A Reward Response Game in the Federated
Learning System

Suhan Jiang and Jie Wu
Department of Computer and Information Sciences, Temple University
{suhan jiang, jiewu}@temple.edu

Abstract—The emergence of federated learning and the in-
creasingly powerful mobile devices lead to a mobile-crowd
machine learning paradigm. In this paper, we consider a mobile-
crowd federated learning system that includes a central server
and a set of mobile devices. As the model requester, the server
motivates all devices to train an accurate model by paying
them based on their individual contributions. Each participating
device needs to balance between the training rewards and costs
for profit maximization. A Stackelberg game is proposed to
model interactions between the server and devices. To match
with reality, our model takes the training deadline and the
device-side upload time into consideration. Based on different
definitions of individual contribution, two reward policies, i.e., the
size-based policy and accuracy-based policy, are compared. The
existence and uniqueness of Stackelberg equilibrium (SE) under
both definitions are analyzed, according to which algorithms are
proposed to achieve the corresponding SE(s). We show that there
is a lower bound of 0.5 on the price of anarchy in the proposed
game. We extend our model by considering the uncertainty in
the upload time, where each device’s upload time is subject to
a normal distribution due to its unstable channel. Numerical
evaluations are presented to verify the proposed models.

Index Terms—Federated learning, game theory, incentive
mechanism, mobile-crowd machine learning, price of anarchy.

I. INTRODUCTION

Federated learning [1] has enabled model(s) to be collabora-
tively trained across multiple devices using decentralized data
samples without actual data exchange, and therefore protecting
data privacy and security. Meanwhile, the growth of mobile
devices also get machine learning at the end of the network for
real. Therefore, mobile-crowd federated learning has emerged
as a new business trend. Fig. 1 shows a typical federated
learning system, consisting of a central server as a model
requester and a set of mobile devices as model trainers. In
such a system, the server distributes a global model to the
devices. The devices train the model on locally available data.
All updated models, instead of the data, are then sent back to
the server, where they are averaged to produce a new global
model. This new model now acts as the primary model and
is again distributed to the devices. This process is repeated
forever or until the global model achieves a satisfactory result
from the server side. Usually, the newly aggregated global
model should get a little better than it already was. Obviously,
model training moves to the edge of the network so that the

This research was supported in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1629746, CNS 1651947, and CNS 1564128.

server

| @
[) aggregate
[]
7 . 3
download .-~ L upload

= : v a
) (@)
device local training
O O O

Fig. 1: Federated learning system: (1) server sends current global model to all
devices; (2) each device trains its model using the local data; (3) all devices
upload their updated models to server; (4) server aggregates all local models
into a new global model.

M

>

<

data never leaves the device, while it is still under the central
server’s orchestration.

The fact that model training consumes resources makes it
impossible for mobile devices to voluntarily participate in the
federated learning task. In most cases, monetary incentive is
a necessity for any mobile-crowd federated learning system.
That is, the server has to motivate participating devices with
enough rewards in order to obtain a satisfactory model. The
model accuracy can be used to measure how satisfied the
server is with the obtained model. Usually, the model accuracy
is positively related to the size of overall trained data. Thus,
the server wants devices to train more data in local training
round, which inevitably will increase each device’s cost. To
cover their losses, more rewards should be provided. However,
existing works also confirm that the model accuracy and the
data size show a concave down increasing trend, indicating
the principle of diminishing marginal return. Thus, to balance
its utility, i.e., the difference between its satisfaction of the
obtained model and the reward it offers to all devices, it is
important for a server to decide a suitable reward amount. In
some case, the server may set a deadline by which all devices
should complete the training and upload step, and ignore any
update submitted after the deadline.

Devices participate in the federated learning aiming for the
training rewards. Due to the different network environments,
devices may vary over their own upload time. Each device
must pay attention to its training time to avoid missing the
deadline if one is given. Similarly, each device has its own
computation power, indicating a specific training speed. The
higher computation power a device has, the more data it can
train in a given time. Usually, a device will get rewarded
based on its contribution to the global model. There exist two
common ways to measure a device’s individual contribution.
One is using the size of its trained data, and the other is using

the device’s local model accuracy. As we mentioned before,
the model accuracy is a concavely increasing function in terms
of the training data size. Thus, the more rewards a device wants
to obtain, the more data it has to train, and the more time it
has to spend in the training step. However, a long training time
also leads to a high computation cost. Obviously, the training
time brings about a tradeoff between the reward and the cost
to the device. Thus, optimizing the training time is essential
for each device, as it wants to maximize its utility, i.e., the
difference between its reward and its cost.

We exploit game theory to analyze the complex interactions
between the server and mobile devices. To solve the reward-
based resource management problem, we leverage a Stack-
elberg game, which includes two steps for the server (as a
leader) and then devices (as followers), respectively. In the first
step, the server announces its deadline and sets a reward for
a training round by anticipating the devices’ responses. In the
second step, the devices decide their training time according
to the observed reward and deadline as well as their individual
upload times. Moreover, we investigate how the reward policy
applied by the server will affect the devices’ decisions as well
as the whole system. As we mentioned before, a common
reward policy can be paying each device either in proportion to
its data-size-based contribution or to its local-accuracy-based
contribution.

All previous studies assume that each device’s upload time
is fixed as a common knowledge in the proposed game. In
practice, a mobile device in the wifi environment experiences
an unstable network speed, indicating its upload time may
change due to the time-varying network condition. In this
paper, we also discuss the impact of upload time uncertainty on
the devices’ strategies by modeling each device’s upload time
as a random variable. That is, we assume that each device’s
upload time follows a Normal distribution with fixed values
of mean and variance. The major contributions of this paper
are as follows:

« We propose a Stackelberg game to solve a reward-based
computation resource management problem in a federated
learning system.

