Appendix

A. Proof of Theorem 1

Theorem 1: For two overlapped communities C_l , C'_l and an arbitrary relay set S ($S \subseteq C_l \cap C_{l'}$), we have:

$$B_{l,l'}(S) = \frac{1}{\sum_{v \in S} \lambda_{v,l}} + \frac{\sum_{v \in S} \lambda_{v,l} / \lambda_{v,l'}}{\sum_{v \in S} \lambda_{v,l}}$$

Proof: According to Definitions 3 and 4, we have that $B_{l,l'}(S)$ is exactly the expected delivery delay from l to l' via the first encountered node in S. Since the time interval that each node v in S encounters l follows the exponential distribution with parameter $\lambda_{v,l}$, the probability density function of node v becoming the first node meeting l is $\lambda_{v,l}\prod_{v\in S} e^{-\lambda_{v,l}t}$. The delivery delay from l to l' via node v is t plus $D_{v,l'} = 1/\lambda_{v,l'}$. Then, we have:

$$B_{l,l'}(S) = \sum_{v \in S} \left(\int_0^\infty \lambda_{v,l} \prod_{v \in S} e^{-t\lambda_{v,l}} (t+1/\lambda_{v,l'}) dt \right)$$
$$= \frac{1}{\sum_{v \in S} \lambda_{v,l}} + \frac{\sum_{v \in S} \lambda_{v,l}/\lambda_{v,l'}}{\sum_{v \in S} \lambda_{v,l}}.$$
(1)

B. Proof of Theorem 2

Theorem 2: Optimal Opportunistic Routing Rule: the message sender always delivers messages to the encountered relay that has a smaller minimum expected delay to the destination than itself. Concretely, a relay u belongs to the optimal relay set \tilde{R}_i for the delivery from i to d, if and only if, $D_{u,d} < D_{i,d}$, i.e.:

$$u \in \tilde{R}_i \iff D_{u,d} < D_{i,d} \tag{2}$$

Proof: We first prove $u \in R_i \Rightarrow D_{u,d} < D_{i,d}$ by contradiction. Assume that $u \in \tilde{R}_i$ while $D_{u,d} \ge D_{i,d}$. Then, we construct a new relay set $R^- = \tilde{R}_i - \{u\}$. By computing $D_{i,d}(\tilde{R}_i)$ and $D_{i,d}(R^-)$, we have:

$$D_{i,d}(\tilde{R}_i) = \sum_{v \in \tilde{R}_i} \left(\int_0^\infty \lambda_{i,v} \prod_{v \in \tilde{R}_i} e^{-t\lambda_{i,v}} (t+D_{v,d}) dt \right)$$
$$= \frac{1 + \sum_{v \in \tilde{R}_i} \lambda_{i,v} D_{v,d}}{\sum_{v \in \tilde{R}_i} \lambda_{i,v}},$$
(3)

$$D_{i,d}(R^{-}) = \sum_{v \in R^{-}} \left(\int_{0}^{\infty} \lambda_{i,v} \prod_{v \in R^{-}} e^{-t\lambda_{i,v}} (t + D_{v,d}) dt \right)$$
$$= \frac{1 + \sum_{v \in R^{-}} \lambda_{i,v} D_{v,d}}{\sum_{v \in R^{-}} \lambda_{i,v}},$$
(4)

Then, by comparing $D_{i,d}(R_i)$ and $D_{i,d}(R^-)$, we have:

$$D_{i,d}(\tilde{R}_i) - D_{i,d}(R^-) = \frac{\lambda_{i,u}}{\sum_{v \in R^-} \lambda_{i,v}} \left(D_{u,d} - D_{i,d}(\tilde{R}_i) \right).$$
(5)

That is:

$$D_{i,d}(\tilde{R}_i) \ge D_{i,d}(R^-) \Leftrightarrow D_{u,d} \ge D_{i,d}(\tilde{R}_i).$$
(6)

On the other hand, we have $D_{u,d} \ge D_{i,d} = D_{i,d}(R_i)$, according to the assumption. Thus, we can get

 $D_{i,d}(R^-) \leq D_{i,d}(\tilde{R}_i)$ from Eq.(6). This is a contradiction in that \tilde{R}_i is the optimal relay set to minimize $D_{i,d}$ (if there are multiple relay sets to minimize $D_{i,d}$, we always select the one with the smallest set size in this paper). Therefore, the assumption is wrong, and we should have $D_{u,d} < D_{i,d}$.

