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Abstract—Battery-powered wireless sensor devices need to be
charged to provide the desired functionality after deployment.
Task or even device failures can occur if the voltage of the
battery is low. It is very important to schedule the recharge of
batteries in time. Existing battery scheduling algorithms usually
charge a battery when its voltage drops below a fixed level.
Such algorithms work well when the workloads are predictable.
However, workloads of wireless sensors can be highly bursty,
i.e., extensive sensing and communication tasks usually occur in
a very short time period. If such a bursty workload occurs when
the battery voltage is low, the battery energy can be depleted
very quickly, resulting in system task failures before the device
can be recharged. To deal with unpredictable bursty workloads,
we investigate battery characteristics with different workloads
via experiments. Based on the empirical results, we build an
adaptive linear model and propose a feedback control based
battery charge scheduling algorithm. This algorithm dynamically
adjusts the battery charge threshold for recharge scheduling,
adapting to bursty workloads. We have tested our algorithms in
extensive simulations with traces obtained from real experiments.
Evaluation results show that our algorithms can adapt to bursty
workloads. Compared to existing algorithms, our algorithm
achieves a 68.26% lower task failure ratio with a 3.45% sacrifice
on system lifetime under bursty workloads.

Index Terms—battery, burstiness, scheduling, control, energy
efficiency

I. INTRODUCTION

With the advance of wireless and sensing technologies,
wireless sensor networks are deployed for various applica-
tions, such as military surveillance, scientific exploration, and
environmental monitoring. These wireless sensor devices are
usually powered by rechargeable batteries. To maintain desired
functionality of such devices, it is very important to charge
their batteries in time after deployment. However, in real
systems on-demand battery charging scheme is widely used,
since system users may not be aware of the low power battery
status until nodes start to fail. Moreover, it requires extra time
and effort to recharge the battery after deployment.

Battery characteristics and scheduling have been studied
extensively [1–6]. These studies have provided valuable re-
search results. A large part of these works assume stable or
predictable workloads. However, the workloads for wireless
sensor networks are usually dynamic due to the nature of
physical phenomena they monitor. Therefore, wireless sensor
nodes may consume energy at a highly dynamic rate. Recent
studies [7–9] suggest that the energy usage of these devices
can be bursty i.e., a device consumes a large amount of
energy within a short period of time due to an extensive

Fig. 1: Battery Charge with Bursty Load

workload. Such bursty energy usage can deplete a battery
very quickly when its voltage is already low. As shown in
Figure 1, if a bursty workload occurs when the battery is
close to depletion, it causes a dramatic discharge in a short
time period. When the battery’s voltage drops out of normal
operational voltage levels, tasks and even the system fail. We
call this problem dramatic discharge with bursty workloads. It
is very challenging for battery charge schedules to deal with
bursty workloads.

With simplified workload assumptions, many of existing
battery charge scheduling algorithms use fixed schedules to
charge the battery; other on-demand algorithms require the
battery to be charged when its voltage drops below a fixed
level. These schemes work well when the power consumption
doesn’t vary dramatically. Unfortunately, they all suffer from
the dramatic discharge with bursty loads. In this work, we have
demonstrated that those existing recharging schemes 1) do not
fully utilize energy that is stored in batteries if batteries are
charged conservatively, and 2) do not sustain desired services
of devices if batteries are charged aggressively.

In order to achieve efficient usage of battery energy and to
sustain desired services for as long as possible, it is essential
to dynamically schedule the battery charge process based
on usage patterns. Recent research [10] demonstrates some
potential designs for dynamic battery scheduling algorithms.
In this work, we investigate the impact of bursty workloads
on system lifetime via experiments. Based on our experimental
results, we create an empirical model of battery lifetime under
different workloads. With this empirical model, we propose
feedback control based adaptive schedules for charging the
battery. Our algorithm design aims to optimize the lifetime of
a device and to reduce the number of task misses with a fixed
number of battery charges. The rechargeable batteries have
limited recharge cycles due to cyclic memory and crystalline
formation [11]. Specifically, our online algorithm estimates
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Fig. 2: Battery Characteristics

the remaining lifetime of a device based on the discharging
rate of its batteries and its past workload. A markov model is
employed to approximate the bursty workload. Our algorithm
demonstrates a good tradeoff between the system performance
and the system lifetime.