« We study the proposed Stackelberg game in two practical
reward sharing policies, i.e., size-based policy and accuracy-
based policy, where the existence and uniqueness of Stack-
elberg equilibrium (SE) are analyzed.

o We show that our proposed game is a valid utility game,
thereby it has a lower bound of 0.5 on the price of anarchy.

« We investigate the impacts of upload time uncertainty, which
incurs longer training time on the device side.

« We perform numerical evaluation based on real-world data
and the results are consistent with all the theoretical results.

II. MODEL AND PROBLEM
A. Model Description

As shown in Fig. 1, we consider a cooperative federated
learning system. The model consists of a number of mobile
devices associated with a central parameter server. The whole

TABLE I: Summary of Notations.

Symbol Description
R | total reward offered by the server in a global round
N | number of participating devices
i | unit-time computation speed of device ¢
¢; | unit-time computation cost of device %
o7} device ¢’s contribution
o/ a_; | sum of all devices’ contributions with/without 7
t; | local training time decided by device i
T; | expected upload time of device ¢
T | server’s pre-announced deadline

system is in a universal mobile network with wireless commu-
nication infrastructures. We consider a quasi-static state where
no devices are joining or leaving. Corresponding notations are
shown in Table I.

The server aims to build a global machine learning model
by employing NN devices. Firstly, the server shares the current
global model parameters with all devices. All devices will train
their local models using their own data. Then, each device
uploads its updated local model parameters to the server.
Finally, the server facilitates the computation of the parameters
aggregation and obtains a new global model. We consider
that these four steps form a global update round. In a global
round, each device experiences lots of local training iterations,
depending on its training data size. The global rounds continue
repeatedly until meeting some specific requirements, e.g. a
certain accuracy level or a deadline.

Since the final global model is obtained through lots of
training rounds, here, we only consider one round, in which,
the server wants to make its model as improved as possible.
According to the existing works, the accuracy of a machine
learning model depends on the training data size. The relation
between them can be captured by a concavely increasing func-
tion (an example is given in Fig. (2)), indicating a decreasing
marginal gain. For simplicity, we assume that all training data
in each edge device has the same quality and is independently
and identically distributed (IID). Based on this assumption,
the more data trained by the devices, the better global model
the server will obtain at the end of a round. To motivate
all devices’ participation level, the server will announce a
total reward R at the beginning of a round as an incentive.
All devices will share this reward based on their individual
contributions to the global model.

Each device should train its local model and upload its local
parameters to the server before the round deadline 7'. Here,
we assume all devices simultaneously start local training at
the time of 0. Let ¢; and 7; represent device i’s local model
training time and its parameter upload time. Obviously, t; +
7, < T. We define ; as device i’s unit-time computation
speed, indicating that the number of its trained data is 3; in
a unit time. Thus, in a training time ¢;, device 7 trains [;t;
data in total. Let ¢; represent the unit-time computation cost
of device ¢. Then, its total training cost will be c;t;. Obviously,
a longer training time brings a higher data contribution ratio
while also incurring more computation cost. Since all devices
aim to make a profit, they should balance the contribution and

98 * Data .
Fitted Curve .

Test accuracy (%)
-

0 1 2 3 4 5 6
Sample size (x10%)

Fig. 2: Relation between the accuracy of the global model and the trained
data size: f(z) = 3.9810g(9.68 x 10°z — 3.69 x 108).

the cost by carefully determining the training time ¢;.

B. Stackelberg Game Formulation

Game theory provides a natural paradigm to model the
interactions between the server and the devices in this network.
The server sets the total reward and announces it to the devices.
The devices respond to the reward by deciding an optimal
training time. Since the server acts first and then the devices
make their decision based on the reward, the two events are
sequential. Thus, we model the interactions between the server
and the devices using a Stackelberg game. It is a single-leader
multi-follower Stackelberg game, where the server is the leader
and the devices are the followers. In the first stage, the server
optimizes the reward R it is willing to offer in a global round
by predicting the devices’ reactions. It also informs all devices
of a deadline 7T'. Devices that fail to upload their local models
will not be rewarded. In the second stage, after observing R
and 7', each device 7 responds with a suitable training time,
by considering its computation speed /3;, computation cost c¢;,
and upload time 7;, as well as other devices’ decisions. Since
decisions are generated for individual utility maximization, a
non-cooperative follower subgame is formed.

1) Device Side Utility: We define «;(t;) as device 4’s single
round contribution. We will consider two different ways to
define «;(t;), and under both definitions, the value of «;(t;)
always depends on its training time ¢;. In the rest of the
paper, we use «; for the simplicity of writing. With the system
model, we formulate the following optimization problem for
maximizing the overall profit in each round:

Problem 1 (OPpgyice)-

maximize wi(ti, t_;) = R% — ¢ity, (1a)
o
N
where a= ijl o, (1b)
subject to ti+ 1 <T. (1c)

Each device 7 aims to maximize its utility and constraint
(1c) ensures that ¢’s local model can be uploaded within the
deadline, thereby avoiding the worst case of zero-reward.

2) Server Side Utility: The objective of the server is to
optimize its utility by determining the corresponding reward.
Let V denote the server’s utility, which is the difference
between its satisfaction about the newly aggregated global
model and the reward R it has to pay all qualified devices. We
assume that the server’s satisfaction is caught by the estimated
accuracy of the new global model, which is a concavely

increasing function over the amount of the data trained by
all devices. Thus, we use a log function to characterize the
relationship between the model accuracy and the trained data.
The optimization problem OPggryer On the server side is thus
defined as below.