Likewise, we can get $D_{u,d} < D_{i,d} \Rightarrow u \in \hat{R}_i$ by the contradiction method. Assume that $D_{u,d} < D_{i,d}$ and meanwhile $u \notin \tilde{R}_i$. Then, we construct a new relay set $R^+ = \tilde{R}_i + \{u\}$. By computing $D_{i,d}(R^+)$, we have:

$$D_{i,d}(R^+) = \sum_{v \in R^+} \left(\int_0^\infty \lambda_{i,v} \prod_{v \in R^+} e^{-t\lambda_{i,v}} (t + D_{v,d}) dt \right)$$
$$= \frac{1 + \sum_{v \in R^+} \lambda_{i,v} D_{v,d}}{\sum_{v \in R^+} \lambda_{i,v}}.$$
(7)

Then, by comparing $D_{i,d}(R^+)$ and $D_{i,d}(\dot{R}_i)$ in Eq.(3), we have:

$$D_{i,d}(R^{+}) - D_{i,d}(\tilde{R}_{i}) = \frac{\lambda_{i,u}}{\sum_{v \in R^{+}} \lambda_{i,v}} (D_{u,d} - D_{i,d}(\tilde{R}_{i})).$$
(8)

That is:

$$D_{i,d}(R^+) < D_{i,d}(\tilde{R}_i) \Leftrightarrow D_{u,d} < D_{i,d}(\tilde{R}_i).$$
(9)

On the other hand, we have $D_{u,d} < D_{i,d} = D_{i,d}(R_i)$ according to the assumption. Thus, we can get $D_{i,d}(R^+) < D_{i,d}(\tilde{R}_i)$ from Eq.(9). This is a contradiction in that \tilde{R}_i is the optimal relay set to minimize $D_{i,d}$. Therefore, the assumption is wrong, and we should have $u \in \tilde{R}_i$.

C. Proof of Theorem 3

Theorem 3: Assume that community C_l has m overlapped communities C_{l_1}, \dots, C_{l_m} . Then, the optimal relay set \tilde{R}_l of home l, and the optimal betweenness sets \tilde{S}_{l,l_i} $(1 \le i \le m)$ satisfy:

- 1) if $v \notin \bigcup_{i=1}^{m} \tilde{S}_{l,l_i}$, then $v \notin \tilde{R}_l$;
- 2) $\hat{S}_{l,l_i} \subseteq \hat{R}_l$, otherwise $\hat{S}_{l,l_i} \cap \hat{R}_l = \emptyset$ for $\forall i \in [1,m]$.

Proof: 1. Since $v \notin \bigcup_{i=1}^{m} \tilde{S}_{l,l_i}$ means $v \in \bigcup_{i=1}^{m} (C_l \cap C_l)$ C_{l_i} - S_{l,l_i}), then without loss of generality, we assume $v \in C_l \cap C_{l_i} - S_{l,l_i}$ and $v \in R_l$ to prove the first property by contradiction. Firstly, we construct a new relay set R^- for the message delivery from l to d via l_1, \dots, l_m . Let $R^- = R_l - (C_l \cap C_{l_i}) + S_{l,l_i}$, and then compare the delay values, $D_{l,d}(R^-)$ and $D_{l,d}(R_i)$, the delivery delays from l to d via the new relay set R^- and the optimal relay set R_l . In fact, the two delay values are the expected values of the delays via nodes in the two relay sets. Consider that a node in $R = R_l - (C_l \cap C_{l_i})$ first visits l and is selected as the real relay. Its contributions to $D_{l,d}(R^-)$ and $D_{l,d}(S_{l,l_i})$ are the same. Thus, we only need to consider the contributions of the remaining nodes in $R^- - R$ (= \hat{S}_{l,l_i}) and $\hat{R}_l - R$ to $D_{l,d}(R^-)$ and $D_{l,d}(R_l)$, respectively. Since S_{l,l_i} is the optimal relay set for the direct delivery from l to l_i , we thus have $D_{l,l_i}(S_{l,l_i}) + D_{l_i,d} < D_{l,l_i}(R_l - R) + D_{l_i,d}$. That is, the expected delay from l to l' via R^- is even less

than the delay via R_l . This is a contradiction in that \tilde{R}_l is the optimal relay set. Therefore, the assumption about $v \in \tilde{R}_l$ is wrong, and we should have $v \notin \tilde{R}_l$.

