝑞
= 1 indicates that vehicle 𝜈𝑖,𝑡 executes

available trip 𝑞𝑖,𝑡 , while 𝑥𝑡
𝑖,𝑞

= 0 is the opposite. Consequently,
we define the trip choice of vehicle 𝜈𝑖,𝑡 for all generated
available trips as X𝑖,𝑡 =

{
𝑥𝑡
𝑖,𝑞
| 𝑞𝑖,𝑡 ∈ Q𝑖,𝑡

}
.

The meaning of the above constraints is as follows:
C1 guarantees the constraint of the binary decision’s integer
nature; C2 ensures that each vehicle is assigned only with
an available trip; C3 denotes that each order request is part
of one available trip at most; C2 and C3 are the constraints
on conflicting decisions, i.e., each order request can only be
assigned to one vehicle.

B. Problem and Challenges

In fact, to solve the above problem in Eq. (1), we have
to obtain the optimal coordination of dispatching decision
variables 𝑥𝑡

𝑖,𝑞
(𝜈𝑖,𝑡 ∈ N𝑡 , 𝑞𝑖,𝑡 ∈ Q𝑖,𝑡 ). However, the dispatching

decision variable 𝑥𝑡
𝑖,𝑞

for any vehicle is binary and time-
varying, which aggravates the difficulty by solving the problem
at a time slot exhaustively. The system has to collect multi-
tudinous traffic state information and make the global decision
for each vehicle. Moreover, we are devoted to a more practical
case in which the prior information of the order request pattern
is unknown. Thus, the objective function is undoubtedly NP-
hard. Since the feasible set of the problem is not convex and
the complexity is enormous, conventional methods may be
unadaptable to make intelligent dispatching decisions under
the stochastic system property.

C. MDP Definition

The MDP model is typically used to describe almost all
sequential decision-making problems. Here, given historical
data, we model the order dispatching process as a MDP
with discrete time and state space. Six critical elements are
identified as follows:
• Agent: The agent corresponds to an individual decision-

making unit. Although configuring the agent from a cen-
tralized perspective (i.e., system-level modeling) might
achieve superior performance, the complexity of action
space is exponential. Hence, we model each vehicle as an
agent for the straightforward definition of state transition,
action, and reward. Naturally, this setting transfers the
system to multi-agent contexts, and the overall objective
is to maximize the long-term order request response rate.

• State: The state is a representation to reflect the system
environment at a given time slot, including relevant infor-
mation required to make actions. Accordingly, under the
agent setting, the state is determined by the realization of
order requests and vehicle situations, which can be given
as 𝑧𝑡 = {O𝑡 ,N𝑡 } in time slot 𝑡. As described earlier, the
former O𝑡 is the set of current order requests; each order
request 𝑜 𝑗 ,𝑡 is represented by an attribute tuple

〈
𝑎𝑡
𝑗
, 𝑏𝑡

𝑗
, 𝑡

〉
.

The latter N𝑡 is the set of current available vehicles;
each vehicle 𝜈𝑖,𝑡 is represented by an attribute tuple〈
𝑝𝑡
𝑖
, 𝑐𝑡

𝑖
, 𝜉𝑡

𝑖

〉
. The above information will be assembled as

a state and sent to the agent in each time slot.
• Action: Once receiving a state in each time slot, vehicle

is responsible for adopting an available trip. Therefore,
under current state 𝑧𝑡 , action 𝑑𝑡 involves two parts, 𝑞𝑖,𝑡
and 𝑥𝑡

𝑖,𝑞
. The available trip 𝑞𝑖,𝑡 reflects the behavior that

vehicle 𝜈𝑖,𝑡 could execute in current slot, and binary
variable 𝑥𝑡

𝑖,𝑞
indicates the decision of vehicle 𝜈𝑖,𝑡 for its

available trip 𝑞𝑖,𝑡 . Together, we can present the current
action as 𝑑𝑡 = X𝑖,𝑡 · Q𝑖,𝑡 =

{
𝑥𝑡
𝑖,𝑞

𝑞𝑖,𝑡 | 𝑞𝑖,𝑡 ∈ Q𝑖,𝑡

}
, with

the combination of possible values of these two parts.
Notably, the action still exists when no order is dispatched
to the vehicle in a time slot. For simplicity, we assume
this null action 𝑑𝑡 = ∅ continues along its state transition
without reward.
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• Exogenous Information: Compared with the general
MDP, the only exception is that we introduce exogenous
information variables here, as the agent is incompetent
to observe the system state precisely. The exogenous
information variable may depend on both state and action
in the system, representing the sources of uncertainty
and randomness. Thus, in our case, we define exogenous
information 𝜔 as the demand appearance, where 𝜔𝑡+1
denotes the arrived order requests between time slots 𝑡

(that is, after the action has been made) and 𝑡 + 1 (when
we have to make the next action).

• Transition Function: This function depicts the evolution
of system states over time slots. For some or all states,
we adopt the explicit equation 𝑇 that relates the next state
to the current state, action, and exogenous information
learned by the agent after taking actions.

• Reward Function: The reward value is the metric for
each agent to evaluate the action quality. In general, the
optimization objective is related to the immediate reward.
Our objective is to maximize the order request response
rate of long-term in the system. This is positively cor-
related with the goal of an agent that tries to achieve
a maximum cumulative discounted reward. Intuitively,
the reward function is defined as normalized 𝑟 (𝑧𝑡 , 𝑑𝑡 ) =∑

𝜈𝑖,𝑡 ∈N𝑡

∑
𝑞𝑖,𝑡 ∈Q𝑖,𝑡

𝑥𝑡
𝑖,𝑞

𝜂𝑡
𝑖,𝑞

| O𝑡 | . Furthermore, the reward value
of each agent should satisfy the constraint conditions to
ensure the validity of the results. Conversely, punitive
negative values will be thoughtfully incorporated into
the reward if constraints are violated in Eq. (1). These
penalties discourage undesirable behavior strategically.
Notably, the punitive negative value range often neces-
sitates a trade-off between enforcing strict adherence to
constraints and permitting a certain degree of constraint
relaxation, thus optimizing performance while ensuring
sufficient exploration field.

V. AMOD: FRAMEWORK DESIGN

In this section, we generate available trips for each vehicle
by a graph theory-based method, and propose AMOD for order
dispatching.