The process of energy consumption and recovery is affected
by many uncertainties. Intuitively, if all of the energy that is
produced and consumed is known at every time point, we
can find the optimal battery charge schedule. However, the
workload could be unpredictable. In order to achieve a stable
system performance, we also develop robust charge schedules.

Our dynamic battery charge scheduling algorithms are eval-
uated in extensive simulations. Simulation results show that
our feedback based dynamic schedules achieve a 68.26% lower
task failure ratio compared to existing schemes, with merely
a 3.45% decrease in system lifetime. Also, our robust battery
charge schedule can achieve even lower task failure ratios with
bursty workloads.

The rest of this paper is organized as follows. Our moti-
vation is presented in Section II. In Section III, we show the
battery charge scheduling algorithm. In Section IV, our solu-
tion is evaluated in simulation. State-of-the-art is described in
Section V. Conclusions of this work are stated in Section VI.

II. AN EMPIRICAL STUDY ON BATTERY CHARATERISTICS

In order to design better battery charging schedules for
dealing with bursty workloads, we need to understand a bat-
tery’s charging and discharging characteristics. In this section,
we conducted several sets of experiments to study battery
charateristics under different workloads. These experiments
are repeated with multiple different batteries. The data col-
lected from different batteries is similar. We used five UltraFire
brand AA lithium ion batteries with a maximum voltage rating
of 3.6v and a nominal charge capacity of 900mAh in these
experiments.

In the first set of experiments, we discharged a battery
with a constant workload. We measured and recorded its
voltage changes. The data obtained from one battery is plotted
in Figure 2 (a). The curves in Figure 2 (a) represent the
battery discharging rates from six starting voltage levels for
durations of five minutes. From Figure 2 (a), we notice that the
battery voltage decreases through the entire discharge process.
These curves are approximately linear. The voltage decreases
relatively slowly when the voltage is high and relatively

quickly when the voltage is low. This data can help us build a
model of a battery’s voltage over time with a fixed workload.

In the second set of experiments, we discharge a battery
multiple times with different workloads. For each experi-
ment, we use a constant workload, represented by a constant
current. We measured and recorded its voltage change. The
data obtained is plotted in Figure 2 (b). Each curve in this
figure represents a battery’s discharging rate with a specific
workload. From this figure, we can see that all of these figures
are approximately linear in the battery’s operational range,
specifically if the voltage is higher than 2.8 volts. However,
the slopes of these curves are significantly different. These
curves are dramatically steeper with higher workloads, which
conforms to the rate capacity effect [12]. This experimental
data helps us to capture the relation between a battery’s
discharging rate and its specific workload.

In the third set of experiments, we charged a battery from
a uniform source voltage of five volts. We measured and
recorded battery voltage during the charging process. The data
obtained is plotted in Figure 2 (c). Each curve in Figure 2
(c) shows the charging rate of the battery from one starting
voltage. We notice that the charging rates with different
starting voltages are very similar. The voltage increases a little
bit more quickly while it is low, and the rate becomes stable
as the voltage rises. For this charging experiment, we also
computed the total amount of energy that is absorbed by the
battery. Figure 2 (d) shows the total absorbed energy as a
function of time. Similarly, we can see the battery’s energy
storage increases slowly at an approximately constant rate.

III. DESIGN OF DYNAMIC CHARGE SCHEDULE

In this section, we describe a battery model based on
our extensive empirical studies. With this battery model, we
design a feedback control based battery charge scheduling
algorithm. Our algorithm aims to sustain a high quality system
performance by adapting to bursty workloads.

A. Battery and Workload Models

From our experimental results, we create an empirical
battery energy model. This model characterizes the battery
discharging rate with different workloads.

The battery discharging charateristics discussed in last sec-
tion suggest an approximate linear relation relation between
battery discharging rate and workload:

rdischarge = a · w + b (1)
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Fig. 3: HMM for Bursty Task

where rdischarge represents the battery discharging rate, w
represents system workload, a and b are model parameters that
are different with various types of batteries and can change
over the lifetime of the battery. These parameters can be
obtained via online system identification using the least square
approximation. This battery model allows us to predict battery
lifetime based on workloads and adjust the charging process
accordingly.