Problem 2 (OPguryer)-
N
maximize V =0log (1 +)\Z}_l ﬁm) - R 2)

3) Stackelberg Equilibrium: OPggrygr and OPpgyicg to-
gether form the proposed Stackelberg game. To achieve equi-
librium in this game where neither the leader (server) nor the
followers (devices) have incentive to deviate, we need to find
its subgame perfect Nash equilibrium (NE) in the follower
stage first, and then apply backward induction to achieve the
leader side equilibrium.

III. DEVICE-SIDE EQUILIBRIUM IN THE
F1XED-UPLOAD-TIME SETTING

We start with a relatively simple setting, where each device
has a stable channel connecting to the server. That is, the
model upload time 7; is a pre-known constant. This assumption
allows us to focus on how different reward policies applied by
the server will affect devices’ strategies and thereby influence
the result of the proposed Stackelberg game.

A. Size-based Reward Policy

1) Follower Subgame Equilibrium: It is natural to consider
the size of the trained data to measure the individual contribu-
tion. The corresponding device side optimization problem can
be rewritten as below.

Problem 3 (OPppyicr).

maximize ui(tit_;) = R% — ¢ty (3a)
where a; = Pity, (3b)
subject to ti+7m <T. 3¢)

Theorem 1. At least one Nash equilibrium exists in Problem 3.

Proof. Obviously, each device’s strategy space [0,7 — 7;] is
a non-empty, compact, and convex subset of the Euclidean
space, and the utility function w;(¢;,t_;) is continuous and
twice differentiable over [0,7 — 7;]. In order to show the
existence of Nash equilibrium, we need to prove that u; is
concave with respect to t;. According to Eq. (4), the second
order derivative of w; is less than 0 over [0,T — 7;].
82u1‘ —ZRﬁZQ a_g

o = @

where a_; = Z i Q- Therefore, we can conclude that there
exists at least one Nash equilibrium in OPpgycg. O

Lemma 1. R 21_ a—; > 0 always holds if the following

Bici B
condition holds.

C; N ¢;
2(N — I)E < ijl ﬁ—i Q)

Proof. Given the domain [0, T — 7;] and the first order deriva-
tive Eq. (6) of u;, device ¢’s the best response strategy can be

obtained in Eq. (7), which is a function over t = [t1,- - , tx].
ou; «
= Rp; C; 6
o = BB e ©)
VRBicia_i—cia_;
0 I — <0
ti=g(t)={ Yoo mano g VRRGama0s g
VERBicia_i—cia_q
T—7; C;Ci o >T —1;
@)

Let Eq. (6) be equal to 0. Then, we obtain the following

equation.
1 C;
= —— 8
«o? Rﬂz ()
By summing up on the both 51des of Eq. (8), we obtain
Zj.v:l Bit; = R(N — 1)/2] 1 B According to Eq. (7), we

obtain c¢; (E] 1Biti) = RBi> ;. o;. Combining these
two equations, we obtain the following result.

a;

2
—1 RCi
Z ﬁj i= (CJ‘) 7 ©)
Za 15, ’
When Eq. (5) holds, we can easily prove that Bii —
>~ a; > 0 always holds. O

J#i

Definition 1. The function ¢(t) is standard if for all t > 0,
the following properties are satisfied.

(1) Positivity: g(t) > 0,

(2) Monotonicity: if t > t, then g(t) > g(t').

(3) Scalability: YA > 1, Ag(t) > g(N\').

Theorem 2. There exists a unique Nash equilibrium in
OPDEVICE i]CEC]. (5) holds.

Proof. If Eq. (7) is a standard function, the proposed game

has a unique Nash equilibrium.
The positivity is obviously satisfied by g(t). We prove the
monotonicity of g(t) under the condition Eq. (5) by showing
g(t) —g(t') >0 given t > t'.

W(ﬁ (59 (5o 27)

According to Lemma 1, the monotonicity property is proved.
Finally, to show the scalability property, we prove that Y\ >
1,Ag(t) > g(At') based on Eq. (11).

Ag(t)—g(At') = A\/RZ]'# Y \/Rzéii.m

Bici
Therefore, the proposed game always possesses a unique
Nash equilibrium.]

(10)

IS0 D

Algorithm 1 Best Response Algorithm

Output: t = {t1,--- ,tn}
Input: Initialize k as 1 and pick a feasible starting point £(*)
1: for round k do

2: for device i do)
_ ouU; tivt,i_
3: Decide tz(.k) = tz(.k 1)+A%
4 Send the local model the server
5: Server aggregates all models received before 7" into a

new global model and send back to devices.
if t*) = t(*=1) then Stop
7: else set k + k+1

24

This naturally gives a distributed iterative algorithm, al-
lowing each device to iteratively update its strategy, given
the strategies of other devices. We summarize the distributed
iterative algorithm in Algorithm 1. Algorithm 1 is applicable
to find the unique NE point, where each device is engaged in
a gradient ascent process to maximize its utility.

B. Accuracy-based Reward Policy

Another simple and intuitive way for the server to measure
the individual contribution and distribute its reward is based on
each device’s local model accuracy. As we mentioned before,
the relationship between the model accuracy and the training
time can be characterized by a log function. As we will show
in the below, when using model accuracy to measure device’s
contributions, «; is still a strictly increasing concave function
with respect to ¢;. In this case, the new problem facing each
device is shown as follows.