A. Available Vehicle Trips Generation

In contrast to the ride-hailing service (each vehicle can
serve only one passenger at a time), order dispatching in
ride-sharing services exhibits inherently challenging. When
multiple order requests are combined and assigned to a single
vehicle, it is computationally complex to generate available
trips for each vehicle. Here, we generate the available trips
for each vehicle through a graph theory-based method. We
get forward in two steps:

Firstly, we construct an order-vehicle graph (OV-graph)
to reflect the ride-sharing potential, as shown in Fig. 2(a).
Specifically, the OV-graph describes which order requests
can be picked up by a vehicle, and which order requests
can be combined into a potential trip. Based on the output
of function F (𝜈, 𝑃), order request 𝑜 𝑗 ,𝑡 and vehicle 𝜈𝑖,𝑡 are
connected when the vehicle can serve the order under the delay

A

B

C

 

 

 

 

 

 

  
 

    
 

 
 

 
 

A B C

     

(a)

A

B

C

 

 

 

 

 

 

  
 

    
 

 
 

 
 

A B C

     

(b)

Fig. 2. (a) OV-graph of orders and vehicles. (b) OPV-graph of potential trips
and corresponding pick-up vehicles.

Algorithm 1: Generate Available Trips For Vehicles

Input: the OV-graph
Output: the set of available trips Q𝑡

1 for each time slot 𝑡 do
2 Each vehicle 𝜈𝑖,𝑡 =

〈
𝑝𝑡
𝑖
, 𝑐𝑡

𝑖
, 𝜉𝑡

𝑖

〉
, 𝜈𝑖,𝑡 ∈ N𝑡 do

3 Initialize potential trip 𝑃𝑖,𝑡 ← ∅, the set of
available trips Q𝑖,𝑡 ← ∅

4 for edge 𝑒(𝑜 𝑗 ,𝑡 , 𝜈𝑖,𝑡 ) in predefined VO-Graph do
5 Add potential trips of size one
6 Q1

𝑖,𝑡
← 𝑃𝑖,𝑡 = {𝑜 𝑗 ,𝑡 }

7 Add edge 𝑒(𝜈𝑖,𝑡 , 𝑃𝑖,𝑡 ) and 𝑒(𝑜 𝑗 ,𝑡 , 𝑃𝑖,𝑡 )
8 for elements

{
𝑜1,𝑡

}
,
{
𝑜2,𝑡

}
∈ Q1

𝑖,𝑡
, and edge

𝑒(𝑜1,𝑡 , 𝑜2,𝑡 ) in predefined VO-Graph do
9 Add potential trips of size two

10 if F
(
𝜈𝑖,𝑡 ,

{
𝑜1,𝑡 , 𝑜2,𝑡

} )
= "𝑣𝑎𝑙𝑖𝑑" then

11 Q2
𝑖,𝑡
← 𝑃𝑖,𝑡 = {𝑜1,𝑡 , 𝑜2,𝑡 }

12 Add edge 𝑒(𝑜1,𝑡 , 𝑃𝑖,𝑡 ), 𝑒(𝑜2,𝑡 , 𝑃𝑖,𝑡 ), and
𝑒(𝜈𝑖,𝑡 , 𝑃𝑖,𝑡 )

13 for ∀ 𝑓 ∈ {3, . . . , 𝑐𝑡𝑣}, potential trips

𝑃1
𝑖,𝑡
, 𝑃2

𝑖,𝑡
∈ Q 𝑓 −1

𝑖,𝑡
, and

���𝑃1
𝑖,𝑡
∪ 𝑃2

𝑖,𝑡

��� = 𝑓 do
14 Add potential trips of size 𝑓

15 if ∀ 𝑗 ∈ {1, . . . , 𝑓 }, (𝑃1
𝑖,𝑡
∪ 𝑃2

𝑖,𝑡
)\𝑜 𝑗 ,𝑡 ∈ Q 𝑓 −1

𝑖,𝑡
,

and F
(
𝜈𝑖,𝑡 , 𝑃

1
𝑖,𝑡
∪ 𝑃2

𝑖,𝑡

)
= "𝑣𝑎𝑙𝑖𝑑" then

16 Q 𝑓

𝑖,𝑡
← 𝑃𝑖,𝑡 = 𝑃1

𝑖,𝑡
∪ 𝑃2

𝑖,𝑡
,

𝑃1
𝑖,𝑡
∪ 𝑃2

𝑖,𝑡
=
{
𝑜1,𝑡 , . . . , 𝑜 𝑓 ,𝑡

}
17 Add edge 𝑒(𝑜 𝑗 ,𝑡 , 𝑃𝑖,𝑡 ) for ∀𝑜 𝑗 ,𝑡 ∈ 𝑃𝑖,𝑡 , and

edge 𝑒(𝜈𝑖,𝑡 , 𝑃𝑖,𝑡 )

18 return Q𝑖,𝑡 ←
⋃

𝑗∈{1,...,𝑐𝑣 } Q
𝑗

𝑖,𝑡

constraint (i.e., maximum pick-up and detour delays 𝛷𝑝 , 𝛷𝑑).
The edge of order-vehicle pairs is denoted by 𝑒(𝑜 𝑗 ,𝑡 , 𝜈𝑖,𝑡 ).
Meanwhile, considering the origin and destination, two order
requests 𝑜1,𝑡 , 𝑜2,𝑡 are combined pairwise if a vehicle can serve
them synchronously under the delay and capacity constraints.
The corresponding delay consumption is associated to edge
𝑒(𝑜1,𝑡 , 𝑜2,𝑡 ).