The basic task models are described as follows. The device
has a set of tasks S to execute. Each task si in this set S
must run for a certain period of time Ti; if a task is stopped
within its executing time period, it fails. When the system is
not executing any task, its state is idle. The time duration for
the idle state i is represented as Ii. The power consumption
of a task si is represented as ji.

Here we consider three types of tasks: 1) stochastic tasks, 2)
bursty tasks, and 3) a hybrid of the first two types. Stochastic
tasks occur randomly; their occurrences are independent of
one another. Bursty tasks are highly correlated in time. Their
occurrences usually happen in the same time period. We note
that the goal of this task model is to describe the burstiness
of energy imposed by system workloads. Application level
couplings of tasks are not the focus of this model.

We model these bursty tasks with a hidden markov model
(HMM). As shown in Figure 3, a group of tasks represented
by a specific subset Sj of S usually run together. A task in this
group is represented as sji. The transition probability from a
normal task si to a burst of tasks Sj is represented by p(Sj |si).
The transition probability from a normal task si to another
task, say sk, is represented by p(sk|si). idle represents a type
of low-power task.

The total energy consumption of such a burst can be
represented by the following equation.

E(Sj) =

si∈Sj∑
ji (2)

The maximum amount of energy consumption of any burst is
represented by Emax.

Emax = max{E(Sj)} (3)

B. Adaptive Charge Schedules

Battery charge schedules determine the time to charge a
battery. Intuitively, a battery should be charged as late as
possible for a longer system lifetime. The system lifetime can
be defined as follows. optime represents the operation time
after the ith recharge. K is the maximum number of recharges
the battery can handle.

Fig. 4: Battery Charge Control Loop

lifetime =

K∑
i=1

optimei (4)

Charging the battery as late as possible can also achieve higher
energy efficiency since the battery energy is used completely
after each charge. However, if the battery is deeply depleted,
when a bursty workload occurs, the battery will run out
of power immediately. As a result, the tasks fail and the
system performance decreases. Therefore, we need to find a
good tradeoff between the energy efficiency and the system
performance in our charging algorithm.

As the system performance, in terms of the task failure
ratio, is a central metric for system service quality, we define
the system service sustainability as the length of time during
which no tasks fail. The system sustainability can be defined
as follows. nfailure(i) is the number of task failures during
the ith charging period.

sustainability =

k∑
i=1

optimei

subject to
k∑

i=1

nfailure(i) = 0

(5)

Our goal is to design a battery charging algorithm that
optimizes the system sustainability and achieves high charging
efficiency. It is very challenging to achieve this goal, especially
when bursty tasks are considered. Combined with dynamic
battery characteristics, such as the rate capacity effect, it is
even more difficult to predict the optimal charging time. The
rate capacity effect indicates that a bursty load can significantly
decrease the deliverable energy of the battery. The reason is
that the battery discharging rate affects the deliverable energy
of the battery significantly. If a task that requires a relatively
high current comes up, the battery may not be able to supply
the energy required, within the time required, to complete
this task, even though it might be able to handle a task
that takes longer to execute but requires the same amount of
energy. Compared with previous charging algorithms, which
usually use a fixed level of remaining energy, we design a
feedback based algorithm that dynamically adjusts charging
schedules. The feedback block diagram is shown in Figure 4.
The control input is the difference between the desirable
sustainable lifetime and the expected sustainable lifetime. The
control output is the charging level threshold in voltage. The
charge controller uses the empirical battery model to adjust
the charging level. The charging level is used by the charge
scheduler to select batteries to charge if their current voltages
drop below this charging level. The Battery Charger charges
batteries according to the specified schedules from the Charge
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Fig. 5: Charge Scheduling Algorithms with Different Workloads

Scheduler. The life estimation module estimates the expected
sustainable lifetime, based on our bursty workload model.