Problem 4 (OPpgyice).

maximize ui(ts, t_;) = R% — ¢t (12a)
Q@

where a; = 0log (1 + ABit;) , (12b)

subject to ti+n <T, 6>0 X>0. (12¢)

Theorem 3. At least one Nash equilibrium exists in Problem 4.

Proof. The existence of Nash equilibrium can be confirmed by
showing that its second derivative is negative based on Eq. 13.

BQui R@/\2ﬁi20é_i (0

= 2—+1) <0 13
ot? (1+)\ﬁiti)2 a2\ «) (13

Since the objective function is concave, we can conclude that
there exists at least one Nash equilibrium in Problem 4. [

Lemma 2. Let T' = {N,(A;),cy, (mi);en} be an N-player
non-zero-sum game in normal form, where N represents the
player set, A; represents the i-th player’s feasible strategies,
which is a non-empty compact convex subset of the Euclidean
space, and T; represents the i-th player’s utility function. If the
utility functions (71, --- ,wn) are diagonally strictly concave
for (A;);cy, then the game has a unique pure strategy Nash
equilibrium [2].

371‘-; 87TN T
oz’) Oz N

pseudo-gradient function and let T1(x) denote the Jacobian of

Lemma 3. Given y7m(x) = [as the game’s

V7 (x), if the symmetric matrix II1(x) +117(x) is negative def-
inite for x € (A;),;cy, then the utility functions (71,--- ,7N)
are diagonally strictly concave for (A;);cy [2].

Theorem 4. A unique Nash equilibrium exists in Problem 4.

Proof. To prove the uniqueness of Nash equilibrium in Prob-
lem 4, we need to show that U(t) + UT(t), where U is given
in Eq. (15), is negative definite.

We start with constructing the pseudo-gradient function

d
vu(t) = [%—?IL, e 8—“‘1] , where %—zﬁ is shown in Eq. (14).

’ 8tN
8ti (1 +)\/thz) 042 ¢ ! [] ()
Thus, we have the Jacobian of Syu(x) as below.
3*u 8%u,
2 tity
— | 2%u
Ut) = | g (15)
where B;t%i is given in Eq. (13) and g:ﬁj can be referred in
Eq. (16).

82’&1' _ R62)\25163 [Oé — 2(0[1 + O[j)]
8titj n (1 + /\ﬁltl) (1 + /\ﬁjtj) a3
Obviously, U(t)+UT(t) is symmetric. Due to the complexity

of this matrix, we use Matlab to check its eigenvalues, which
arc all negative, indicating it is negative definite. O

(16)

C. Stackelberg Equilibrium

While Algorithm 1 achieves a unique pure strategy for
the devices’ game, our final goal is to obtain the Stackel-
berg equilibrium of the entire system. For this purpose, we
leverage Algorithm 1 to construct the corresponding SE. The
Stackelberg equilibrium of the game can be found by solving
the following non-linear optimization problem. Let t*(R) be
the unique NE obtained by the followers when the server
offers a reward of R. The server needs to solve the following
optimization problem a priori to find its unique optimal reward
R* and announce it to the devices.

Problem 5 (OPguryer)-
N
maximize V = 0log (1 + A Z_il /3¢;¥(R)) ~ R (17)

The corresponding SE can be achieved by solving the Prob-
lem 5. We analyze the effects induced by these two different
contribution definitions in the simulation part. Specially, we
compare the server utility, the total utility of all devices,
and the social welfare achieved under these two definitions.
Meanwhile, we also compare the social welfare computed
under the proposed Stackelberg game with the optimal social
welfare to see the price of anarchy caused by selfishness.

IV. ROBUST PRICE OF ANARCHY

Consider that the federated learning system operates in a
centralized control. That is, all devices follow the server’s
instruction to train their local models. Then the objective of
this whole system should be maximizing the social welfare,

denoted by W, i.e., the difference between the global model
accuracy and the training cost among all devices, which is
given in Eq. (18).

W = 0log (1 + AZL ﬁiti) - Zil cits

Centralized control achieves a better performance than de-
centralized (game theoretic) control solutions in terms of the
social objectives being met. The concept of price of anarchy,
which is caused by the devices’ selfish behaviors, is used to
quantify the loss of efficiency in decentralized game solutions
as compared to the optimal centralized control.

In the following, we prove that the non-cooperative game
played among all devices is a valid monotone utility game. As
a result, we obtain a lower bound on the PoA of value 0.5.

Definition 2. Let T' = {N, (4;),oy , (Us);en } be an N-player
non-zero-sum game in normal form, where N represents the
player set, A; represents the i-th player’s feasible strategies,
which is a non-empty compact convex subset of the Euclidean
space, and U, represents the i-th player’s utility function.
Assume that the objective function W((A;);cy) where w :
2Aien s R, is a general function defined over all subsets
of (Ai);cn- Game T is called a valid utility game if it satisfies
the following three properties
(1) W is submodular,
(2) The objective value of a player is at-least his added value
for the societal objective,
(3) The total value for the players is less than or equal to
the total societal value.
And T is called a monotone game if for all S C S’ C
(Ai)jen, W(S) < W(5)[20].

(18)

Lemma 4. If a game I is a valid monotone utility game, then
its lower bound on the PoA is 0.5.

Theorem 5. Our proposed Stackelberg game has a lower
bound on the PoA, which is 0.5.