Secondly, by exploring the clique partition (the closed-
loop sub-graph) in OV-graph, we further construct a graph
of potential trips and corresponding pick-up vehicles (OPV-
graph), as shown in Fig. 2(b). That is to say, a potential
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trip 𝑃𝑡 is available only if the clique containing one vehicle
and multiple orders is closed-loop. Recall that a potential
trip 𝑃𝑡 is a combination of order requests, which can be
served by at least one vehicle within the delay and capacity
constraints. Two different edges in OPV-graph can be denoted
by 𝑒(𝜈𝑖,𝑡 , 𝑃𝑡 ) and 𝑒(𝑜 𝑗 ,𝑡 , 𝑃𝑡 ), respectively. The former edge
𝑒(𝜈𝑖,𝑡 , 𝑃𝑡 ), between a pick-up vehicle 𝜈𝑖,𝑡 and a potential trip
𝑃𝑡 , reflects that the potential trip is available for the pick-up
vehicle, i.e., ∃ 𝑒(𝜈𝑖,𝑡 , 𝑃𝑡 ) ⇔ F (𝜈𝑖,𝑡 , 𝑃𝑡 ) 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑. Likewise,
the latter edge 𝑒(𝑜 𝑗 ,𝑡 , 𝑃𝑡 ), between a potential trip 𝑃𝑡 and an
order request 𝑜 𝑗 ,𝑡 , reflects that the order request exists in the
potential trip, i.e., ∃ 𝑒(𝑜 𝑗 ,𝑡 , 𝑃𝑡 ) ⇔ 𝑜 𝑗 ,𝑡 ∈ 𝑃𝑡 . In addition,
for order requests that corresponding constraints cannot be
satisfied, a red identifier is added to OPV-graph.

Based on the orchestrated OPV-graph, the processes of
generating available trips for each vehicle are summarized in
Algorithm 1. Notably, with the size of the potential trip, the
computation complexity of the algorithm will lift substantially.
Here, Lemma 1 is introduced to accelerate the algorithm.
Based on this, we conduct a pre-classification step before
computing available trips. We only need to confirm whether a
potential trip 𝑃𝑡 is available for a vehicle when all of its sub-
trips 𝑃𝑠𝑢𝑏

𝑡 (comprising all order requests in 𝑃𝑡 except one)
are available and already represented as edges 𝑒(𝜈𝑖,𝑡 , 𝑃𝑠𝑢𝑏

𝑡 ) in
current OPV-graph.

Lemma 1: (Sub-trip Availability) A potential trip 𝑃𝑡 is
available for a vehicle signifies that all of its sub-trips 𝑃𝑠𝑢𝑏

𝑡 =

𝑃𝑡\𝑜 𝑗 ,𝑡 (𝑜 𝑗 ,𝑡 ∈ 𝑃𝑡 ) are equally available for this vehicle. That
is,

∃ 𝑒(𝜈𝑖,𝑡 , 𝑃𝑡 ) ⇒ ∃ 𝑒(𝜈𝑖,𝑡 , 𝑃𝑡\𝑜 𝑗 ,𝑡 ),∀𝑜 𝑗 ,𝑡 ∈ 𝑃𝑡 .

B. Value Function Approximation
Generally, MDP can be solved by linear or dynamic pro-

gramming methods. However, these solutions may not always
be feasible as their model does not hold for the stochastic ride-
sharing setting with arbitrary capacity constraints of vehicles.
The value function approximation presents nonlinear with
uncertain state transition probability and immediate reward,
since multiple orders are assigned to one vehicle at each batch.
Therefore, we investigate this stochastic dynamic program-
ming by exploiting ADP. This method is able to approximate
the value function and handle the order combinatorial com-
plexity.

In the ADP setting, order dispatching is performed
through a function approximation structure, which estimates
the anticipated future value of executing a particular trip.
Specifically, the approximate structure focuses on the agent.
Each agent confronts the control and sequential decision-
making under uncertainty. At a time slot 𝑡, the agent observes
the current state of the environment as 𝑧𝑡 , selects and takes
action 𝑑𝑡 from the admissible action space based on its
policy 𝜋, where the policy 𝜋 is derived as a mapping from
the current state to the corresponding action. After that, the
agent samples the exogenous information 𝜔𝑡+1, and transfers
to a new state 𝑧𝑡+1 with the engineered transition function
𝑧𝑡+1 = 𝑇 (𝑧𝑡 , 𝑑𝑡 , 𝜔𝑡+1). Finally, the agent will receive an
immediate reward 𝑟 (z𝑡 , 𝑑𝑡 ) = E [𝑟𝑡+1 | 𝑧𝑡 , 𝑑𝑡 ] and consider an
anticipated reward as it proceeds.

Considering the long-term influences, the recursive state
value function3 𝑉 𝜋 (𝑧𝑡 ) is defined under the policy 𝜋(𝑧𝑡 ). It
maps state 𝑧𝑡 to the expection of cumulative discounted reward
value. Specifically, cumulative discounted reward 𝑈𝑡 measures
the total expected reward accumulated over time slots, while
considering the influence of future rewards being discounted.
That is,

𝑈𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + · · · + 𝛾Γ−𝑡−1𝑟𝑇

=
∑︁Γ−𝑡−1

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1,

(2)

where discount factor 𝛾 ∈ (0, 1) indicates the importance of
the predicted future rewards, 𝑘 is the index of time slot.

According to the Bellman Equation, the state value func-
tion 𝑉 𝜋 (𝑧𝑡 ) can be transformed to the temporal difference
form:

𝑉 𝜋 (𝑧𝑡 ) = E
[∑︁Γ−𝑡−1

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1 | 𝑧𝑡

]
= E

[(
𝑟𝑡+1 +

∑︁Γ−𝑡−1

𝑘=1
𝛾𝑘𝑟𝑡+𝑘+1

)
| 𝑧𝑡

]
= E

[(
𝑟𝑡+1 + 𝛾

∑︁Γ−𝑡−2

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+2

)
| 𝑧𝑡

]
= E

[
(𝑟𝑡+1 | 𝑧𝑡 ) + 𝛾E

(∑︁Γ−(𝑡+1)−1

𝑘=0
𝛾𝑘𝑟 (𝑡+1)+𝑘+1 | 𝑧𝑡+1

)]
= 𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾E𝑉 (𝑧𝑡+1) ,

(3)
where E represents the expectation, and Γ is the finite time
horizon.

Along with the process above, the goal of the agent
is to make an optimal control policy 𝜋∗ (𝑧𝑡 ) → 𝑑∗𝑡 that
maximizes the expection of cumulative discounted reward
value. Consequently, the optimization problem in this paper
is converted to an optimal value function 𝑉 𝜋∗ (𝑧𝑡 ), which is
expressed as:

𝑉 𝜋∗ (𝑧𝑡 ) = max
𝜋→𝑑𝑡

[
𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾E𝑉 (𝑧𝑡+1)

]
,

s.t. constraints in (C1) − (C3).