If the current workload is si, and the task model indicates a
high transition probability p(Sj |si), the life estimation model
will calculate the expected lifetime T (t)expsus based on the
following equation:

T (t)expsus = (vc − vo)/rdischarge (6)

where vc is the current voltage, and vo is the lower bound
of the device’s operational voltage. The discharging rate
rdischarge is calcuated based on our empirical model:

rdischarge = a · w + b = a · (E(Sj)/TSj ) + b (7)

where E(Sj) and TSj are the total energy consumption and
the time duration of the bursty workload Sj . The estimated
lifetime is compared against the specified sustainable lifetime
Tsus to obtain a control error in sustainability e(t)sus:

e(t)sus = Tsus − T (t)expsus (8)

Here, Tsus represents the amount of time required to setup
the next recharge, for example, 5 minutes for a mobile device.
It can be specified by the user based on the application
and system requirements. The control algorithm is triggered
when the expected sustainable time is close to the specified
sustainable time so that the charging schedule can be adjusted
in time. When battery voltage is high (Tsus << T (t)expsus),
the control algorithm is not triggered.

Upon obtaining errors of sustainability, the charge controller
calculates the starting level in a short adjustment period before
the next battery charge. The charge controller makes adjust-
ments on the starting level for the battery charge schedule
when: 1) the expected sustainability is much larger than the
desirable sustainability, and 2) the expected sustainability is
dramatically smaller than the desirable sustainability. Also,
based on the empirical battery models that we obtained from
the experiments, we use a P control to make adjustments on
starting charge levels as follows.

vt(t+ 1) = vt(t) +Kp · rdischarge(t) · e(t)sus (9)

Here, vt(t) represents the starting charge level at time t, and
Kp represents the proportional gain. On one hand, if the
expected sustainability is lower than the desirable value, the
system may suffer from task failures when a burst in the
workload arrives. In this case, the starting charge level should

be increased so that batteries can be charged early enough
to deal with the burst. On the other hand, if the expected
sustainability is higher than the desirable value, the system
may have more than a sufficient amount of energy for the
incoming workload burst. In this case, the starting charge level
will be decreased, so that batteries can be charged later to
achieve better efficiency without experiencing task failures.
Since we use the linear battery models, it is necessary to use
a proportional control design to gradually adjust the charging
threshold to adapt. Before each battery charge, this feedback
based design runs a few loops discretely until it converges.

To better deal with dynamic battery models and workloads,
we have designed a robust control solution for battery charging
based on worst case bursty workload estimations. The robust
charging strategy suggests that the battery should be recharged
as soon as the device cannot support the maximal bursty load.
In other words, the remaining energy is less or equal to Emax.
This maximal bursty load is estimated based on the workload
history. As long as no bursty load with a higher energy
consumption occurs in the future, this condition guarantees no
task failures and achieves the longest sustainability. However,
it is not efficient since in most cases the worst case bursty
load may not occur at the moment that the battery is charged.
As a result, this conservative strategy causes a large amount
of the remaining energy Emax to be left unused in the battery
most of the time.

IV. EVALUATION

We set up a series of simulations based on collected experi-
mental data. After recording the current and the voltage across
multiple battery charging cycles from full to depleted, we build
a voltage based discharge table. An abstract virtual battery
containing voltage and energy information is subjected to a
series of simulated tasks, represented by periods of uniform
power consumption. The battery’s energy is drained linearly
during individual tasks, and the voltage is updated accordingly
at regular intervals as well as after each task completes: after
subtracting the consumed energy from the virtual batterys
energy supply, we match the battery’s energy value in the dis-
charge table and linearly interpolate the corresponding voltage
entries. Initial energy is determined on the basis of a specified
initial voltage of 3.5v. The lower bound for operational battery
voltage level is set to 2.8v.

We have implemented two existing charging schemes: an
on demand schedule and a periodic schedule. The on-demand
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Fig. 6: System Lifetime and Sustainability

schedule (On-demand) uses a fixed voltage level to trigger
battery charges. The periodic schedule (Periodic) uses a fixed
time interval to recharge the battery. Our control-based sched-
ule (Adaptive) is also implemented. We tuned the controller
and set the proportional gain as 0.2. The sampling period is
the same as our simulation elapsed time. We then implemented
the robust control solution (Robust). We tested these three
algorithms under three types of workloads: random, bursty, and
hybrid. We randomly select some random tasks to aggregate
them into the bursty tasks, then we assign values for the
corresponding markov models. For the hybrid workload, we
set 66.67% of the tasks to be bursty. The rest of the tasks
are random tasks. Our task model is trained to learn the
bursty workloads in each run as our experiments progress.
The number of charging cycles is set as 10,000. We ran our
simulations 40 times to obtain statistical results.