Proof. We show that our proposed Stackelberg game has the
following three properties:

1) W is submodular: Assume there exists one set a C t
and two elements ¢,,t, € t —a. We define set a’ =aU {t,,},
indicating that a C a’ C t. Therefore, we have

(W(aU{ty}) = W(a)) — (W(@' U{t,}) - W(a'))
—olo 14+ s+ ABqgtq 0o 1+ s+ A8ty + AByty
=08 1+s & 14+ s+ ABptp

_ (1+5+>\%3qtq) (1+5+)\ﬁptp))
=0l ((1 +5) (14 5+ ABpty + AByty) >0

19)

where s = A\) ., fit;. Thus, we can conclude that W is a
submodular function.

2) Device i’s utility u; is at-least its added value for the
societal objective: To prove this property, we need to show
that ui(ti,t_i) > W(ti,t_i) — W(t_i).

witi =) — (Wt to;) — W(t—;))

. 1+ AN Bit;
:R% — Olog sz_l Pits
a L+ AYL, Bty — ABit
i ABiti
—RE _glog 1+ AP
Q 14 /\Zj:1 Bit; — ABit;
3) The total value for the devices is less than or equal to the

total societal value: Here, we show the difference of vazl U;
and W as below.

Zjvlui—W
N
_Z(R— c”) <Glog<1+/\z,3u)—20iti>
— i=1
=R — flog <1+)\Zi_15iti) >0

Thus, our proposed game is a valid monotone utility game.
Thus, it has a lower bound of 0.5 on the PoA. O

) >0 (20)

ey

V. UNSTABLE COMMUNICATION CHANEL
A. Model Stochastic Upload Time

As we mentioned before, local updates have to be trans-
ferred to the server. Every such update is of the same size as
the trained model, which can be in the range of gigabytes for
modern architectures with millions of parameters [3, 4]. Nev-
ertheless, the devices typically employed in federated learning
are communication-constrained, for example IoT devices or
smartphones are generally connected to Wifi networks. Obvi-
ously, our previous assumption that cach device has a fixed
upload time 7; is not realistic due to the mobility of devices
and instability of wifi connection. In the following, we further
consider a complex setting, where each device ¢’s upload time
is stochastic and subject to a normal distribution N (1, 0?)
for Vi € [1, N]. In the following, we will focus on equilibrium
analysis in the size-based-policy setting, while it also holds in
the accuracy-based-policy setting.

B. Problem Formulation

Since device i’s upload time follows a normal distribution
N (15, 02), the probability that i successfully uploads its model
within a specific time 7; can be expressed as Eq. (22).

i 1 _ i2
Fi(Ti):[U‘mexp{—%}dx (22)

After a device ¢ decides on its training time ¢;, it has a time
period of T' — t; for uploading. Therefore, its model can be
successfully uploaded with the probability of F;(T —t;). Any
update after the deadline 7" will not be accepted by the server.
Thus, with a probability of F;(7T —t;), device i can contribute
a set of data o; = (;t; to the global model, otherwise, its
data contribution will be 0. Since all other devices follow the
same principle to participate in this game as well, device 7 can
estimate that the total data contributed by other devices would
be >, Bt (T —t;) in expectation, which we denote as
&_; for simplification. Thus, if device ¢ successfully uploads
its model, then the system-wide data contribution is &_;+ 3;t;.

Based on the analysis above, we reformulate the optimization
problem for an individual device q.

Problem 6 (OPDEVICE)'
a; Fi(T—t
ui(tit—;) = R¥

G_; +

maximize —city, (23a)

subject to 0<t;<T. (23b)

In fact, each device’s utility function fails to satisfy the
quasi-concavity condition in the strategy space. However,
a non-concave game still possesses a pure strategy Nash
equilibrium when meeting some specific conditions which is
given in Lemma 5 [5].

Lemma 5. Let I' = {N,(4;),cy, (Us);en} be an N-player

non-zero-sum game in normal form, where N represents the

player set, A; represents the i-th player’s feasible strategies,

which is a non-empty compact convex subset of the Euclidean

space, and U, represents the i-th player’s utility function.

Assume that for each v € N:

(1) A; is some closed interval of the real line,

(2) Ui(.) is continuous on A;,

(3) For each x_; € A_;, there exists a local maximum
of Uij(x_;,.), and this local maximum is also a global
maximum,

then the game 1" possesses a pure-strategy Nash equilibrium.
Theorem 6. Nash equilibrium exists in OPpgyice.

Proof. Obviously, our proposed game satisfies the conditions
(1) and (2). Thus, we now prove that Vx_;, u;(t;,t—_;) has a
local maximum over its strategy domain [0,7") and that this
local maximum is also a global maximum of wu;(t;,t_;) over
its feasible domain.

For each feasible t_;, we start to analyze the function

u;(t;,t_;)’s monotonicity with respect to ¢;. We show the first-
order derivative of u; in the below

Ou; RﬂiFi(T—ti)@—z—5itifi(T—ti) (G—i+Bit:)

= —C,L-
ot (G- + Bit:)”

Obviously, 4 8“1 is continuous over its feasible domain. We
show the signs of ‘glt‘? on the boundary points over its strategy
space.

8”1 Rﬁz z()

0,t_))=—F7—¢ 24
ar, Ot =—4— c 24)
u; i Fi(0)—Biti fi(0) (i +5; T
Wy pBFOBRHO @t BT) oo
ot (G—i + BiT)

Since Eq. (24) is positive and Eq. (25) is negative, there
must exist a certain ¢t7 € (0,7) so thataui (t*,t_;) =0, and
u; increases in the domam [0,¢F) and decreases in the domain
(t*,T). Thus, u; reaches its local maximum at the point ¢;.