(4)

This recursive value optimal function equation (Eq. (4))
resolves the sequential decision problem into a series of
shorter, tractable time steps, where the action and exogenous
information have to be determined in each step. Explicitly, the
control policy 𝜋∗ (𝑧𝑡 ), which satisfies Eq. (4) is guaranteed to
become the optimal policy. The optimal action for state 𝑧𝑡 is
easily obtained as

𝑑∗𝑡 = argmax
𝑑𝑡

𝑉 (𝑧𝑡 ). (5)

C. Bellman Update Process around Post-decision States

The majority of dynamic programming works perform
Bellman updates around pre-decision states, where the ability
to place expectations over future knowledge is taken for

3For ease of presentation, we have not distinguished the concept of "state
value function" and "value function" in this paper.
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Fig. 3. Time convention for the pre-decision and post-decision state.

granted. However, this is not legitimate enough to disregard
the computation process of state transition matrixes, i.e., the
expectation in Eq. (4) is rigid to compute.

Therefore, to avoid approximating the embedded expec-
tations explicitly, we reconstruct the Bellman update process
around the post-decision state. Indeed, the post-decision state
conforms to the sequential nature of decision-making, which
is especially beneficial in dynamic programming. Here, the
difference in dimensionality between the pre-decision and
post-decision states is typically contingent on the action selec-
tion and state definition in the current batch. This difference
reflects the change in the information demands between the
pre-decision and post-decision states. Empirical studies [35],
[36] proved that adopting compact post-decision states can
provide computation simplicity and lower dimensionality than
pre-decision states.

We start the exposition by contrasting pre- and post-
decision states to clarify this distinction. As shown in Fig. 3,
the pre-decision state 𝑧𝑡 is determined before the agent takes
action 𝑑𝑡 in the time sequence model. In contrast, there are
situations in which it is beneficial to represent the state that
follows an action in the model. The post-decision state 𝑧𝑑𝑡 is
reached immediately after the agent takes action 𝑑𝑡 , but before
a new exogenous information 𝜔𝑡+1 arrives. Then, with exoge-
nous information 𝜔𝑡+1 realized, the state will transfer to the
next pre-decision 𝑧𝑡+1. Thus, our sequence model evolves as(
𝑧0, 𝑑0, 𝑧

𝑑
0 , 𝜔1, 𝑧1, 𝑑1, 𝑧

𝑑
1 , · · · , 𝑧𝑡 , 𝑑𝑡 , 𝑧

𝑑
𝑡 , 𝜔𝑡+1, 𝑧𝑡+1 · · ·

)
. Owing

to above concepts, the corresponding state transition function
is rewritten as:

𝑧𝑑𝑡 = 𝑇𝑑 (𝑧𝑡 , 𝑑𝑡 ) , 𝑧𝑡+1 = 𝑇𝜔
(
𝑧𝑑𝑡 , 𝜔𝑡+1

)
. (6)

Recall that the agent is expected to execute an action
under optimal control policy over each time slot. The post-
decision state value 𝑉𝑑 (𝑧𝑑𝑡 ) is derived as the maximum ex-
pected cumulative discounted reward the agent achieves, which
is equivalent to the expectation of next pre-decision state value
𝑉 (𝑧𝑡+1). That is,

𝑉𝑑
(
𝑧𝑑𝑡

)
= 𝑉𝑑

[
𝑇𝑑 (𝑧𝑡 , 𝑑𝑡 ) | 𝑧𝑑𝑡 , 𝜔𝑡

]
= E

[
𝑉 (𝑧𝑡+1) | 𝑧𝑑𝑡 , 𝜔𝑡+1

]
.

(7)
Formally, we can rewrite Eq. (4) with the following form

by substituting Eq. (7) into it,

𝑉 (𝑧𝑡 ) = max
𝜋→𝑑𝑡

[
𝑟 (𝑧𝑡 , 𝑑𝑡 ) + 𝛾𝑉𝑑

(
𝑧𝑑𝑡

) ]
. (8)

Since non-linear post-decision state value 𝑉𝑑 (𝑧𝑑𝑡 ) is in-
tegrated into the function approximation, Eq. (8) belongs

to non-linear. Compared to the linear counterpart, it cannot
get updated by dual variables from the linear programming
solution in current sequential optimization. Meanwhile, non-
linear value function approximation often leads to non-convex
optimizations, making finding the optimal solution in the pa-
rameter space complex. This results in training instability and
hinders the convergence towards a suitable value. Hence, we
configure a quadratic decomposition for non-linear function
approximation in the next subsection.

D. Value Function Decomposition

To approximate Eq. (8) linearly, a general method is to
evaluate the state value for all possible post-decision states
and integrate these values as constants. However, the post-
decision state is polynomial in the number of available actions,
but exponential in the number of vehicles in terms of space
complexity. Their associated state function typically involves
more intricate computational procedures. Constrained by com-
putational resources, accurately evaluating the state value for
all possible post-decision states may not be feasible in practice.

For the above challenges, we apply a quadratic decom-
position to convert the overall value function into a linear
combination of individual value functions of vehicles. First,
after each batch dispatching, we assume that the platform will
passively discard the remaining unassigned order requests (i.e.,
unsatisfied demand is immediately lost, probably because there
are no available or suitable vehicles nearby). Actually, this
pattern indicates that the current vehicle situation N𝑑

𝑡 will
determine the post-decision state, leaving the order request
element O𝑡 as an empty set. We therefore get:

𝑧𝑑𝑡 = 𝑇𝑎 (𝑧𝑡 , 𝑑𝑡 ) =
{
∅,N𝑑

𝑡

}
= N𝑑

𝑡 . (9)

Accordingly, in respect of the post-decision state value
function, we have:

𝑉

(
𝑧𝑑𝑡

)
= 𝑉

(
N𝑑

𝑡

)
. (10)

At this moment, we can train a central agent (a central
agent refers to the arbitrator, which combines the return of
all agents in command arbitration.) by crowdsourcing the
experience of all vehicles in this multi-agent context. Then,
we apply the central agent to all other agents to generate their
dispatching decisions, which means that a single experience
can lead to multiple updates. From a local viewpoint, the
decomposition assumes that the overall reward is equal to the
sum of individual rewards, since each vehicle enables to have
rewards associated with states. In this way, the overall value
function can be additively decomposed into the individual
value function of vehicles. The overall value is therefore
converted to:

𝑉

(
N𝑑

𝑡

)
=

𝑛∑︁
𝑖

𝑉𝑖

(
N𝑑

𝑡

)
, (11)

The relevant theoretical proof for this may refer to ref. [37].
Second, we approximate the individual value function of

a vehicle through a quadratic decomposition. The premise
underlying the decomposition is that the behaviours of other
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Fig. 4. Schematic overview of our proposed method, green and yellow boxes indicate action generation and action evaluation component, respectively.
1⃝ Example of a road network with three vehicles and five order requests. 2⃝ We construct the OV-graph to reflect the ride-sharing potential. A potential

trip is available only if the clique (sub-graph) in OV-graph is closed-loop. 3⃝ We construct the OPV-graph to generate available trips for each vehicle. We
only confirm the availability of a potential trip when all of its sub-trips are available. 4⃝ We convert the sequential optimization problem to an optimal value
function. 5⃝ We offline score the individual value function of available trips under the current state via the neural network. 6⃝ We make an order dispatching
by estimating the optimal overall value function with neural network-based parameter approximation. 7⃝ We perform vehicle repositioning to balance ride
supply across geographic dimensions.

vehicles have a negligible impact on the long-term utility
of a vehicle (individual state value) in order dispatching.
This is reasonable since, from a macroscopic perspective,
the long-term utility of a vehicle only gets influenced by its
interaction with other vehicle trajectories, which will not vary
dramatically during a time slot. Therefore, the output result
is insusceptible whether other vehicles adopt pre- or post-
decision states in the state value computation process. We
have:

𝑉𝑖

(
N𝑑

𝑡

)
= 𝑉𝑖

(
{𝑣𝑑𝑖,𝑡 , 𝒗𝒅N\{𝒊} ,𝒕 }

)
≈ 𝑉𝑖

(
{𝑣𝑑𝑖,𝑡 , 𝒗N\{𝒊} ,𝒕 }

)
, (12)

where N\{𝑖} represents the set of all vehicles except vehicle
𝜈𝑖,𝑡 , and 𝑣𝑑𝑡 denotes the post-decision state of a vehicle in the
time slot 𝑡.

This logical transition between pre- and post-decision
states is crucially essential for reducing the evaluation number
of the non-linear value function. From this, the second part
of an individual value function 𝒗N\{𝒊} ,𝒕 will not lie on the
exponential post-decision state of vehicles, which can be
considered constants now.

Accordingly, we rewrite Eq. (11) with the following form
by incorporating Eq. (12), (11):

𝑉

(
N𝑑

𝑡

)
=

𝑛∑︁
𝑖

𝑉𝑖

(
{𝑣𝑑𝑖,𝑡 , 𝒗N\{𝒊} ,𝒕 }

)
. (13)

We calculate individual state values 𝑉𝑖 versus possible
post-decision states 𝑣𝑑

𝑖,𝑡
, and hereafter aggregate these values

of all vehicles as a linear combination into the non-linear
programming in Eq. (8).

E. Value Function Training and Estimation

Despite encountering potential domain adaptation issues,
neural networks remain indispensable for tackling the intri-
cacies of order dispatching problems. Their strengths lie in
handling complex decision-making, modeling non-linearity,
circumventing the curse of dimensionality, facilitating gener-
alization, and enabling data-driven learning. Here, to estimate
the value function 𝑉

(
𝑧𝑑𝑡
)

over the post-decision state, we
propose AMOD, a systematic solution that estimates the
decomposed value function with neural network-based pa-
rameter approximation. The schematic overview of AMOD
is illustrated in Fig. 4.

Throughout the training process, the input training sam-
ples that neural networks expect should be distributed inde-
pendently for exploitation and exploration. Nevertheless, due
to the high correlation of continuous states, value function
estimations through on-policy updates is easy to perform non-
uniform overestimation. This will introduce instability and
adverse impacts on the actual value. Therefore, we adopt
off-policy updates in practice, which separate the policy of
behaviour and target. To do this, we directly store the set of
available trips for each vehicle during the sample collection,
rather than double-counting them for each iteration. Notably,
this step also has the advantage of shrinking the generation
time for available trips. Hereafter, the agent offline scores the
individual value functions of these available trips in the current
state, and expects to make an optimal action by solving the
sequential optimization in Eq. (8) using the neural network.
Finally, each agent updates the saved post-decision state value
with the target value through this dispatching decision.

Nevertheless, the optimal action is generally bounded by
a finite search field, which relies on the quantity and quality
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of the training data. To introduce randomness in the optimal
action selection, we apply and modify the 𝜖-greedy strategy
for ensuring adequate exploration, where 𝜖 is a decreasing
parameter to achieve a tradeoff between exploitation and ex-
ploration. Specifically, the agent gets the action that maximizes
the 𝑉 (𝑧𝑡 ) in Eq. (8) with the probability 1 − 𝜖 (exploiting),
and the other action with the tiny probability 𝜖 (exploring).

Meanwhile, the value function update process in AMOD
largely follows the Double Deep 𝑄 Network (DDQN)
method [38], [39]. Instead of performing bootstrapping di-
rectly, a target network mechanism exists in AMOD to disrupt
the relevance. Specifically, two neural networks with the same
structure but different parameters are maintained. The target
neural network aims to acquire the temporal difference within
the one-step return value while the main neural network
evaluates the current post-decision state value. For the sake of
learning stability, the weight parameters 𝜃 of the target neural
network are updated periodically (spaced a few training steps)
by the counterpart 𝜃 of the main neural network. Their update
rule follows 𝜃 = 𝜁𝜃 + (1− 𝜁)𝜃 with 𝜁 ≪ 1. Note that the one-
step return method (i.e., TD(0)) in the target neural network is
simply based on the immediate reward value. Then, the target
network mechanism is used to generate the one-step target
value �́� as:

�́� = 𝑟𝑡 + 𝛾𝑉
(
𝑇 (𝑧𝑡 , argmax𝑑 𝑉

(
𝑧𝑑𝑡

)
), 𝜃

)
. (14)

Furthermore, to ensure the stability of this neural network-
based nonlinear approximation, we utilize a prioritized ex-
perience replay buffer to reuse the pre-existing experiences
and break the correlation among data training. During train-
ing sample collection, the agent stores its experience tuple
𝜍 =

〈
𝑧𝑡 , 𝑑𝑡 , 𝑟𝑡 , 𝑧𝑑𝑡

〉
into the experience replay buffer, which

involves its current state and available action set. The arrived
experience samples are used to train the parameters of the
value function approximation in neural networks. Practically,
this replaying enables the agent to extract a minibatch of pre-
vious experience samples from the replay buffer for learning
at each iteration.

