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PROOF OF THEOREM 2
Theorem 2: (Coverage) Given a sufficiently large WSN

(X,Y,B,T) and a charging model (P, c, v, η1, η2), which
satisfy conditions K1K2K3, the maximum coverages of
EqualShare, SolelyCharge, CLCharge, and PushWait are
P/2c, P/2c, P/c, and infinity, respectively.

Proof: In EqualShare, each charger contributes bi/M
energy to sensor node si. When M approaches infinity,
the share b/K approaches 0. However, every charger
has to return to the BS, thus the maximum coverage
is P/2c. For the same reason, the maximum coverage of
SolelyCharge is also P/2c. In CLCharge, when a charger
turns around, it cannot get any energy from the other
chargers before reaching the BS. Hence, the maximum
coverage is P/c.

In PushWait, based on our previous analysis, we have:
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Therefore, the maximum coverage of PushWait is infin-
ity, as M approaches infinity.

PROOF OF THEOREM 3
Theorem 3: (Optimality of SolelyCharge) Given a

WSN (X,Y,B,T) and a charging model (P, c, v, η1, η2),
satisfying conditions K1K2, if collaboration among
chargers is not permitted, SolelyCharge is optimal.

Proof: Since we do not allow collaboration, energy
loss can occur only when a charger transfers energy
to a sensor node. Given a fixed WSN, the energy loss
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during energy transfer is also fixed, which is equal to
(
∑size(B)

i=1 bi)/η1. Therefore, maximizing EUE is equiv-
alent to minimizing Distance(SolelyCharge). Suppose
that SolelyCharge requires M chargers to replenish the
given WSN. We prove the theorem by induction on M .

When M = 1 or M = 2, we can prove SolelyCharge
is optimal using a similar method as in Theorem 1. We
assume that SolelyCharge is optimal for any M < n.

M = n. Note that, any algorithm must have at least
one charger, say C, to charge the farthest sensor node, say
s, in the WSN. To improve EUE as much as possible, we
let C charge the sensor nodes that are near s, instead of
near the BS. Without loss of generality, we assume that C
charges nodes from s′ to s. For sensor nodes between the
BS to s′, SolelyCharge requires (n− 1) chargers, which
is optimal due to the induction hypothesis. Putting C
and the (n− 1) chargers together, we find that they ex-
actly represent SolelyCharge with n chargers. Therefore,
SolelyCharge is optimal.

PROOF OF THEOREM 4
Theorem 4: (Necessary condition) Given a node s that

is xs distance away from the BS, the battery capacity of
s is b; using PushWait to deliver b energy to s one time
achieves a higher EUE than using PushWait twice.

Proof: We denote PushWait being used once by the
1st scheme, and being used twice by the 2nd scheme.
Since the payload energy is fixed, which is b, it is
sufficient to prove that the total energy consumed by the
1st scheme is less than that by the 2nd scheme. We prove
this by induction on the number of chargers required by
the 1st scheme, say M .

M = 1 or 2. The 2nd scheme requires at least 2 charg-
ers, both of which must travel 2d distance. Therefore,
the 2nd scheme consumes more overhead energy than
the 1st scheme, and the 1st scheme achieves a higher
EUE. I.H.: the 1st scheme is better for any M < n.

M = n. Imagine that a virtual base station BS′ is
located at Ln, then, the 1st and 2nd schemes require
(n−1)P and Q energy, respectively, to deliver b energy to
s from Ln. Due to the induction hypothesis, Q > (n−1)P .
The task of the 2nd scheme then is to use PushWait twice
to deliver Q energy from BS to BS′, which requires that
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at least n chargers start from the BS. Since Q > (n−1)P ,
the 1st scheme is optimal.

PROOF OF THEOREM 5
Theorem 5: (Approx. ratio of ClusterCharging(β))

Given a WSN (X,Y,B,T) and a charging model
(P, c, v, η1, η2), satisfying conditions K1K2K3, the ap-
proximation ratio of ClusterCharging(β) is
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Proof: Denote by EUE(alg) the EUE of a scheduling
algorithm alg. Denote by OPT the optimal solution to
scenario K1K2K3. The main line of this proof is to
construct two extreme scheduling algorithms alg1 and
alg2, such that EUE(alg1) < EUE(ClusterCharing(β)),
and EUE(OPT ) < ratio(alg2).

Construction of alg1. Consider the following charging
round: we employ PushWait to charge only one sensor
node, which is at the farthest point of the WSN, i.e., xN ,
and only needs the least possible energy, i.e., bmin/τmax.
Therefore, the number of chargers used in this round
should satisfy:
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viously, this charging round is the worst case we can
imagine. We have:

EUE(ClusterCharging(β)) > EUE(alg1) =
bmin

τmaxkP

Construction of alg2. Suppose that we have a charger
with an infinite battery, then we need only one charger
in each round. The EUE reaches maximum when this
charger transfers

∑N
i=1 bi energy to the WSN, while only

traveling 2xN distance. Obviously, we have
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Combining them together, we have
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