Next, we will prove that u;(¢]) is a global maximum in
its feasible domain [0, 4+00). When t; > T, the value of
Fi(t;) = gt (ti,t-;) <0 holds,
thus u; is a decreasing functlon in terms ‘of t; in the domain
of [T, +00). Therefore, u;(tf) is a global maximum as well.
Now, we can conclude that the proposed game possesses a
pure-strategy Nash equilibrium. a

T R 1200 | 400 | 600 | 800 | 1000 T R 1200 | 400 | 600 | 800 | 1000 T R 1200 | 400 | 600 | 800 | 1000
100 32 64 90 90 90 100 31 61 90 90 90 100 29 54 76 90 90

120 32 64 96 110 110 120 31 61 90 110 110 120 29 54 76 97 110
160 32 64 96 128 150 160 31 61 90 118 144 160 29 54 76 97 117

(a) Size-based policy.

(b) Accuracy-based policy (6 =10, A=8x 10~6).

(c) Accuracy-based policy (0 =10, A=4 x 107%).

TABLE II: Homogeneous follower subgame Nash equilibrium under different rewards and deadlines where (N, 3, ¢, 7) = (5,200, 1, 10).

o
S

—A—R=4000
—#—R=6000
[=®=R=8000

4800 -

=
=3
S
3

o » 3

w
]
S
3

Reward to training time rati

2400

1600 /
800 /
1 3 5 7 9 1 13 15 1 3 5 7 9 11 13 15
Number of devices in each area Number of devices in each area

—A—-R=4000
—#—R=6000
[=—R=8000

Total training time

(a) Size-based policy. (b) Size-based policy.

—A—R=4000
—#—R=6000
—9—R=8000

4000 =dh

/

©

w
he]
=3
3

-

2
=
3
3

w

Total training time

S
3
w

—®—R=6000
[=©—R=8000

Reward to training time ratio

%
=3
3

1 3 5 7 9 11 13 15 1 3 5 7 9 113 15
Number of devices in each area Number of devices in each area

(c) Accuracy-based policy. (d) Accuracy-based policy.

Fig. 3: Impact of device number under 7" = 160.

t R 200 400 600 800 1000
t1 45.8 91.5 110 110 110
to 29.1 58.3 91.4 110 110
t3 29.1 58.3 91.4 95 95
ty 12.5 25 43.4 80 110
ts 12.5 25 43.4 80 105
sum 129 258.1 | 379.6 | 475 530
(a) Size-based policy.
t R 200 400 600 800 1000
t1 36.7 64.9 89.6 110 110
to 25.5 47.2 66.9 85.5 106
t3 25.5 47.2 66.9 85.5 95
ty 16.1 33.1 49.3 64.8 82.5
ts 16.1 33.1 49.3 64.8 82.5
sum 1199 | 2255 322 410.6 | 476

(b) Accuracy-based policy(d =10, \=4x 107°)..
TABLE III: Heterogeneous follower subgame Nash equilibrium (7" = 120).

VI. SIMULATION

Our evaluation includes three parts. First, we examine how
the server and the devices (Subsection VILLA and B) decide
their optimal strategies. Second, we compare the game-driven
market equilibrium and the optimal social welfare to confirm
our PoA lower bound (Subsection VII.C). Lastly, we analyze
how the upload channel jitters influence the achieved equilib-
rium (Subsection VIL.D). We conduct our experiments using
Tensorflow 1.9 (to get fine-tuned machine-learning related
parameters) and Matlab R2019b (to help the server and devices
make decisions) on Ubuntu 16.04 LTS.

A. Follower Subgame Nash Equilibrium

In this part, we will first analyze Nash equilibrium achieved
among all devices. We will discuss how different parameters
will affect the devices’ equilibrium strategies.

1) Parameters from the server side: The server can de-
termine its deadline 7', its reward R, and its reward policy,
i.e., size-based or accuracy-based. In the following, we focus
on investigating how those parameters affect the device-side
equilibrium. We start with a simple homogeneous-device set-
ting, where (N, 5, ¢, 7) = (5,200, 1, 10). In Table II, we show
the impact caused by different decisions on deadline 7, the
reward R, and the reward policy. Note that, R may not be

its equilibrium value. Obviously, the increase of R’s value is
the main driven power for all devices to extend their training
time. In the size-based reward policy, we can even observe
the linear relation between the reward and the training time in
some case. However, after devices reach their optimal training
time, the server cannot push them to train longer by providing
more rewards. This indicates that, the server should carefully
determine its reward value to avoid useless monetary invest.
This is an important reason why we utilize Stackelberg model
since it adds the leader level to ensure the server’s benefit.

By comparing Table II(a) to Table II(b) and Table II(c), we
can conclude that, in most cases, the size-based reward policy
leads devices to train for a longer time if other parameter
values are identical, and thus, bringing more benefit to the
server. By comparing Table II(b) and Table II(c), we also see
the influence caused by the accuracy measurement function.
Generally, an accuracy measurement function with a higher
diminishing return will motivate devices for a longer time
training. The accuracy measurement functions in Table II(b)
and Table II(c) are transformed based on the results obtained
by training the datasets Reddit and Celeba, respectively.