Since 𝑉 (𝑧𝑡 , 𝜃) = �́� is possible when the error is smaller,
we attempt to find a set of parameters for the value function
approximation. Thus, the loss function is interpreted as the
Euclidean distance between the target value and the estimated
value of value functions. For a minibatch of 𝐽 experience
sample

{
𝜍 𝑗

}𝐽
𝑗=1, it can be converted as:

L(𝜃) =1
𝐽

𝐽∑︁
𝑗=1

(
�́� 𝑗 −𝑉

(
𝑧 𝑗 ,𝑡 , 𝜃

) )2

=
1
𝐽

𝐽∑︁
𝑗=1

(
𝑟 𝑗 ,𝑡 + 𝛾𝑉

(
𝑇 (𝑧 𝑗 ,𝑡 , argmax𝑑 𝑉

(
𝑧𝑑𝑗,𝑡

)
, 𝜃

)
−𝑉

(
𝑧 𝑗 ,𝑡 , 𝜃

) )2
,

(15)

where each experience samples 𝜍 𝑗 =

〈
𝑧 𝑗 ,𝑡 , 𝑑 𝑗 ,𝑡 , 𝑟 𝑗 ,𝑡 , 𝑧𝑑

𝑗,𝑡

〉
is used to update the parameter 𝜃 toward the target value
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Fig. 5. The update process of value function.

by miniminzing loss function L(𝜃), and a gradient guiding
updates of 𝜃 can be calculated by 𝜕L(𝜃 )

𝜕𝜃
.

Figure 5 shows the update process of the value function,
and more details of AMOD are summarized in Algorithm
2. With a sample path in each episode4, we estimate decom-
posed value function in Eq. (8) for each time slot under the
parameter approximation. By the constructed loss function, the
neural network updates parameters and further obtains optimal
behavior decisions. After that, we update the post-decision
and next pre-decision states (e.g., 𝑧𝑑𝑡 and 𝑧𝑡+1) via Eq. (6),
respectively. Finally, to continue the process to the next slot,
the aforementioned value function approximation is solved
again until a finite time horizon within an episode. AMOD
is terminated when it reaches the given maximum number of
episodes, and the desired value function becomes stable as
well.
Remark. Unlike the standard experience replay, the agent
has partial knowledge of the transition function in our case.
Therefore, it will preferentially extract a valuable minibatch
sample from the replay buffer to deal with the challenge of
reward scarcity.

F. Vehicle Repositioning

Vehicle repositioning significantly impacts global supply-
demand distributions by guiding vehicles to specific locations.
Therefore, along with each batch dispatching, we perform
vehicle repositioning for non-occupied vehicles (i.e., no order
requests were assigned to them) to balance ride supply across
geographic dimensions. Unlike most previous works [14],
[34], our repositioning decisions are not dependent only on
unassigned order requests in this paper. This is because
previous works failed to ensure that a sufficient number
of vehicles were repositioned in the system. Generally, the
number of repositioned vehicles is the minimum of non-
occupied vehicles and unassigned order requests. Explicitly, in
that way, the majority of vehicles will resist repositioning and
easily be trapped in low-demand areas where order requests
are infrequent.

To this end, we sample H𝑡 → 𝑚𝑖𝑛(350, |E𝑡 |) order
requests from the order requests pool O𝑡 after each batch

4Episode and time slot are both periods in the training process. An episode
means one complete play of the agent interacting with the environment, which
usually contains many slots.
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Algorithm 2: AMOD: ADP-based Multi-driver Order
Dispatching method

Input: agent set N , learning rate 𝛽, discount factor 𝛾,
exploration factor 𝜖 , replay buffer, minibatch
size 𝐽

Output: neural network parameters 𝜃

1 Each vehicle 𝜈𝑖,𝑡 ∈ N do
2 Initialize experience replay buffer, main neural

network with random weight 𝜃, target value function 𝑉

with 𝜃 = 𝜃.
3 for each episode 𝑡 do
4 Set 𝑡=0, obtain the initial state 𝑧0 by randomly

positioning vehicles
5 Randomly pick a sample path
6 for each slots of episode do
7 Implement Algo. 1 to generate the available

trips Q𝑖,𝑡

8 Derive an action 𝑑𝑡 based on the 𝜖-greedy
strategy in the current 𝑧𝑡

9 Store experience tuple 𝜍 =
〈
𝑧𝑡 , 𝑑𝑡 , 𝑟𝑡 , 𝑧𝑑𝑡

〉
into

the replay buffer
10 if t % updateFrequency == 0 then
11 Extract a minibatch of 𝐽 experience

samples from the replay buffer
12 for each experience sample

{
𝜍 𝑗

}𝐽
𝑗=1 do

13 Update parameter 𝜃 by minimizing
L(𝜃) as:
L(𝜃) = 1

𝐽

∑𝐽
𝑗=1

(
�́� 𝑗 −𝑉

(
𝑧 𝑗 ,𝑡 , 𝜃

) )2

14 Perform a gradient descent step on
L(𝜃)

15 Update parameter 𝜃 periodically by 𝜃

16 Update the state via Eq. (6):
𝑧𝑑𝑡 = 𝑇𝑑 (𝑧𝑡 , 𝑑𝑡 ) , 𝑧𝑡+1 = 𝑇𝜔

(
𝑧𝑑𝑡 , 𝜔𝑡+1

)

dispatching, where E𝑡 denotes the set of non-occupied vehicles
in time slot 𝑡. Then, we reposition all vehicles to move to the
areas of these samples by performing the linear program in
Eq. (16), which aims to minimize the sum of travel delay.

min
𝑥𝑣,𝑞 ,𝑞𝑣

∑︁
𝑜∈H𝑡

∑︁
𝑣∈E𝑡

𝑐𝑡𝑣,𝑜M(𝑝𝑡𝑣 , 𝑎𝑡𝑜)

s. t. 𝐶1 : 𝑐𝑡𝑣,𝑜 ∈ {0, 1}, ∀𝑣,∀𝑜
𝐶2 :

∑︁
𝑣∈E𝑡

𝑐𝑡𝑣,𝑜 ≤ 𝜅𝑡𝑜, ∀𝑜

𝐶3 :
∑︁
𝑜∈H𝑡

𝑐𝑡𝑣,𝑜 = 1, ∀𝑣.