The evaluation results are shown in Figure 5. We plot the
task failure ratios of these four algorithms under three types
of workloads in Figure 5 (a). From this figure, we have three
observations. First, the task failure ratios of four algorithms
are all below 10% with random workloads. This is because the
energy consumption of random workloads is evenly distributed
over time. The adjustments made by Adaptive and Robust are
helpful but not significant. Second, the task failure ratios of
Adaptive and Robust are significantly lower than On-demand
and Periodic under bursty and hybrid workloads. The task
failure ratio of Robust is close to zero. Finally, we can see
that the task failure ratios of Adaptive and Robust under
hybrid workloads are similarly good with those under random
and bursty workloads. As the hybrid workloads are the most
realistic, it demonstrates that Adaptive and Robust can work
well in reality.

To better demonstrate the impact of bursty tasks on our
algorithms, we take a closer look at these four algorithms’
performances in Figure 5 (c). The curves in this figure
demonstrate the voltage changes of these algorithms during
two charging cycles. We can see that bursty tasks can cause
dramatic energy consumption at about the 50 hour mark, which
lead to the task failures of On-demand, as the battery voltage is
close to the operational bound while this burst occurs. Whereas
for Adaptive, the begining of bursty tasks can be detected,
and a battery charge can be triggered early enough to avoid
failures. Some failures still occur (1.30%) for Adaptive due
to inaccurate estimations. For Robust, the failure ratio is very
low (0.01%) since it uses the worst case estimation to select
a very conservative charging level. However, the battery cycle
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Fig. 7: Simulation Validation

of Robust is much shorter than that of Adaptive.
Figure 5 (b) shows the comparison of energy efficiencies

of these four algorithms. The energy efficiency is calculated
based on Equation 10.

efficiency = Ecompleted tasks/Etotal (10)

We use Ecompleted tasks to represent the amount of energy
consumed on tasks that are completed; Etotal represents the
total amount of energy consumed in the battery’s lifetime.
From this figure, we can see that Robust achieves the highest
energy efficiency in all cases. This is because Robust has very
few task failures: 99.99% of the energy consumed is used to
execute tasks successfully. Adaptive achieves a stable energy
efficiency of about 98.68% with different workloads, which is
short of Robust but much better than Periodic and On-demand.
The reason is that Adaptive has very low task failure rates,
and the energy wasted on uncompleted tasks is also very low.
Whereas the energy efficiencies for both Periodic and On-
demand are much lower, especially with bursty workloads. As
they do not adapt to the dramatic workload variation, both
Periodic and On-demand waste a small amount of energy on
tasks that they could not complete.

Based on the experimental data, we further calculated the
system lifetime and system sustainability. Figure 6 (a) shows
the system lifetime of the four algorithms with a fixed number
of recharges (10,000). We use the on-demand algorithm as
a baseline, and we calculate the ratio of lifetime of the
other three algorithms and plot them on this figure. From
this figure, we can see that On-demand achieves the longest
lifetime with all workloads, as it does not recharge until
tasks start to fail or the battery is deeply depleted. Both
Adaptive and On-demand achieve a very long system lifetime,
96.55-97.86% and 99.72-100.00%, respectively. Adaptive’s
lifetime is 9.17% higher than Robust, as Adaptive does not
significantly change the charging schedule; it only adaptively
brings forward the recharge when a burst is detected and
postpones the recharge when no bursts are coming. Robust
uses a conservative recharging voltage level, which is why its
total amount of operational time is 8.41% below Adaptive.