2) Number of Participating Devices: In this part, we in-
vestigate the impact caused by the number of participating
devices N. We assume all devices are evenly distributed in
5 areas. All devices have the same computation speed and
devices located in the same area enjoy the identical unit
cost and upload time. The detailed settings are given as
T =160, 8 = 200, (c1,ca,c3,¢4,05) = (1,1.2,1.2,1.4,1.4),
and (7y,72,73,74,75) = (10,10,25,10,15). We change the
number of devices in each area so that the total device number
ranges from 5 to 75 and we show the device number impact in
Fig. 3. According to Fig. 3(a) and Fig. 3(c), we can conclude
that, in the beginning, the increase on the device number can
result in a longer total training time, i.e., the sum of all devices’
training time. When reaching some point, the increasing trend
stops, meaning that the newly joining devices only split the
reward with the existing devices while bringing no benefits to
the system. As we can see in Fig. 3(b) and Fig. 3(d), the ratio
between the reward R and the total training time converges
to the same value in the end. Thus, blindly recruiting more

5

40 +c|:]0

=

=35 ——c,=12
3 —o—c.=
0 ¢, =14

Individual training time
>

—

80 Y

ize-based
= \=8x10°
60 == A=4x10"

Total training time

Individual training time

12 3 4 5 6 7 8
Number of devices in each area

1 2 3 4 5 6 7 8
Number of devices in each area

(a) Size-based policy.

(b) Accuracy-based policy: A=8x10~5. (c) Accuracy-based policy: A=4x10~5.

3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of devices in each area Number of devices in each area

(d) Size vs Accuracy.

Fig. 4: Impact of device number under 7" = 80.

devices cannot increase the global model’s accuracy while
bringing more ordination work to the server.

3) Device Parameters: Now we study how the values of
(8, ¢, 7) affect individual devices’ equilibrium strategies. Here,
we still apply the five-area setting we mentioned in the above,
while we assume there is only one device in each area, i.e.,
N = 5. We find each device’s equilibrium strategy under
different system parameters. Table III shows the results under
the size-based reward policy and the accuracy-based reward
policy, respectively. Based on these two tables, we can see that
the training time heavily depends on a device’s computation
cost to speed ratio when other conditions are identical. Devices
with lower cost-to-speed ratio and less upload time tend to
have a longer training time under any reward policy.

B. Leader-Follower Stackelberg Equilibrium

Based on the device-side analysis, we further study the
optimal strategy on the server side to obtain the desired
Stackelberg equilibrium. We consider a three-area setting and
the detailed settings are given as 7' = 80, § = 10000,
7 = 15, and(cq, ca,c3) = (10,12,14). We investigate the
Stackelberg equilibrium under different reward policy. We
show the device-side equilibrium strategies in Fig. 4. And we
can find that the total training time in each area is almost fixed
when increasing the device number in these areas. Although
we change the number of devices in each area, the server’s
optimal reward is almost the same. The server’s optimal
reward is around 1731, 626, and 408, for Figs. 4(a), (b), and
(c) respectively. According to Fig. 4(d), we can observe the
devices’ total training time is positively related to the server’s
reward policy. The size-based reward policy motivates devices
to train for longer time as each second has the same value
while the accuracy-based reward policy makes the later time
less valuable, so that all devices tend to train for less time
under this policy.

C. Price of Anarchy

In this section, we want to compare the social welfare
created by different model designs.The definition of social
welfare is the difference between the global model satisfaction
and the total cost on the device side. We focus on the
optimal control model and our proposed Stackelberg game.
The optimal control means no money incentive: all devices are
forced to follow the central server’s scheduling. We consider
a homogeneous-device setting. We show the obtained social
welfare of these two models under different device numbers
in Fig. 5. We can see that the social welfare yielded by

0

e

[optimall

[

Social Welfare
L

&

-8 N=4 N=8 N=16 N=32 N=64 N=I28
Fig. 5: Social welfare: game-driven vs optimal.
our proposed Stackelberg game is always more than half of
the optimal social welfare under a central controller, which

confirms our theoretical analysis on the lower bound of PoA.

D. Uncertainty in Upload Time

In this part, we investigate the impact caused by the channel
instability. We still apply the homogeneous-device setting,
where (N, 3,c,7) = (5,200,1,10). We use different values
of o to reflect how unstable the communication channels are.
Note that, o = 0 is the special case, representing that the
upload time is fixed as 10. According to Table IV, we can
conclude that, the uncertain upload time makes devices spend
more time on the local training.

VII. RELATED WORK

1) Federated Learning: As there is more and more attention
on privacy, federated learning has become one of the essential
concepts in modern machine learning. Existing works in this
research field can be divided into two directions. In one direc-
tion, researchers focus on solving the global model accuracy
decreasing caused by device heterogeneity [6, 7] in terms of
hardware, network connectivity, and battery power, and data
heterogeneity among all devices [8—10]. This paper focuses on
how to improve the global model accuracy by motivating all
participating devices to train more data locally. Some literature
also considers dealing with the coordination and operation
problems in such a system, such as the communication bottle-
neck [11, 12] and the trust and truthfulness [13] between the
server and devices.

2) Incentive Mechanism Design for Mobile Crowdsourcing:
An effective incentive mechanism is indispensable in mobile
crowdsourcing tasks. Most solutions integrate online auction
and game theory techniques for mechanism design [14, 15].
There also exist some works dealing with incentive mecha-
nisms in the federated learning system. In [16], the authors
present an incentive mechanism called FMore with multi-
dimensional procurement auction to select high-quality train-
ing nodes. [17] utilizes contract theory in order to motivate
high-reputation workers to join model training. Our paper uti-
lizes a Stackelberg game, where the server acts as a leader and

- R 1100 | 200 | 300 | 400 | 800 = R 1 100 200 | 300 | 400 800 pn R 1 100 | 200 | 300 | 400 800
0 16 32 48 64 125 0 158 | 31.2 | 463 | 61.1 | 117.6 0 15.1 | 288 | 41.7 | 53.8 | 97.3
1 23 345 | 484 64 128 1 17.8 | 31.3 | 463 | 61.1 | 117.6 1 17.7 | 289 | 41.7 | 53.8 | 97.3
10 27 38 50 64.1 | 128 10 246 | 359 | 46.8 | 61.1 | 117.6 10 239 | 345 | 43.1 | 539 | 973

(a) Size-based policy.