(16)

Here, binary decision variable 𝑐𝑡𝑣,𝑜 indicates whether
vehicle 𝑣𝑡 is dispatched toward order request 𝑜𝑡 ; 𝜅𝑡𝑜 denotes the
number of vehicles that are repositioned toward order request
𝑜𝑡 , which can be obtained by a Floor or Ceiling function5 with

5Floor function 𝜅𝑡𝑜 =

⌊
|E𝑡 |
300

⌋
for | E𝑡 | > 300, and Ceiling function 𝜅𝑡𝑜 =⌈

|E𝑡 |
300

⌉
for | E𝑡 | < 300.

satisfying
∑

𝑜∈H𝑡
𝜅𝑡𝑜 = |E𝑡 |;M(𝑝𝑡𝑣 , 𝑎𝑡𝑜) denotes the travel time

from position 𝑝𝑡𝑣 of vehicle 𝑣𝑡 to origin 𝑎𝑡𝑜 of order request
𝑜𝑡 , which is obtained by the method mentioned above.

The meaning of the above constraints is as follows:
C1 guarantees the constraint of the binary decision’s integer
nature; C2 is the constraint on the number of vehicles reposi-
tioned toward an order request; C3 ensures that each vehicle
is repositioned toward only an order request.

VI. EVALUATION RESULTS

This section conducts extensive experiments based on
real-world data from New York City taxi daily operations. To
verify the effectiveness of AMOD, results are exhibited from
various perspectives after introducing the settings and dataset.

A. Simulation Settings

We provide quantitive performance analyses for order
dispatching by populating ride-sharing vehicles over the Man-
hattan borough of New York City. Unless otherwise stated,
there are 1000 vehicles with a capacity constraint of 4
passengers (excluding the driver seat). The maximum pick-
up delay is initially 150s, while the maximum detour delay
is set at double that value. For comparison measurements,
we concentrate on varying these values to affect instance
sizes in later analysis. Multiple order requests are combined
and assigned in a batch sequence model with a slot size
of 40s. This makes sense by considering the computation
cost of AMOD and the order response time for a passenger.
Furthermore, we test instances generated based on real-world
data to configure and update parameters for implementing
AMOD. For hyper-parameters, the initial learning rate and
discount factor are set to 0.015 and 0.9, respectively. All
experiments are conducted in Python 3.8 and tested on a
processor (AMD®Threadripper TMPRO5995WX@2.70GHz

)
.

For performance comparison, we compare AMOD with
the following four baselines.

1) PMA [15]: A greedy-based method, which employs the
maximum matching algorithm and iteratively determines
the merge-ability of each order-vehicle pair.

2) HCRS [34]: A heuristic method combines integer linear
programming and model-predictive control to explore
possible actions and optimize dispatch decisions.

3) DRL [29]: A DDQN-based model-free method, in which
each vehicle learns its own dispatch decisions by inter-
acting with the external environment.

4) NoRS: Apply AMOD without considering ride-sharing.
Note that it follows as a particular case of AMOD by
dispatching only one order request to a vehicle.

Besides, except for the order request response rate (RR),
the following metrics are considered to evaluate AMOD quan-
titatively: 1) Detour and pick-up delays, refer to Definition 5;
2) Computational time of AMOD (CTA), involves the time of
generating available trips, value function approximation, and
vehicle repositioning.
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B. Network Training Details

The neural network model adopted in our simulations
incorporates various inputs, including current vehicle and
pending order request information. These inputs are derived
based on associated trajectories, and undergo embedding be-
fore being processed by the LSTM (Long Short Term Mem-
ory network). Specifically, location embedding is computed
through a two-layer neural network, which aims to estimate
the travel time between two locations.

Then, supplementary context (the count of nearby vehi-
cles for a single agent, the count of arrival order requests,
delay constraints, decision epoch, etc.) is taken to connect to
the output of LSTM and processed through two dense layers.
The overall architecture estimates the value function, with
mean squared error and Adam optimizer employed for loss
optimization. Notably, the stochastic action space necessitates
exploration despite deterministic transitions and rewards. The
vehicle offline yields the individual value function in the cur-
rent state. During online execution, assignments maximizing
precomputed offline value functions guide order dispatching.
Overall, our model employs neural networks to enhance or-
der dispatching via informed decision-making and efficient
resource utilization.

C. Dataset

1) Road Network: We consider the complete road net-
work of the Manhattan borough in New York City, which
contains 4121 road nodes (street intersections) and 9417 edges
(road segments). Following the description in Definitions 2 and
8, we can identify street intersections and estimate the travel
time on each road segment.

2) Historical Trip Record: New York Taxi and Limou-
sine Commission provides the public NYC dataset [40]. It
contains historical trip records for three travel services (yellow
and green taxis, for-hire vehicles) in recent years. Similar to
the previous works [15], [24], we conduct experiments based
on the demand distribution from yellow taxi trace data in the
Manhattan borough. The subset we used included historical
order requests for different periods of the day and different
days of the week. For each trip record, we can extract the
pick-up and drop-off time, location (the coordinate of latitude
and longitude), pick-up delay (multiple of the time slot),
travel distances, and driver-reported passenger count, where
the nearest street intersection is mapped to the corresponding
location. Furthermore, we analyzed the trip records for a
week to appear the demand distribution pattern. After data
cleaning, there were an average of 415,133 order requests
per day, and the average travel distance of passengers is
3.257 miles. Fig. 6 displays the pick-up and drop-off location
distribution of historical trip records over road segments in
a someday. Obviously, order requests are roughly distributed
sparsely across the road network.

D. Numerical Results

To explore the ability of AMOD for spatiotemporal order
dispatching, we rewind actual order requests from trip records
as demands. Specifically, we consider the trip data from July
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Fig. 6. The pick-up and drop-off location distribution of historical trip records.
(#RS: the number of road segments; NOR: the number of order requests
originated on the road segment; NDE: the number of order requests destined
on the road segment.)