2. We are still using the contradiction method, and assume that there exists an integer $i \in [1, m]$ that satisfies $\tilde{S}_{l,l_i} \not\subseteq \tilde{R}_l$ and $\tilde{S}_{l,l_i} \cap \tilde{R}_l = R \neq \emptyset$. We also construct a new relay set $R' = \tilde{R}_l - R + \tilde{S}_{l,l_i}$. Based on a similar analysis as in part 1, we have that $D_{l,d}(R')$ is less than $D_{l,d}(\tilde{R}_l)$. This is a contradiction in that \tilde{R}_l is the optimal relay set. Therefore, the assumption about $\tilde{S}_{l,l_i} \cap \tilde{R}_l \neq \emptyset$ is wrong, and the theorem is correct. \Box

D. Proof of Corollary 2

Corollary 1: CAOR can achieve the minimum expected delivery delay.

Proof: A straightforward result in Section 4.3. *Corollary 2:* Assume that $\lambda_{v_1,l'} \ge \lambda_{v_2,l'} \ge \cdots \ge \lambda_{v_n,l'}$, then the optimal betweenness set $\tilde{S}_{l,l'}$ satisfies:

- 1) $v_1 \in S_{l,l'};$
- 2) if $v_{i+1} \in \tilde{S}_{l,l'}$, then $v_i \in \tilde{S}_{l,l'}$. That is, $\exists k \in [1, n]$ s.t. $\tilde{S}_{l,l'} = \{v_1, \cdots, v_k\};$
- 3) if $\tilde{S}_{l,l'} = \{v_1, \dots, v_k\}$, then $B_{l,l'}(\{v_1, \dots, v_i\}) > B_{l,l'}(\{v_1, \dots, v_i, v_{i+1}\})$ for any $i \in [1, k-1]$.

Proof: At first, we directly prove the second result, which also implies the first result. We consider the optimal opportunistic routing between l and l' via $\{v_1, \dots, v_n\}$. if $v_{i+1} \in \tilde{S}_{l,l'}$, then we have $D_{v_{i+1},l'} < D_{l,l'}$ according to Theorem 2. Since $D_{v_i,l'} = \frac{1}{\lambda_{v_i,l'}} < D_{v_{i+1},l'} = \frac{1}{\lambda_{v_{i+1},l'}}$, we can get $D_{v_i,l'} < D_{l,l'}$. Using Theorem 2 again, we have $v_i \in \tilde{S}_{l,l'}$. Without loss of generality, let the node in $\tilde{S}_{l,l'}$ with the largest expected delay to community home l' be v_k , i.e., $v_k \in \tilde{S}_{l,l'}$. Then, $v_{k-1}, v_{k-2}, \dots, v_1 \in \tilde{S}_{l,l'}$, i.e., $\tilde{S}_{l,l'} = \{v_1, \dots, v_k\}$.

Now we prove the third result. Compare $D_{l,l'}(\{v_1, \dots, v_i\})$ and $D_{l,l'}(\{v_1, \dots, v_i, v_{i+1}\})$, we have:

$$D_{l,l'}(\{v_1, \cdots, v_{i+1}\}) < D_{l,l'}(\{v_1, \cdots, v_i\}) \Leftrightarrow D_{v_{i+1},l'} < D_{l,l'}(\{v_1, \cdots, v_i\}).$$
(10)

On the other hand, $v_{i+1} \in \hat{S}_{l,l'}$, then we can get $D_{v_{i+1},l'} < D_{l,l'} < D_{l,l'}(\{v_1, \dots, v_i\})$ according to Theorem 2. Thus, $D_{l,l'}(\{v_1, \dots, v_{i+1}\}) < D_{l,l'}(\{v_1, \dots, v_i\})$.