(b) Accuracy-based policy (6 =10, A=8x 10~6).

(c) Accuracy-based policy (0 =10, A=4 x 107%).

TABLE IV: Homogeneous follower subgame Nash equilibrium under different rewards and deadlines where (N, T, 8, ¢, T) = (5, 140,200, 1, 15).

provides rewards based on devices’ individual contributions to
motivate each device to feed its local model with more data in
each iteration. We utilize utility theory, which has been widely
applied to decision making [18, 19], and design suitable utility
functions for both the server and the devices. Besides, our
model is more practical as we take the training deadline and
device upload time into consideration.

3) Price of Anarchy: In algorithmic game theory, the price
of anarchy (PoA) is defined as the ratio of the social cost
of a worst Nash equilibrium to that of a social optimum
(i.e., an assignment of strategies to players achieving optimal
social cost). This highly successful and influential concept is
frequently thought of as the standard measure of the potential
efficiency loss due to individual selfishness, when players are
concerned only with their own utility and not with the overall
social welfare. Lots of works dealing with communication
network problems either use this concept to measure the
efficiency their methods can achieve [20, 21] or utilize this
concept as the system design goal [22, 23]. In this paper, we
investigate the existence of a pure strategy equilibrium in a
resource management game and measure the inefficiency of
equilibria by the price of anarchy. We show that the lower
bound on the price of anarchy is 0.5 for our proposed solution.

VIII. CONCLUSION

In this paper, we utilize a Stackelberg game to model the
interaction between a server and all participating devices in
a federated learning system. We aim to find the server’s
optimal reward and each device’s optimal training time for the
purpose of individual utility maximization. Our model takes
both the server-side deadline and the device-side upload time
into consideration. We consider two different reward policies,
i.e., size-based and accuracy-based, and investigate how they
affect the equilibrium achieved in the whole system. We prove
that the proposed game is a valid utility game, which has a
lower bound of 0.5 on the PoA. We also extend our model by
adding uncertainty in the upload time. We show that devices
spend more time on local training in the variable-upload-time
setting. Our evaluation results validate the proposed models
and theoretical results.

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: Challenges, methods, and future directions,” IEEE
Signal Processing Magazine, 2020.

[2] J. B. Rosen, “Existence and uniqueness of equilibrium points
for concave n-person games,” Econometrica: Journal of the
Econometric Society, 1965.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017.

[5] A. Ziad, “Nash equilibria in pure strategies,” Bulletin of Eco-
nomic Research, 2003.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
arXiv preprint arXiv:1812.06127, 2018.

[7] Z. Charles and D. Papailiopoulos, “Gradient coding using the
stochastic block model,” in 2018 IEEE International Symposium
on Information Theory (ISIT). 1EEE, 2018.

[8] L. Corinzia and J. M. Buhmann, “Variational federated multi-
task learning,” arXiv preprint arXiv:1906.06268, 2019.

[9] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive
gradient-based meta-learning methods,” in Advances in Neural
Information Processing Systems, 2019.

[10] Y. Zhang and M. Guizani, Game theory for wireless communi-
cations and networking, 2011.

[11] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proceedings of
the National Academy of Sciences, vol. 118, no. 17, 2021.

[12] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Inger-
man, V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B.
McMahan et al., “Towards federated learning at scale: System
design,” arXiv preprint arXiv:1902.01046, 2019.

[13] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wire-
less Communications, 2020.

[14] A. Singla and A. Krause, “Truthful incentives in crowdsourcing
tasks using regret minimization mechanisms,” in Proceedings of
the 22nd International Conference on World Wide Web, 2013.

[15] G. Goel, A. Nikzad, and A. Singla, “Mechanism design for
crowdsourcing markets with heterogeneous tasks.” in HCOMP,
2014.

[16] R. Zeng, S. Zhang, J. Wang, and X. Chu, “Fmore: An incentive
scheme of multi-dimensional auction for federated learning in
mec,” arXiv preprint arXiv:2002.09699, 2020.

[17] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive
mechanism for reliable federated learning: A joint optimization
approach to combining reputation and contract theory,” IEEE
Internet of Things Journal, 2019.

[18] P. C. Fishburn, “Utility theory,” Management Science, 1968.

[19] J. Wu, M. Lu, and F. Li, “Utility-based opportunistic routing
in multi-hop wireless networks,” in IEEE 28th International
Conference on Distributed Computing Systems. 1EEE, 2008.

[20] H. Youn, M. T. Gastner, and H. Jeong, “Price of anarchy
in transportation networks: efficiency and optimality control,”
Physical Review Letters, 2008.

[21] D. Ye, L. Chen, and G. Zhang, “On the price of anarchy of two-
stage machine scheduling games,” Journal of Combinatorial
Optimization, 2019.

[22] Y.-J. Chen and J. Zhang, “Design of price mechanisms for
network resource allocation via price of anarchy,” Mathematical
Programming, 2012.

[23] J. R. Marden and M. Philips, “Optimizing the price of anarchy
in concave cost sharing games,” in 2017 American Control
Conference (ACC). 1EEE, 2017.