2017 for training, and one-week data from August 2017 for
validation. During this stage, AMOD is trained over 12000
epochs, while recent 3000 experience tuples are extracted as
a replay buffer. Then, we evaluate AMOD over 24 hours
using the trip data of the penultimate week from August
2017, and take the average value. The initial location of the
vehicles uniformly corresponds to the sampled position from
a historical demand distribution at midnight.

1) Robustness Analysis: We demonstrate the robustness
of AMOD versus the duration of each time slot (i.e., the
aggregate duration of order requests) and the number of
order requests (i.e., the demand density). The displayed results
represent the mean value over a week of data in the Manhattan
borough. Notably, to vary the number of order requests,
we cumulate daily demands for sequential days or eliminate
demands over each period.

We first vary the duration of the time slot from 20s to 60s,
and display results to confirm the robustness of this change.
As shown in Fig. 7 (a), we observe that the order request
response rate slightly improves from 71% to 75% with the
increase of the duration of the time slot. Indeed, this increase
seems practically negligible. Meanwhile, as shown in Fig.
7 (b) and (c), the detour delay decreases rapidly, while the
pick-up delay exhibits an opposite trend. This is reasonable
because more order requests can be combined and assigned
to vehicles as the duration of the time slot increases. Thus, a
larger aggregate duration can enable the platform to achieve
better order dispatchings. Although passengers have to wait
longer to receive their responses, the delivery route planning
will be more efficient. Besides, the computational time of
AMOD also increases since more order requests need to be
combined and assigned. Specifically, it achieves a time of 16s
in the initial stage, and enhances to 35s when the duration of
each time slot is 60s.

Next, we show robustness results for the number of order
requests in Fig. 8. We vary the number of order requests
from 0.5 to 1.5 times compared to the original. As expected,
increased order requests negatively impact both performance
metrics. Even so, AMOD can still serve about 60% of order
requests even when there exist a massive number of order
requests (i.e., ×1.5). Especially, as shown in Fig. 8 (b) and
(c), detour and pick-up delays increase with the increase of
order requests. Nonetheless, these increases are both within
acceptable threshold ranges. In addition, although NoRS has
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Fig. 7. Performance metrics versus the slot size: (a) Order request response rate. (b) Detour delay. (c) Pick-up delay. (d) Computational time of AMOD.
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Fig. 8. Performance metrics versus the number of order requests: (a) Order request response rate. (b) Detour delay. (c) Pick-up delay. (d) Computational
time of AMOD.

(a) (b) (c)

Fig. 9. (a) Order request response rate versus the capacity constraint. (b) Order request response rate versus the number of vehicles. (c) Order request response
rate versus the maximum pick-up delay.

zero detour delay, it performs badly in order request response
rate since it does not consider ride-sharing.

To this end, it can be inferred that AMOD remains robust
with the changes in the duration of the time slot and the
number of order requests.

2) Performance Evaluation: In this part, we compare
AMOD with other baselines to evaluate the performance
quantitatively. For smoothness, these results are averaged over
20 times.

First, we compare the order request response rate for
various capacity constraints of vehicles (NoRS is excluded as
its performance is not affected by cache capacity). As shown in
Fig. 9(a), AMOD is superior to other baselines in most cases.
It achieves 13.5% improvement at maximum and 8.9% on
average when the capacity constraint varies to 6. Notably, the
difference between ADP-based methods (DRL, AMOD) and
other methods grows larger with the increase of the capacity
constraint. This is consistent with our motivation that PMA
and HCRS are myopic, while ADP-based methods are derived

from observed historical experiences and concentrate more
on the anticipated reward. Thus, there exist upside potential
for vehicles with larger capacity constraints if considering the
long-term influences of order dispatching.

Similarly, the increasing number of vehicles also has a
positive impact on the order request response rate. As shown in
Fig. 9(b), all methods achieve their performance gains with the
increase of the number of vehicles, especially for AMOD. This
situation may occur because more order can be fulfilled thanks
to widespread supply distribution, although profits per vehicle
could be slightly less. As for state-of-the-art DRL, AMOD still
achieves 5.3% and 6.7% gains for 1500 and 2500 vehicles,
respectively. In particular, we observe that 2500 vehicles with
capacity 4 achieve an order request response rate of over 95%,
showing better quality of service.

In the following, we change the maximum pick-up de-
lay to compare the order request response rate of different
methods. As shown in Fig. 9(c), although AMOD performs
weaker than HCRS, and DRL in case of the maximum pick-
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(a) (b)

Fig. 10. The mismatch between demand and supply in spatiotemporal
distribution. (a) PMA (b) AMOD.

up delay is 90s (probably because of strict delay constraints), it
will outperform them with enough search for available action
generation. In particular, AMOD outperforms PMA, HCRS,
DRL, and NoRS with an improvement in the order request
response rate of 14.4%, 10.1%, 3.8%, and 23.9%, respectively,
when the maximum pick-up delay is 210s.

Finally, except for quantitive results, we provide an intu-
itive illustration by visualizing the algorithm’s performance on
city maps. To be more conspicuous, PMA (without considering
vehicle repositioning) is chosen to compare with AMOD. The
spatiotemporal mismatch between demand and supply during
a peak hour is drawn in Fig. 10. Warmer colors signify a
pronounced gap between supply and demand, indicating a need
for more available drivers. Colder colors signify that current
demands are adequately met with available vehicles still in
the vicinity. A good order dispatching method should strive to
maintain more balance between supply and demand, as evident
in Fig. 10(b) by the presence of fewer warm areas. In this
regard, AMOD does indeed demonstrate promising result.

Given these promising results, it can be observed that
AMOD consistently has the best performance among all
methods. Therefore, we demonstrate that AMOD is effective
under different scenarios.

VII. CONCLUSION

This paper investigated the order dispatching with con-
sideration of vehicle repositioning by exploiting ADP. We
first formulated the optimization problem as a MDP, where
the dispatching decision is determined by a series of agents
under the time sequence model. Then, based on the generated
available trips by a graph theory-based method, an ADP-
based Multi-driver Order Dispatching method (AMOD) was
proposed. In particular, AMOD reconstructed the Bellman
update process around the post-decision states. As for non-
linear function approximation, it converted the value function
into a linear combination, and estimated the decomposed value
function with neural network-based parameter approximation.
In addition, vehicle repositioning was performed along with
each batch dispatching to balance ride supply across geo-
graphic dimensions. Extensive simulations were conducted to
verify the effectiveness of AMOD.
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