Based on the experimental data, we further calculated the
average sustainability of four algorithms, according to Equa-
tion 5, and plot them in Figure 6 (b). From this figure, we
can see that Robust achieves the longest sustainability with
all three workloads. The reason is that Robust keeps track
of the largest amount of energy consumption of a burst. The
system can continue running without a failure for a very long
time until a larger burst can occur. In regular workloads,
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worst case bursts do not occur often. Although lower than
Robust, Adaptive achieves much higher sustainability than
On-demand and Periodic in our log scale figure. Adaptive
still has task failures since the probability-based bursty task
estimation is not perfect. Both On-demand and Robust have
low sustainability due to frequent task failures and their
passive charging schedules.

To validate our simulation results, we have simulated a set of
experiments with data traces from real experiments. Figure 7
(a) compares the charging results of the simulation and the
real experiment. We can see an appropriate match between
simulated and real battery voltage over time. Figure 7 (b)
compares the discharging results in simulation and in two real
experiments. A resistor circuit (equivalent to a resistance of
22.4 ohms) is used. The experimental batteries are different but
have the same manufacturers specifications: 3.6v AA Li-ion
batteries rated at 900mAh. The virtual battery’s curve is like-
shaped and has values only inside the variations of these real
batteries. These two figures demonstrate that our simulations
are consistent with real experiments.

Overall, we can see that 1) existing static battery charge
algorithms with fixed recharging conditions, represented by
On-demand and Periodic, do not deal with bursty tasks very
well. They suffer from task failures and do not provide stable
service quality over time; whereas the feedback based dynamic
schedules achieve a 68.26% lower task failure ratio, with a
slight sacrifice on system lifetime (3.45%) and sustainable
time than existing algorithms. 2) Robust produces conservative
schedules, which greatly reduce the task failure ratios based
on the past worst case. Adaptive dynamically changes charge
schedules based on recent bursty workload estimations. 3)
Robust is suitable for applications that do not tolerate task
failures, while energy and lifetime are not major concerns.
Adaptive is better for systems that need a high task success
ratio and also a long system lifetime with a bursty workload.

V. STATE OF THE ART

Related research areas include battery system designs and
battery scheduling algorithms. Battery system designs have
been studied extensively in recent decades. Research results in
this field have boosted energy efficiency significantly. Authors
of [13] studied the impact of battery life and capacity on low
power system designs. [14] presents a special battery system
design for hybrid electric vehicles. In [4], authors design math-
ematical models to capture battery discharge characteristics.
Our focus is on the battery charge scheduling algorithms,
which can be integrated into these system platforms.

Research works on battery modeling and scheduling algo-
rithms provided a solid thereoretical foundation for battery-
based systems. Authors of [5] describe the subject of battery
management systems and provide detailed models. In [6],
authors present an electrical circuit level battery model for
performance prediction. In [1], authors describe a scheduling
algorithm for battery discharging that uses the charge recovery
mechanism without any additional delay in supplying the
required power. A recent study [15] investigates battery dy-
namics, especially with varying discharge currents. Our work
present a new battery model for lifetime prediction as well

as a feedback control based scheduling algorithm for battery
discharging. In [10], authors design a battery-based energy
scavenging system for low-power mobile sensor platforms.
These works usually consider a regular random workload.
In [16], authors propose an approach to dynamically balance
battery conservation and application quality by monitoring the
energy supply and demand and by maintaining a history of
application energy use. Authors of [2, 3] have designed a bat-
tery system for vehicles and proposed dynamic configuration,
charging, and discharging algorithms. These works consider a
regular workload. Our work investigates the impact of bursty
discharging processes on battery performance and proposes a
control based scheduling algorithm for recharging the battery.

VI. CONCLUSION

Existing battery scheduling algorithms usually charge a
battery when its voltage level drops below a fixed level. Those
algorithms work well with stochastic workloads. However, on
battery-powered wireless sensor nodes, extensive workloads
may occur in a very short time period. When such highly
bursty workloads are considered, the existing algorithms are
not effective or efficient. To maintain a high system per-
formance and to increase energy efficiency, we designed a
feedback control based scheduling algorithm. Our algorithm
is based on an empirical battery model obtained from ex-
periments. Adapting to workload and battery characterisitics,
this algorithm achieves a 68.26% lower task failure ratio,
with a decrease of 3.45% in the system lifetime under bursty
workloads, compared to existing algorithms.
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